

INFOCOMP, v. 19, no. 2, p. 42-56, December 2020

Reliable Path Finding Technique for Mobile Robot

RAMA KANTA CHOUDHURY1

CHANDRA KANTA SAMAL2

M.A.I.T, IP University, New Delhi, India

AND College, Delhi University, New Delhi, India
1rkchoudhury1@gmail.com

2cksamal@gmail.com

Abstract - Path planning techniques of mobile robot (Automated Vehicle) is discussed in this paper. Though

different researchers had proposed different path planning strategies, each plan has its own advantages and

disadvantages. The goal of the research work is to develop an algorithm to find out an optimal path from

source to destination along with the obstacles. The path planning algorithm not only minimizes the risk of

collision but also reduces the planning time and creates a reliable path to reach the desired destination

avoiding obstacles. The proposed algorithm is implemented to get the reliable path and compared with that of

the existing algorithm to find the optimized path. The new approach is able to minimize the risk of collisions

and travelling time with the help of different parameters and simulation software. It is proved through

experimental results that the performance of the proposed algorithm is improves considerably and works

efficiently when the shape and size of the image changes. It also turns closely at the corners of the obstacles

and also reduces the number of steps without affecting the steps and corners. Time and space complexity

analysis for this algorithm is experimentally tested and implemented.

Keywords: NFT, Path planning, Time Complexity, Space Complexity, DDA Optimization, Adj*.

(Received October 28th, 2020 / Accepted November 15th, 2020)

1. INTRODUCTION

 Path planning of a mobile robot is to

determine a collision-free path from a starting

point to a goal point optimizing a performance

criterion such as distance, time or energy (distance

being the most commonly adopted criterion).

Based on the availability of information about

environment, there are two categories of path

planning algorithms, namely off-line and on-line.

Path planning of robots in environments where

complete information about static obstacles and

trajectory of moving obstacles are known in

advance is known as off-line or global path

planning. When complete information about

environment is not available in advance, mobile

robot gets information through sensors and plans

its path as it moves through the environment. This

is known as on-line or local path planning.

Essentially on-line path planning begins its initial

path off-line but switches to on-line mode when it

discovers new changes in obstacle scenario

commonly used classic algorithms and

evolutionary approaches of path planning of

mobile robots are discussed. Review shows that

optimization algorithms are computationally more

efficient and hence are increasingly used in

tandem with classic approaches [5].

 The path planning algorithm contains various

methods with different optimization techniques

for optimization. The path planning algorithm

developed for various platforms depends on the

condition whether it is static or dynamic. Mobile

robots are expected to work in many places such

as factories, offices and so on. Nowadays,

autonomous mobile robots are used in the

environment where human beings are working

together with robots. Since there are many

stationary/moving obstacles in these

environments, autonomous mobile robots should

plan their own path to avoid not only stationary

obstacles but also moving ones such as human

workers and other robots. There are various

methods available for path planning in the field of

robotics, but planning or finding a path which is

collision free, shortest and optimal is recent

mailto:choudhury1@gmail.com
mailto:cksamal@gmail.com

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

requirement for a robot in the field of robotics.

Much of the work has been discovered for

generating path in static environment where the

obstacle in the environment are stationary But

according to today’s scenario it should be clear

that a robot has to find a path up to the target

efficiently when there are moving obstacles

present in the environment. The efficiency of the

algorithms is analyzed with space and time

complexities, completeness and optimality with

the help of various parameters. In this paper, A*,

NFT algorithm are tested taking various

parameters like steps, time, turns, nodes and turns

for same shaped and different shaped

obstacles[8,11,12].

2. A* SEARCH ALGORITHM

 A* Search algorithm is one of the best and

popular techniques used in path-finding and graph

traversals. Informally speaking, A* Search

algorithms [2], unlike other traversal techniques,

have “brains”. It is really a smart algorithm which

makes it different from other conventional

algorithms. It is also worth mentioning that many

games and web-based maps use this algorithm to

find the shortest path very efficiently

(approximation). The analysis is shown in

Fig.1(a,b) and Table.1.

(a)

 (b)

Fig .1(a, b): Complexity analysis Path Planning

of A* without optimization

Table.1: Analysis for A* Algorithm without

Complexity analysis

Start

Point

Goal

Point

Ti

me

Nod

es

Expl

ored

Ste

ps

Tur

ns

Dist

ance

140,

90

330,

330 2 115 56 18

800.

4204

3

90,

390

140

,90 3 25 19 5

299.

4043

01

130,

130

330,

330 2 77 41 10

559.

0107

52

90,

380

240,

90 3 36 21 6

343.

0107

52

150,

150

350,

350 2 76 40 13

544.

0107

52

90,

390

130,

130 3 21

16

5

250.

8032

36

130,

130

130,

380 2 35 16 0 240

150,

152

350,

350 3 75 41 13

544.

0107

52

120,

350

260,

100 2 49 29 12

423.

4096

77

80,

350

260,

80 2 39 21 8

338.

6182

8

300,

120

120,

380 3 109 37 18

483.

6118

28

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

 optimization for square shaped images

2.1 DDA optimization used on square shaped

 images

 DDA optimization technique is applied on

square shaped images using A*algorithm. The

time and space complexity is tested using DDA

optimization. Here the efficiency and the

effectiveness are evaluated in four steps which are

tabulated in Table 2. The simulated result and its

graphical analysis is shown in Fig.2 (a,b).

(a)

(b)

Fig .2 (a,b) : Complexity analysis with DDA

 optimization of A* with optimization

Table.2: Analysis for A* Algorithm with DDA

Optimization for square shaped images

2.2 Path planning with different shaped images

 As we know, A* algorithm works effectively

with square shaped images, a step ahead is taken

by introducing different shaped images like

circles, rectangles and triangles to ascertain

effectiveness in image processing and path

planning of A* algorithm. The simulated result

along with the graphical analysis is presented here

as shown in Table.3 and Fig.3(a, b).

Table .3: Analysis for A* Algorithm without

 optimization for different shaped images

Complexity analysis

Start

Point

Goal

Point

Ti

me

Nodes

Explo

red

Ste

ps

Dista

nce

Tur

ns

140,

90

330,

330 3 115 56

4.06.

83041 5

90,

390

140

,90 3 25 19

279.

508484 1

130,

130

330,

330 3 77 41

298.

737732 3

90,

380

240,

90 3 36 21

336.

4609 3

150,

150

350,

350 3 76 40

295.

853668 3

90,

390

130,

130 2 21 16

263.

058929 1

130,

130

130,

380 2

35

16 125 1

150,

152

350,

350 2 76 40

295.

853668 3

120,

350

260,

100 2 49 29

334.

588684 3

80,

350

260,

80 2 39 21

320.

61417 3

300,

120

120,

380 3 109 37

507

.457092 5

Complexity analysis

Start

Point

Goal

Point

Ti

me

Dista

nce

Ste

ps

Nod

es

Tu

rn

s

90,

390

140

,90

3 308.

113892

19 20 1

90,

380

240,

90

3 324.

409668

17 65 18

90,

390

130,

130

2 250.

803223

 6 41 7

130,

130

130,

380

2 240 1 17 0

120,

350

260,

100

2 634.

415039

30 119 29

80,

350

260,

80

3 678.

813965

28 126 27

300,

120

120,

380

3 416.

212891

13 51 13

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

(a)

(b)

Fig .3(a, b): Complexity analysis without

 optimization for different shaped

images for A*

2.3 DDA optimization used on different

 shaped images

 Using A* algorithm, the DDA optimization

was applied on images of different shapes through

grid search. The simulation outcome is shown in

Fig.4 and the graphical and tabular analysis is

presented in Fig.4 and Table.4 respectively. Based

on these tables the parameters of time and space

complexity and its effectiveness are analyzed.

Table. 4: Analysis for A* Algorithm with DDA

 optimization for different shaped images

Fig .4 : Complexity analyses with DDA

 optimization for different shaped images

2.4 NFT algorithm on square shaped images

 without optimization

 A NFT algorithm is tested here which is very

popular in image processing. The complexity

analysis for NFT algorithm is presented. The

efficiency of the searched algorithm can be

evaluated in four steps which are tabulated in

Table 5. The output of the NFT algorithm and its

graphical analysis is shown in Fig.5(a,b) .The

graphical analysis is shown in Fig.5(a,b). The

green and white line shows the un-optimized path

Complexity analysis

Start

Point

Go

al

Poi

nt

Ti

me

Dista

nce

Ste

ps

Nod

es

Tur

ns

90,

390

140

,90

3 308.

113892

2 20 1

90,

380

240

, 90

3 222.

44619

8

2 65 2

90,

390

130

,

130

2 106.

25441

6 41 7

130,

130

130

,

380

2 235 1 17 0

120,

350

260

,

100

2 664.

12255

9

6 119 6

80,

350

260

, 80

3 726.

09124

8

6 126 6

300,

120

120

,

380

3 416.

21289

1

13 51 13

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

for NFT algorithm [3,5].

(a)

(b)

Fig .5 (a, b): NFT with Square shaped Images

without Optimization

Complexity analysis

Start

Poin

t

Go

alP

oint

Ti

me

Dista

nce

Ste

ps

No

des

Tur

ns

140,

90

330

,

330

4 606

.662

17

56 16 16

90,

390

140

,90

3 307.

263

092

19 20 7

130,

130

330

,

330

3 567.

652

405

41 17 4

90,

380

240

, 90

3 430.

009

308

21 17 6

150,

150

350

,

350

3 565.

201

40 17 7

90,

390

130

,

130

3 264.

728

241

16 21 6

130,

130

130

,

380

3 251.

209

427

16 21 4

150,

152

350

,

350

3 565.

201

294

41 17 2

120,

350

260

,

100

3 413.

245

544

29 17 5

80,

350

260

, 80

3 428.

5895

21 17 5

300,

120

120

,

380

3 485.7 37 17 6

Table.5: Analysis for NFT Algorithm without

 optimization for square shaped images

2.4.1 NFT algorithm on square shaped images

 with DDA optimization

 A DDA optimization algorithm, applied on

NFT is tested on square shaped images. The

complexity analysis for NFT algorithm is

presented. The efficiency of the algorithm can be

evaluated in four steps which are tabulated in

Table.6. The output of the NFT algorithm and its

graphical analysis is shown in Fig.6 .The yellow

line shows the optimized path for NFT algorithm.

Complexity analysis

Start

Point

Goal

Point

Ti

me

Ste

ps

Nod

es

Dista

nces

Tur

ns

140,

90

330,

330 4

8 16

403.

1817

63 2

90,

390

 140,

 90 4

2 20

279.

5084

84 2

130,

130

330,

330 3

2 17 362.4645 2

90,

380

 240,

 90

3 2 17 326.156311 2

150,

150

350,

350 3

2 17 363.6339 2

90,

390

130,

130 3

3 21 263.058929 0

130,

130

130,

380 3

1 21 125 0

150,

152

350,

350 3

2 17 363.633942 2

120,

350

260,

100 3

2 17 312.856 2

80,

350

260,

 80 3

2 17 321.01 2

300,

120

120,

380 3

2 17 288.046 2

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

Table .6 : Analysis for NFT Algorithm with DDA

 optimization for square shaped images

Fig .6: NFT using quad tree with DDA

 Optimization

 2.4.2 NFT algorithm on different shaped

 images without optimization

 Here the algorithm is tested and simulated

when the obstacles are different shaped images

like circle, rectangle and square in a similar

environment. The white blocks as shown in Fig.7

(a, b) are the images of different shapes, whereas

green line is the un-optimized path of the robot.

The space complexity is analyzed and presented in

Table.7 and the graphical analysis is shown in

Fig.7.

Complexity Analysis

Start

Point

Goal

Point

Ti

me

Ste

ps

Nod

es

Dista

nces

Tur

ns

90,

390

140 ,

90 4 4 304

307.

2630

92 3

130,

130

330,

330 4 36 272

553.

5109

86 18

230,

 230

240,

 90

 3

5 303

160.

6225

74 19

150,

150

350,

350

4 36 272

569.

356

995 2

 90,

 390

130,

130 3 3 305

264.

728

21 2

130,

130

130,

380 4 3 305

251.

2094

27 2

220,

380

160,

160 4 19 289

360.

7967

22 2

Table .7: Analysis for NFT Algorithm without

 Optimization for Different Shaped Images

(a)

(b)

Fig 7 (a, b) : Complexity analysis NFT with

 Different shaped Images without

 Optimization (Green)

2.4.3 NFT algorithm on different shaped

 images with DDA optimization

 Here DDA optimization technique with NFT

algorithm is applied on different shaped images.

The yellow line in Fig.7 and Fig.8(a, b) is the

optimized path of the NFT algorithm. The DDA

algorithm applied on images of different shapes is

tested and the complexity analysis is carried out

and shown in Table.8 and Fig.8.

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

Table.8: Analysis for NFT Algorithm with DDA

 optimization for Different shaped images

Fig.8: Complexity graph for different shaped

images with optimization

3. PROPOSED ADJACENCY FINDING

 ALGORITHM (ADJ*)

 It is imperative for a mobile robot to carry out

tasks with utmost dedication and achieve the

target by arriving at the destination.. The journey

from its initial point to the target location should

be seamless without any obstructions. For this

reason a rigorous analysis of a host of other

algorithms is undertaken before propounding an

alternative or a new one. After assessing different

algorithms i.e. A* and NFT on the basis of their

performance, simulated results and applications

with respect to time and space complexities, it was

found that they were not completely flawless. The

A* algorithm performed immaculately so long as

the images were square shaped but with the

slightest change in the shape of the image, the

algorithm failed in optimum adaptation. The

application of DDA optimized algorithm on the

A* and the final outcome stand as a testimony to

this. Apart from the inability to adapt with the

changing shape of the image, it was also realized

that A*consumed much time and space. We have

analyzed the space and time complexity which has

been concretized in tabular form and as well as

graphically. Similar testing was undertaken with

the NFT algorithm. Both square shaped images

and irregular shaped images in the same

environment were taken into account. The time

and space complexity of NFT algorithm were also

analyzed [3]. We arrived at the conclusion that

the algorithm worked efficiently amidst square

shaped images than irregular shaped images. The

application of DDA optimization on NFT was

carried out with the conclusion that, we need to

try to improve the efficiency and effectiveness

with space complexity on the basis of the

parameters like time, distance, steps, nodes and

turns. The emphasis was basically on time,

distance and turns as other parameters are

dependent on the speed of the processor. The

exhaustive study on both A* and NFT algorithms

undertaken with their outcomes, are presented in

chapter 3 and chapter 4. After the analysis of the

above two algorithms, along with its merits and

demerits, we came up with a proposal of ADJ*

algorithm on the basis of time and space

complexity. The ADJ* algorithm was tested with

similar and different shaped images. The

simulated result in both graphical and tabular

forms was put forward [9].

 3.1 ADJ* using quadtree search

 Image representation is highly essential for

image processing. Region representation is an

appropriate part of image processing. Neighbor

finding is an important task to be performed on an

image. It is difficult to find neighbors using the

quad tree representation. It is very simple to find

neighbors using matrix representation. In most

cases, a block can have more than one neighbor in

a given direction; the problem is then to find its

neighboring blocks, in all directions, all relying

solely on the quad tree structure of the image.

3.2 ADJ* notation and its application

 The quad tree initially came up with a strategy

of subdividing images into quadrants, where same

size and different size images are represented as

Complexity analysis

Start

Point

Goal

Point

Ti

me

Ste

ps

Nod

es

Dista

nces

Tur

ns

90,

390

140,

 90 4

 4 304

158.

113

876 0

130,

130

 330,

330 4

36 272

364.

208

282 2

230,

230

240

 90 3

 5 303

65.7

647

32 2

150,

150

350,

350 4

36 272

379.

027

039 0

 90,

390

130,

 130 3

 3 305

117.

046

997 0

130,

130

130,

380 4

 3 305

251.

209

427 0

220,

380

160,

 160 4

19 289

262.

481

14 0

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

obstacles. This approach is based on a data

structure in the form of a tree with multiple nodes

called quad tree in which every single node

comprises of four children. Fundamentally quad

trees are two dimensional analog of octrees [9].

They are used to compartmentalize or divide a

two dimensional space into four quadrants or

specific areas repeatedly without halt. A quad tree

has locations called leaves where records are

stored at the tip of the leaves. The leaf fringe

serve as the end points of data stored and the

branch points serve as nodes. The number of

branches or children forms the order of the quad

tree. So the order of a quad tree is 4 as it has four

siblings in each node which means that leaves in a

quad tree is undoubtedly a power of 4. The depth

of the quad tree is defined as the number of access

operations needed to obtain the desired record. It

is an approach where the complete tree is

represented as a square and the square is divided

into four sub-branches of equal size as shown in

Fig.9(a). The row1 and column1 is represented as

(R1C1) and row1column2 as (R1C2). (R2C1) and

(R2C2) are shown in Fig 9(b). The image is

divided into four quadrants each node has four

children, each node is represented with (R1C1,

R1C2, R2C1, R2C2). The location of the image is

presented in Fig.9(c) and Fig.9(d).

(a)

(b)

(c)

Fig. 9: (a) Representation of image with notation

 (b) Numbering the image (c) Location of

 the position of an image (d) Numbering

the image as per the quad tree.

 The quad tree is a well organized composite

configuration which helps to represent the image

in a better way. The extra space that is required

will be reduced and optimized path will be found.

In this quad tree approach the image is first

imposed in the square and is checked whether the

image completely occupies the square or not, if

not then the square is further sub-divided into sub-

squares until and unless the image completely

comes inside a square. Once it comes completely

inside a square then it treated as "BLACK"

otherwise it is treated as "GRAY"[9]. The black

and white nodes are treated as the leaf nodes [9]

whereas the "GRAY" node is further subdivided

into sub-squares. The image along with its

obstacle is presented in Fig 10, which illustrates

the embedding of the image in the quadtree in

BLACK node. The notation of the tree structure

is represented as R1C1, R1C2, R2C1 and R2C2.

Fig .10: Complete region with obstacle

Fig. 11: Quad tree representation

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

 Here, we assume that each node is stored with

six fields, out of which first five fields contain

pointers to the main field and its four sub fields,

called as branches. In a Quad tree representation if

M is representation M is the main node and it has

four sub nodes then the main node represented as

M node and Q is the branch, it will be treated as

MAIN(M) and branch node will be represented as

SUBFIELD(M,Q) that is M is main node and Q is

its subfield node[6]. We can treat relative branches

to its main by using subfield as SUBFIELD (M)

having value of Q. if the block contains image

which is within the node, then it will be treated as

image block and is represented in “BLACK” with

logic “1” and if the block does not contain any

image it is represented in :WHITE” with logic “0”

and "GRAY" zero or one. BLACK and WHITE

are represented as terminal or leaf nodes whereas

GRAY are non-terminal nodes. Let the four sides

of a node be called as R1C1, R1C2, R2C1, R2C2.

We use some functions involving certain

quadrants and boundaries. ADJACENCY(R,S) is

true, only if the branches S are adjacent to

boundary R of the node block. REFLECTOR(R,S)

represents the SONTYPE having block of equal

size that is the nearest side of R(right) of the block

having SONTYPE_VALUE ‘S’. Example:

REFLECTOR (T, BL) =TL,

SAMEBOUNDARY(R1,R2) represents that block

R1 and R2 are not adjacent blocks i.e. TR and BL.

The detail is shown in Fig.11. The working of the

algorithm is shown in Fig.12.

Table.9 : Boundaries and its Notation

Fig .12: Flow chart for ADJ* Algorithm

 3.3 Path planning and path coordination

Line1: Let the tree of an image be denoted by T.

Each node of the tree has four branches branch 1,

branch 2, branch 3 and branch 4.

Line2: There are some functions which are used

for following functions.

Line3: Find_adjacency (Node, Direction)//Find

the adjacency of the given node in given direction.

Line4: Find_small_adjacency (node) //Find small

adjacency of given node.

Line5: Having common side (int m1, int n1, int m2,

int n2) determines if two nodes are having a

common side.

Line6: Assume that the tree is built and the current

node is the one in which start point resides.

Line7.

do

begin

nn= find_ adjacency(current_node, TOP);

en= find_adjacency (current_node, RIGHT);

sn= find_adjacency(current_node, Bottom);

ww = find_adjacency(current_node,LEFT);

Line8: check if nn, en, sn, wn lie beyond the

boundary of the map. If yes, delete such nodes

else, begin to check if they contain smaller

adjacent nodes in them

find_small_adjacency(nn);

find_small_adjacency(en);

find_small_adjacency(sn);

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

find_small_adjacency(wn);

end;

add all the adjacent nodes of equal or greater sizes

to a list of neighbours.

Then find the path.

find_path();

Line9: Repeat the above steps until current _node

becomes the goal node.

Line10: find_path() finds the shortest path

between start and goal node..

Line11: Shortening the path founded by Quad

tree.

Let the points found by Quad tree algorithm be

stored in an array P1 whose length is n.

A.From first element in P1 to third element check

if a free or straight path exists which doesn’t pass

through an obstacle. If yes, remove the nodes in

between and allow a new path to be formed

between the first and the third node.

Repeat the process between the second element of

this new array and third element.

B. This gets the path complexity O (n2) in time

Space n=O(n) space.

Line12:

Let the path found by the quad tree algorithm be

stored in any array P1 and let P1 contains n points.

A. Check the first element in the P1 to third

element if a free path exists, if yes then store in a

variable "Var"("var " initially contain 2nd "var").

B. Check from the first element to 4th element in

P1 if there is a path, then overwrite "Var" with 4th

element.

C. Repeat the process until all the elements are

scanned in such a way.

D. Let the kth element be stored in "var". Store it

in a new array P(new)[], now repeat the above

four steps from kth variable, if the kth variable is

(n=1)th element of p[] then add two points in

P(new).

E. At last join the points and get the optimal path

complexity O (n2) times and

space n = O(n).

begin

For i = 0: n-2

begin j=2: n

begin

if (path_bw(a[i],a[j]);

begin

var = a[j]

end;

end;

b[++counter]=var;

end

b[++counter]=a[n-1]

end;

A. Steps for same_side_adjacency(U,V)

Identify a same adjacency of node P in x-axis or

y-axis direction

Line1: get node(U);

Line2: get direction(V);

Line3: return (son(If (BSD (V, son type(U) then

same_side_adjacency (PARENT(U) ,V);

else PARENT(U);opposite (T(V , SONTYPE(U)

);

end;

B. STEPS FOR SAME_SIZE_ADJACENCY

R(U,V)

Line1: Identify an adjacency of node P in x-axis

and y-axis direction D, if the node is not present

then return NULL.

begin

nodeU;

directionV;

node Q;

if not NULL(PARENT(U)) AND BSD

(V,SONTYPE(U))

then find a common ancestor

Q <- SAME_CORNER_ADJACENCY(PARENT

(U) ,V)

else

Q <- PARENT (U);

 Follow opposite path to identify the adjacency.

return (if (not NULL(Q,REFLECT(d,

SONTYPE(U))else Q;)));

3.4 Adjacency finding algorithm (ADJ*)

 Adjacency Algorithm(ADJ*) is an incremental

algorithm which finds shortest path between the

goal and start nodes. The map on which the

algorithm worked conventionally was the grid

which consumed time in finding the shortest path.

It is observed that if the map is represented in

form of quad tree the search time is drastically

reduced. The complete approach is given below.

1. The boundaries are set first under which the

map is defined and the algorithm is followed.

2. It is required that when obstacles are added to

this area a quad tree is formed.

3. Assign the root of the quad tree to the empty set

in the first step.

4. Add an obstacle by giving the diagonally

opposite coordinates, its height and width.

5. Starting from one of the coordinates check if

the coordinate lies in the root.

 a. If yes, divide the root into four branches as

explained earlier.

 b. Starting from the branch in the top left

position check if the coordinate lies in the node.

 c. If yes, divide the node into four branches and

repeat the steps again and again till the tree is

extended to its maximum level. A suitable integral

value is chosen so as to vary the resolution of the

path formed.

 d. If no, then check if the coordinates lie in other

branches and then repeat the steps. Exit if either

the max level is reached or all the branches have

been searched.

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

6. These steps are repeated for the remaining sides

of the obstacle and for other obstacles, if there are

any.

7. After the quad tree is formed and all the

obstacles are added; the valid start and goal

locations are taken.

8. Now Adjacency Algorithm can be easily

applied to this system as follows:

a. The robot takes start node as the current and

enters all the adjacent nodes of same, greater or

smaller sizes in a priority queue called

OPEN_LIST.

b. Then OPEN_LIST holds the list of all the

adjacent nodes in an ascending order of their

respective ‘f’ value,

where ‘f’ value = distance between the current

node and goal node + distance between start and

current node.

c. The adjacent node possessing the least f’ value

is considered the most promising node in

progressing the search.

d. From the new current node again the adjacent

nodes are taken in the OPEN_LIST and the

process is repeated until the current node becomes

the goal node.

e. The techniques used to find the adjacent nodes

have been described in the above sections.

3.5 Simulation results

 After an exhaustive analysis of A* and NFT

algorithm, we have developed a new algorithm,

ADJ* based on complexity. ADJ* algorithm has

been implemented and was tested in C++ and the

result has been illustrated in Table 10 and Table 11

represents a graphical representation of space

complexity. To measure the effectiveness of the

algorithm the parameters of distance, time, steps,

nodes and turns were taken into account. The

outcomes of these parameters are shown in Fig.13

(a, b, c).

ADJ* algorithm imposed on square shaped

images

(a)

(b)

(c)

Fig .13 (a, b, c) Simulation result of ADJ* Algorithm

with square shaped Images

Table.10 : Analysis for ADJ* Algorithm without

 optimization for square shaped images

3.6 Proposed ADJ* algorithm on square shape

 images with DDA optimization

Complexity analysis

Start

Point

Goal

Point

Ti

me

Ste

ps

Nod

es

Dista

nces

Tur

ns

90,

390

140,

 90

0.1

03

 57

5 4

390.

104 4

90,

380

240,

90

0.4

12

408

8 5

400.

783 5

90,

390

130,

130

0.0

55

57

5 4

401.

788 4

240,

90

230,

230

0.0

52

 2 6

191.

741 4

120,

350

260,

100

0.0

35

8 7

422.

761 6

80,

 350

260,

80

0.0

14

7 6

399.

092 6

260,

120

220,

380

0.0

19

17 17

314.

514 11

160,

160

220,

380

0.0

19

14 16

314.

514 11

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

Table. 11: Analysis for ADJ* Algorithm with

DDA optimization for square shaped images

Fig .14: Space Complexity graph of ADJ*

Algorithm with optimization

 3.7 ADJ* algorithm on different shaped

 images without optimization

 The ADJ* algorithm is also tested for different

shaped images. Its output is shown in Fig.15(a,

b). The space complexity and effectiveness are

tested and analyzed related to time, distance,

steps, nodes and turns which are presented in

tabular in Table.12 and graphical form in Fig.16.

Table .12: Analysis for ADJ* Algorithm without

 optimization for Different shaped images

(a) (b)

Fig .15 (a, b) : Simulation result without

 optimization for different shaped

images (pink)

Complexity analysis

Start

Point

Goal

Point

Ti

me

Ste

ps

Nod

es

Dista

nces

Tur

ns

 90,

390

140 ,

90

0.1

03

57

5 4

304.

874 2

90,

380

240,

 90

0.4

12

408

8 5

374.

871 3

90,

 390

130,

130

0.0

55

57

5 4

263.

708 2

240,

90

230,

230

0.0

52

2 6

140.

572 1

120,

350

260,

100

0.0

35

8 7

363.

562 4

80,

 350

260,

80

0.0

14

7 6

333.

837 3

260,

120

220,

380

0.0

19

17 17

280.

678 6

160,

160

220,

380

0.0

19

14 16

247.

214 8

Complexity analysis

Start

Point

Goal

Point

Ti

me

Dista

nce

Ste

ps

Nod

es

Tur

ns

90,

390

140 ,

90

0.1

03

390.

105 575 4 4

90,

390

130,

130

0.0

55

401.

788 575 4 4

220,

380 160,160

0.0

19

315.

514 14 16 11

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

Fig. 16: Complexity graph for ADJ* for different

 shaped images without DDA optimization

3.8 ADJ* algorithm with DDA optimization for

 different shaped images

Table 13 : Analysis for ADJ* Algorithm with

optimization for Different shaped images

Fig. 17: Complexity graph for ADJ* for different

 shaped images with DDA optimization

4. CONCLUSION

 An effective method to plan a path in a static

environment having obstacles for a mobile robot

is presented. The potential application of such

designed algorithm is also discussed. The

proposed algorithm is used on image processing,

if the streaming images are coming from the

source. It is a faster search algorithm as compared

to other existing algorithms. When time and space

complexities were calculated, it was found that it

took less time as compared to other algorithms.

The distance and time graph shows that it takes

much less time than other path processing

algorithms.

REFERENCES

[1] Dave Ferguson and Anthony Stentz , “Using

interpolation to improve path planning: The

field D* algorithm”, Journal of Field

Robotics, 23:79–101, 2006.

[2] Dave Ferguson and Anthony Stentz,

“Anytime, dynamic planning in high-

dimensional search spaces”, In Proc. IEEE

International Conference on Robotics and

Automation, pages 1310–1315, 2007.

[3] Kunio Aizawa, Koyo Motomura, Shintaro

Kimuru, Ryosuke Kadowaki, and Jia Fan,

“Constant Time Nieghbor Finding in

Quadtrees”, ISCCSP 2008, Malta, 12-14,

March, 2008.

[4] LaValle, S. M., “Planning Algorithms”,

Cambridge University Press, Cambridge,

2006.

[5] Lee, D.C. , “The Map-Building and

Exploration Strategies of a Simple Sonar-

Equipped Mobile Robot”, Cambridge

University Press, New York, 1996.

[6] Likhachev M. and Koenig S., “Incremental

A*”, In Proceedings of the Neural

Information Processing Systems, 2001.

[7] Lozano-Perez and T. Lozano-Perez,

“Spatial planning: A configuration approach”,

In IEEE Transactions on Computers, volume

C-32, pages 108–120, (1983).

[8] R. A. Finkel and J. L. Bentley, “Quad trees a

data structure for retrieval on composite

keys”, Acta Inform., vol. 4, no. 1, pp. 1–9,

1974.

[9] H. Samet, “Neighbor finding techniques for

images represented by quadtrees”, Comput.

Graph, Image Process, vol. 18, no. 1, pp. 37–

57, 1982.

[10] I. Gargantini, “An Effective Way to

Represent Quadtrees”, Commun. ACM, vol.

25, no. 12, pp. 905–910, December, 1982.

[11] Cui, S. G., Wang, H., Yang, L., “A

Simulation Study of A* Algorithm for Robot

Path Planning”, 16th international

Complexity analysis

Start

Point

Goal

Point

Ti

me

Dista

nce

Ste

ps

Nod

es

Tur

ns

90,

390

140 ,

90

0.1

03

304

.87 575 4 2

90,

390

130,

130

0.0

55

263.

708 575 4 2

220,

380

160,

160

0.0

19

247.

14 14 16 8

RK Choudhury & CK Samal Reliable Path Finding Technique for Mobile Robot

INFOCOMP, v.19, no.2, p. 42-56, December 2020

conference on mechatronics technology,

pp.506-510, 2012.

[12] Akshay Kumar Guruji, Himansh Agarwal,

D. K. Parsediya, “Time-Efficient A*

Algorithm for Robot Path Planning”, 3rd

International Conference on Innovations in

Automation and Mechatronics Engineering,

ICIAME 2016. Available online at

www.sciencedirect.com, Procedia Technology

23 (2016) 144 – 149, 2016.

