A Concerns-based Metrics Suite for Web Applications
ALESSANDROMARCHETTO

Dipartimento di Informatica e Comunicazione
Universita degli Studi di Milano
Via Comelico 39, 20135 Milano, Italy
Alessandro.Marchetto @unimi.it

Abstract.

Web applications have become very complex and crucial, especially when combined with areas such
as CRM (Customer Relationship Management) and BPR (Business Process Reengineering). The scien-
tific community has focused attention to Web applications design, development, analysis, and testing, by
studying and proposing methodologies and tools. This paper proposes a metrics suite to measure Web
software modelled via Object-Oriented techniques, in particular, the proposed suite is useful to analyze
software designed via feature concerns approach, based on Multi-Dimensional Separation of Concerns
(MDSOC). This suite lets us analyze existing software relevant to specific concern functionality, and/or
relevant to functionalities integration. The measurement approach was developed in the context of WAAT
(Web Applications Analysis and Testing) project.

Keywords: Web Applications, Separation of Concerns, Object-Oriented, Software Metrics

(Received June 27, 2005 / Accepted August 12, 2005)

1 Introduction proaches (see Section Related Works). These approaches

Web applications’ quality, reliability and functionality &' used to increase software quality in software mod-
bp quatty, y y gling (i.e., using UML, see([18]), testing[{[85]), and

are important factors because software glitches cou . S . :
analysis of existing software. In this paper we define a

block entire businesses and determine strong embat- _ ~ : :
: ?ﬂletncs suite to analyze Web software modelled via OO

rassments. These factors have increased the need tg(r:hni ues (defined priori or a posteriorithrough re-

methodologies, tools and models to improve Web ap- 9 P P 9

plications (design, analysis, testing, and so on). verse engineering techniques). Separation Of Concerns

The approach presented in this article focuses O%SOC) refers to the ability to identify, encapsulate and

L . o manipulate the software parts (code fragments) relevant
legacy Web applications where business logic is em)- .
. S 0 a particular concern. The use of a good SOC pol-
bedded into Web pages. The applications analyzed are . . .
y is useful to increase software quality and decrease

. . N
composed of Web documents (static, active or dynamllﬁe effort to test, maintain, understand, reuse and docu-

?onﬂ;\/ e:)hgbdigtrsa;i?:: p32(3;t(:lfi?/(e:zrfessteamn];t:fesaili:reem software. In the project WAAT (Web Application
help q y) Ahalysis and Testing) under development at our univer-
existing Web software and to analyze its quality factors. :
Sity laboratory, we have defined an approach to apply

via structural properties. Nowadays the existing metric SOC to Web applications [9]. Moreover we have

systems for Web applications measure several structurf fined a method [6] based on feature concerns identi-

properties, t.JUt qften, they measure specific web asS€iRation to slice applications via MDSOC and Concept
ts:r:::ezs gﬁg'gitf: Zi}:szlgn?;?’Vssge;g:ﬁgsrgzgm;'/ﬁhalysis. The defined slices are useful to test applica-
' (see [20] pt)bns functionalities. Modelling Web applications via

In this paper, we focus not only on Web specific mea; DSOC or via concerns (in this paper nameaDb,
sures, but, more generally, on measures related to soft-

; oncern Oriented Design) lets the user define a soft-
ware in general (such as 00, Web, AO, and S0 on) bl\JNare structure more flexible and modular than with OO
applied to Web applications. Several techniques e

Xr . :
ist in literature to design Web applications via OO apge3|gn methodsqOD). In case of concern modelling,

Alessandro.Marchetto

defining a system to analyze software based on OO mdtased, such as Conallen’s UML extensidns [18]. Our
rics (seel[42]) may not be very useful, because concerilgebUml [7] is tool to reverse engineering Web appli-
based modularization lets the user define a set of softations to describe them with UML models. Other re-
ware decomposition and not only the class-based deerse engineering tools are WARE [22], ReWeb| [35],
composition (the tyranny of dominant decompositionand Rational Rose Web Modelér [3]

see [40]). Furthermore, introducing concepts such as p\iore details abouAspect Oriented programming
concerns, aspects in application design, the structurgle in [29], while [1] presents the famous AspectJ soft-
prop.erties may change their relationship with softwarg, ;e '[2],[40] describe the MDSOC and HyperJ tool,
quality factors. For example, software components regpile [32] studies the relations between quality factors
lationships requires a more specific analysis, e.g., in agpq MDSOC, while[39] the relations between MDSOC
pect qriented design (AOD) is introduced an implicitand testing.[[9] describes our approach to apply Multi-
coupling between the aspects and the modules in thgmensional Separation of Concerns (MDSOC) theory
principal decomposition, in that the latter may be ung;\wep applications[[34] describes SOC used to reduce
aware of the presence of aspects that intercept their ey complexity of Web applications[[33] presents an
ecution and/or modify their structure On the other ha”dapproach to separate Web navigationhconcerns and ap-
some new metrics systems defined to study AOD SOfblication structure.[[9] describes our approach to apply

ware (see|16],[[38]) are also not adequate, becaugg|ii-Dimensional Separation of Concerns (MDSOC)
they study the aspect oriented programming, and theiMeory at Web applications.

measure aspects properties (i.e.) [29]) such as advices,
point-cuts, and so on. These aspect properties may r‘ﬁ:)t
be very important in case of concerns modelling, be-!

cause in MDSOC aspects are only a case of possib'l%q aspects, based on concern verification and aspect

concerns modelling via MDSOC, and there are SeVe@pnstructlon. [26] introduces an approach to reengineer

other types of concerns (i.e., functionality, and so on). OSD software. [[1b] evaluates the suitability of clone

To improve the above cited approaches we proposdeet(.aCtIon asa techmque for the |den_t|f|ca-t|.on (.)f cross-
cutting concerns via manual concern identification! [19]

to define a quantitative system to study structural pro - rod t minina and identification in QO] [27

erties of the software to analyze application quality fac- oduces aspec 'ga entimcatio H127]

tors at system and concerns level, and in particular other paper introducing aspect mining and refactor-
' dng- [11],[41] show an approach to aspect mining based

feature concerns level. This system is based on m L dvnamic analvsis technique via broaram traces in
rics applied in a Web application modelled by OO tech- yna y q prog i
estigation, to search recurring execution relations. In

nigues via concern oriented software modularization. X . .
metrics system, to be effectively useful in the analysiLSl] three different separation of concerns (SOC) mech-

of software modularized via feature concerns, must aifIsms (HyperJ, AspectJ, and a lightweight lexically

alyze software units (such as classes, aspects, and bs%SEd approach) are applie_d to separate features in the
on), but also clusters of units (such as feature concerﬂg(r)_;osft"mvzgehgsgﬁgﬁz JQ:CF;%F:L aS;L(jadsI?rs stff(:gts r:g?)tn
defining a groups of units relevant for a particular task2"ou ' Vv uctu

or functionality). The proposed metrics suite inquire{aStrUCturIng process required while performing separa-

the analysis of software unit and concerns (i.e., CIUSteéoncept Analysis to identify and extract feature con-

of units), cerns on Web applications
This paper is organized as follows. Sectjgn 2 de- P '

scribes a general state of the art about Web modelling, Generally speaking, for a software engineer, metrics
aspect oriented design, and software metrics measu€ very useful to analyze software applications or mod-
ments. Sectiofi]3 describes our OO applications mo@!s, to study structural software quality, and to define
elling, reverse engineering approach to model recovefrediction about software effort, such as for design ef-
and Sectiofi}4 describes our concerns mining techniqui@rt, testing effort, and so on. However there is no con-
Sectior[} introduces our concerns-based metrics suf€nsus within the community on which metrics to use or
software measurement system. Secm)n 6 ana|yzeshaW to calculate metrics. In particular there are many

sample case study. Finally, Sect[dn 7 ends this paper.empirically validated metrics suite and metrics. There
are many papers describing different types of metrics

involved in the different measurements, metrics defini-
2 Related Works tion, and analysis process. Several metrics-papers goal
Several Web applications modelling approaches are pris-to define and validate a set of high-level design met-
sented in literature (seel[7]), and some of these are UMiics to evaluate the quality of the application design of

The authors ofi[14] evaluate AOD code quality in-
ence and present an approach for reverse engineer-

ions. [6] presents our approach to apply MDSOC and

a software system (for example see Chidamber and Kas described i [35]/ [22]) using UML class and state
merer (C&K) OO metrics suite [17], and [36]). Otherdiagrams. We have defined a UML meta-model usable
papers (for example see |12]) focus on empirical valto describe application§][7]. Class diagrams are used
idation of the relationships between design measurés describe structure and components of a Web appli-
ment in OO systems (coupling, cohesion, and inheeation (e.g., forms, frames, Java applets, input fields,
itance) and the quality of the software (the probabileookies, scripts, and so on), while state diagrams are
ity of faults detection in system classes during testinglused to represent behavior and navigational structures
[24] defines a software metrics roadmap for OO sy<client-server pages, navigation links, frames sets, in-
tems. [28] studies Web metrics definition and analysiguts, scripting code flow control, and so on).
while [21] proposes a Web metrics roadmap. Some pa-Model validation; the “mutation” generated model may
pers study metrics for specific software quality aspectontain more information than needed. In particular, it
[30] defines a metrics-based approach for detecting deray contain “Not Valid” information, such as not valid
sign problems (well-known design flaws). [37] defineslynamically generated client-side pages. A client-page
metrics to promote and assess software reliabilityl [13% “Valid” if it is reachable in the original application
studies the relationship between a set of OO metrics arfalithout mutants) via an execution path. Since muta-
class test effort.[[10] studies machine learning modelson may define a model with a superset of behaviors,
applied to software effort prediction/ _[23] introduceswe need a pruning technique. Our validation technique
an approach to software reliability prediction based ors essentially based on Web server log files analysis
Markov chains. and “Visual Navigation validation” performed with user
New metrics suites are derived from OO to analyzéelp. [8] describes our used technigues.
aspectized software, for example[[43] analyzes coupling Model construction is automatic via mutation anal-
for classes and aspects in AOD software, and it invessis, while model validation is quite user dependent.
tigates the different type of relationship type betweefhe traditional way to analyze existing Web software
classes and aspects. [42] describes the effect of AOD docuses on applications source code analysis of control
Chidamber and Kemerer (C&K) OO metrics suitel[17]flow expressions to identify the representative page in-
[38] defines an OO derived metrics suite and a quaput values. The input values are used to define the ap-
ity model useful to measure the reusability and mainplication feasible behaviors. The use of mutation anal-
tainability degrees of aspect-oriented systems|. [16] dgrsis decreases user interactions needed to build applica-
fines an OO derived metrics suite to analyze aspect otion models, and simplify them, because mutation lets
ented code and to investigate the trade-off between athe user change the analysis perspective, from source
vantages and disadvantages obtained by using the A@Bde analysis to application analysis. When the model
approach. is built a user should analyze it to delete spurious infor-
mation (via Model Validation approach).

3 Web Application Model Recovery

Our approach [(J7]L[8]) to model recovery is composeé1 Web Application Concerns Extraction

of: application behavior analysis, applicatiomodel The goal of our algorithm is to extract features from ex-
building, andmodel validation. isting Web applications. More formally, we would like

- Application behavior analysis; it is performed throughto define a Separation Of Concern (SOC) procedure to
static and dynamic analysis. Static and dynamic analydentify and encapsulate software concerns. “Software
sis treat static and dynamic application components usencerns” are essentially software functionalities that
ing source code and on-line interactions with the Welmay be transversal to software structure (software func-
server. For example, for static pages, we use traditiontibnality for the user, features used by other features to
source code analysis based on a language parser. Whitaplement external functionality, etc.). Then these con-
for a single server page generating multiple client pageserns may be used in our WAAT project to increase the
we apply dynamic analysis to try to determine a mearguality of software testing or analysis.

ingful number of client pages (through mutation anal- Our approach.[6] to extract concerns from existing
ysis and application executions). Then, the dynamM/eb applications is based on MDSOC Hyperspaces def-
cally generated client side pages are analyzed (with traition and Formal Concept Analysis (FCA, séel[25])
ditional source code analysis) to build diagrams! [7applied to a set of pre-defined software artifacts. In par-
describes our used techniques. ticular, we use artifacts such as software variables and
- Model building; with the information extracted by the methods, to define a hyperspace. Then, we elaborate
previous phase we build an application OO model (sucthis hyperspace via FCA into hierarchical groups (e.g.,

artifacts sharing def-use relationships) and to define a We have used the GQM approach [5] to describe a
concept lattice describing software modularization. Fisimple quality model to analyzEOD modularization
nally, we elaborate the lattice to define core-concerrspecific properties (i.e., separation of concerns degree,
dependencies and to find feature concerns. This apencerns coupling, and so on). Due to lack of space
proach let us slice applications through their artifacts rewe do not present here the entire GQM approach used
lationships. To apply this technique, source code anabut we introduce its result: the quality model described

ysis is needed. in Table[1. Our quality model is composed of four
different elements: (i) quality factors, (ii) quality sub-
5 Metrics suite factors, (iii) internal attributes, and (iv) software met-

rics. Table 1 describes the relationships between qual-
ity factors, sub-factors, and internal software attributes.
In particular, it presents: the quality that we want to

["Quality Factor [internal Attribute primarily observe in the software system (reusability,
Maintainability maintainability, reliability, and functionality); the qual-
- Understandability| SOC, coupling, size ity sub-factors that are secondary quality attributes that
- Flexibility SOC, coupling, cohesion influence our primary qualities (testability, understand-
- Modularity SOC, coupling, size bilit d . d the int | softw fi
- Testability SOC, coupling, size, complexit ability, and so on); an_ € Internal S0 a}re pr_oper '_es
- Expandability SOC, coupling, size (related to well-established software engineering prin-
Reusability S ciples) that are useful to increase (or to study) the qual-
~Modularity | SOC, coupling, size ity in their internal factors. Tab[g 1 is useful for metrics-
- Understandability| SOC, coupling, size d . . h dvi he i |
- Adaptability coupling, size atg interpretation. Fgrt ermore, studying the mterna
Reliability attributes, we have defined the set of related metrics pre-
- Faulttolerance | coupling, size, complexity sented in this section. Metrics are used to measure some
;:'Err]rcotiroﬁ\r;?;”ess coupling, size, complexity different internal quality factors (SOC, size, complex-
- Flexibility SOC, coupling, cohesion ity, coupling, coh_esion), and are used at some different
- Efficiency SOC, coupling, size level of abstraction (classes, aspects, concerns, SOC,
- Understandability] SOC, coupling, size system).

Table 1: Quality Model The metrics composing our suite may be divided

. into four categories based on the internal software at-
In this section we describe our metrics suite. Oufributes that are influenced by them (coupling, cohe-
suite is essentially derived from:_[17]. [38], arid [16].sjon, size & complexity, SOC). In particular, in the fol-

We extended some of the metrics to make them usgwing, we briefly present every defined metrics: met-
ful to analyze and describt@OD software modulariza- ric; metric level; brief metric definition.

tion, and in particular to analyze software modularized Coupling is the degree to which the elements in

via feature concerns. Through the concept-lattice der design are connected. The coupling degree impacts
fined via our concern mining algorithm, we may an-on system quality such as maintainability (modifying a
alyze existing Web software to re-modularize it basediven module may require the modification of some of
on their essential features and Sub'features, moreowg connected modu'es), understandab”ity (a very con-
we may isolate the application source code fragmenigected module is very hard to understand), reusability
related to every feature. This new software modulaithe more independent a module is, the easier it is to
ization is composed of classes, aspects, and concergg. reused in another application), testability (a fault in
Generally speaking, we may define software units ag module may cause failures in its connected modules),
core-concerns (classes or aspects derived from |attiﬁ%dularity (low coupling between modules improves
concepts) while aggregates of core-concerns to implepftware modularity), and efficiency (strong coupling
ment single features as feature concerns. In this sectigatween modules complicates a system). Thus, a com-

we use the term “module” to indicate any of the thregnon good programming principle is to minimize the
modularization units. Furthermore, in this section weoupling. Coupling metrics are:

introduce a set of OO derived metrics to evaluate the

goodness of a software modularity in term of separa- e Coupling between components (CBC): for a given
tion of concerns, and to evaluate a goodness of the in- module (or system) defines the number of other
ternal structure of an application (components and com- modules to which it is coupled. It counts mod-

ponents interactions) in terms of several quality factors ule relationships with other software units. For ex-
(see Tablg]1). ample, it counts modules that are used in attribute

declarations, or components declared return types ule. If a module uses a method in other mod-

parameters. ule, this method may be a stub method, i.e., in a
For a given concern in the SOC level, CBC_sum testing phase. High NsM decreases testability and
metric is defined as the sum of the CBC for every reusability.

module contained in the concern.

A Module with high CBC value is harder to under- ¢ !n-Cyclical Dependencies (iCd): iCd counts the
stand, change, reuse and test. number of cyclical dependencies of the software

system containing a given module. High iCd de-
Depth of Inheritance Tree (DIT): for a given mod- creases module testability, reusability, and mainte-
ule, DIT is defined as the maximum length from a nance.
given node to the root of the tree. It counts how
far down the inheritance hierarchy a module is de-
clared. High DIT value increases module com-
plexity, and furthermore, module understandabil-
ity, testability and maintainability is harder.

Number of Children (NOC): NOC counts the num- Cohesionis the degree to which software elements
ber of immediate sub-modules of a given modWithin a module are related to one another and work
ule. The number of children of a module indicated®9€ther to provide well-bounded behavior. High cohe-
the proportion of modules potentially dependenfion indicates gooql module su_bd|V|5|o_n. Low c_:oh_e5|on
on properties inherited from the given one. Highlncreases complexity, thereby increasing the likelihood

NOC number decrease testability and reusability.O" ?r_ro.rs during the development process. Cohesion
metric is:

Coupling on Method call (CMC): CMC counts the
number of modules declaring methods that are pos-
sibly called by a given module. Usage of a high
number of methods from many different modules
indicates that the function of the given module can-
not be easily isolated from the others. CMC is
related to CBC metric. High CMC is associated
with high dependencies from the functions in other
modules.

e Cyclical Dependencies (Cd): for a given concern
(or system) counts the number of cyclical depen-
dencies in the system. High Cd decreases testabil-
ity, reusability, modularity, and maintenance.

e Lack of Cohesion in Methods (LCOM): LCOM
measures the degree of similarity of methods by
data input variables or module attributes. A tech-
nigue to measure LCOM is based on module meth-
ods analysis. Class methods are more similar if
they operate on the same set of attributes. LCOM
counts the number of disjoint sets produced from
the intersection of the sets of attributes used by the
methods. This metric influence modularity, func-

Coupling on filed access (CFA): CFA counts the tionality, reusability, and testability.

number of modules declaring fields that are ac- . i i i
cessed by a given module. CFA measures the de- Size & Complexity Software size metrics measure

pendencies of a given module on other modu|e§he size of systems, typically by counting modules con-

in terms of accessed fields, instead of methods. Iﬁlined within. For example: the number of operations

0O systems this metric is usually close to zero!" & class, the number of classes in a package, and so

CFA is related to CBC metric. High CFA is as- on. Size i§ traditic_mally u;ed to effo_rt estimates f(_)r.i_m-
sociated with hlgh attributes dependenCieS in Othé}lementatlon, review, testing, or maintenance activities.
modules. A good practice is to avoid containing too much big en-

tities in a module, because big entities may be prob-
Response for a Module (RFM): RFM counts theematic, and they can be really difficult and complex to
methods potentially executed in response to a mesnderstand. The modules with both a high complex-
sage received by a given module. It measures thty and a large size tend to have the lowest reliability.
potential communication between the given modModules with low size and high complexity are also a
ule and the others. It counts the number of methreliability risk because they tend to contain very terse
ods of a given module, and the number of methodsode, which is difficult to change or modify. High sys-
invoked by the module-methods. High RFM de-tem size value for a software system decreases its un-
creases testability, understandability, maintenanagerstandability, reusability, adaptability, and testability.
and reusability. Size/Complexity metrics are:

Number of Stub methods (NsM): NsM counts the e System size (SyS): SyS counts the number of sys-
methods of other modules called by every mod- tem modules, i.e. the number of classes and as-

pects into the system. This metric measures the e LOC for Concern (LOCCo): LOCCo counts the

system components size.

e Lines of code (LOC): LOC counts the lines of code

of every module or concern. In this case LOC does ®

not include comment lines.

e Number of Attributes (NA): NA metric counts the
number of attributes of each module. Inherited at-
tributes are not included in the count.

e Weighted Operations per Component (WOC): it
measures the complexity of a module in terms of
the sum of its operations complexities. The oper-
ation complexity measure is obtained by counting

the number of parameters of the operation, assum-

ing that an operation with more parameters than
another is likely to be more complex.

For SOC level we define WOC_sum as the sum of
modules complexity.

in terms of RR = #2uper—modules - ap RR near
to 1 describes a linear hierarchy structure (poor de-
sign), while RR near to 0 describes a shallow depth

structure.

e Specialization Ratio (SR): SR measures the spe-
cialization ratio® in term of module and super-
module: SR = ftsub—modules — Ap QR near to

#super—modules

Reuse Ratio (RR): RR measures the module @use .

1 describes a poor designed structure, while a high ®

SR describes a good abstraction in super-modules.

Metrics for Separation Of Concerns (SOC) de-

fine a set of structural software measures of concerns
such as: size and complexity of concerns in a software

system, or internal and external concerns/modules cou-*

pling. Quality factors such as: understandability, adapt-

ability, reusability, maintainability, testability, flexibil-

ity, modularity, and modifiability may be influenced by
a SOC level metrics. We suggest to treat every fea-

ture concern as a unique module such as a class or as-
pect. This intuition let us apply some existing metrics 4
to describe concerns and separation of concerns degree.

SOC metrics are:

e Modules for Concern (MCo): MCo counts the num-

ber of modules for a given concern.

e Operations for Concern (OCo): OCo counts the
number of operations in modules of a given con-

cern.

1Reuse is in OO definition, where it is strongly connected with

inheritance and specialization hierarchy

number of code lines for each concern as the sum
of its modules LOC.

Degree of SOC (DS): DS measures the separation
degree of a given concern from the system in term
ofits modules.DS = sharedilodules \yhere:mod-
ulesis the number of concern modules, astdhred-
Modulesis the number of modules of the concern
shared with other concerns. For a given concern,
DS values near to 1 describes concerns with shared
(with other system concerns) modules, thus poor
separation of concerns.

For the entire system, DS is defined by the sum
of every concern DS ashS = (47— * 100,
where:sumis the sum of actual DS value for every
concern, andumMaxs the max of possible sum.
It corresponds teumMaz = 1 x # concerns.

DS is an indicator of concern understandability,

testability, adaptability, and reusability.

Concern coupling (Cc): Cc counts the number of

modules common to more than one concern. To
define common modules for a given concern, its

sub-concerns are considered, while concerns ag-
gregating the given concern are not considered. Cc
defines a coupling measure for a given concern, in
term of shared components between concerns or
system.

Number of Inner-Concerns (IC): IC counts the num-
ber of sub-concerns contained in a concern. IC
defines a measure for concerns composition. IC
defines an internal-coupling measure for a given
concern, in terms of its sub concerns.

Number of In-different-concerns (InC): InC counts
the number of different concerns to which a given
module is participating. A module present in more
than one concern, but in the same concern hierar-
chy, is counted only once. InC may be an indicator
of separation of concerns degree in a given system.

Number of Module point-cuts (mPC): mPc counts
the number of potentially definable point-cuts in
a given module and potentially accessed by other
modules. A point-cut is a module point potentially
called by other modules. For example, methods
or attributes declarations may be point-cuts. mPC
defines a potential diffusion degree of a module
in a system. mPC defines a coupling measure, in
terms of module diffusion.

Number of Degree diffusion point-cuts (dPC): dPc
counts the number of modules that access point-

6

This section shows the actual computation of the me
rics we propose on a small Web application.

For every different modularization, we may perform
a metrics based software evaluation to define the good-
ness of components structure in term of the quality of

the

empirical experiments defining various set of quality
rules useful to analyze software structure with OO de-
rived metrics. For example, a set of rules are:

1.

. The average number of methods per class should

. Class hierarchy nesting level should be less tha@?

cuts defined in a given module. dPC defines thbased on them. Then, we compute metrics on this new
aspect degree diffusion on modules. It measuréSOD modelled software structure. Finally, we perform
the number of modules depending on point-cutan analysis on measurements results.
defined in this module. dPC defines a potential “ImgViewer” (see Figurg [1 for Home Page) is the
coupling measure, in term of module diffusion. application selected as a case study for experiments.
ImgViewer is a small (see Tall¢ 2) images-viewer Web
Sample application composed of fifteen PHP/HTML files and
few flat file databases. ImgViewer functionalities are:
h'nages viewer, reserved area (login + password), spon-
sor links manager, users-browser identification.

& > A | Qeerca [afpreferii @rutimeda (B[EY- & >

Ingirzzo [) hetp:flocalhost:6080]~alexImgitewerjindex. himl] @vai | colegamenti >

modularization itself. In literature there are several

The average method size should be less than 10.
Bigger averages indicate OO design problems (i.e.
function-oriented coding).

be less than 20. Bigger averages indicate too much
responsibility in too few classes.

L

Figure 1: ImgViewer Home Page

. The average number of instance variables per class

should be less than 6. More instance variables in-

dicate that one class is doing more than it should. By examining application source code and model
xtracted via our reverse engineering techniques) we
6. Deeply nested classes are more complex inhefompute metrics measurement on the OOD-modelled
ently due to inheritance ' ImgViewercomponents structure. Taljle 2 shows appli-

cation SOC and system metrics values and statistics for

. The number of class-to-class relationships withitmodule level metrics.

a subsystem should be relatively high. A class or In this case, the IC metric is estimated by an expert
group of classes (e.g., a framework) with a londeveloper based on his/her application know-how. The
amount of coupling to other classes will be moreexpert has estimated IC=3, where 3 are the main appli-
reusable. cation functionalities. Moreover in thifOD modelled
structure, there is only one concern that matches the en-

. The number of subsystem-to-subsystem relatioRye system.

ships should be less than the average number of e measurement computation for tReOD mod-
class-to-class relationships within a subsystem. g|jeq system, we may calculate the Pearson’s correla-

. High cyclical dependencies in a system increasdion (r) for Module level metrics. This correlation mea-

sure is the most used and common measure to define
the existence of a statistical linear correlation between
For every metric, it is possible to define a set otwo variables (i.e., se€l[4]). The statistical correlation

the difficulty to test components integration.

experience-derived quality rules, useful to evaluate thisetween two variables reflects the statistical degree to
structure of a system. Instead, in this section, we fowhich the variables are related. Moreover, for every

cus on metrics suite analysis through the study of twoomputed correlation value we may also calculate its
different software modularizations of the same applicarelated p-value to define the statistical significance of
tion. In particular, we compute metrics @OD mod- the computation. The p-value is used to test the hy-
elled software structure, and then we apply our corpothesis of no correlation against the alternative that
cerns mining technique to extract application featuréhere is a non-zero correlation. Due to lack of space
concerns and to define a new software modularizatiome omit the Pearson’s correlation matrix compiled for

[System Metrics:]

Cd | SyS| LOC | RR | SR2 | WMC_sum | CBC_sum

[SOC Metrics:]
Concern| OCo | DS Cc | IC DS
F-all 22 0,89 | 16 | 4 89%

18 166 | 0,11 | 2,5 | 30 46

Statistics of Module Metrics:

Stat. dPC | LOC | InC | mPC | CBC | DIT | NOC | CMC | CFA | RFM | NsM | NA | WMC | iCd

Mean 139|933 | 100|272 | 256 | 0,28 | 0,28 | 156 | 0,17 | 2,78 | 1,11 | 1,50 | 1,67 0,83
Max 3,00 | 25,00 | 1,00 | 8,00 | 7,00 | 1,00 | 3,00 | 800 | 1,00 | 10,00 | 3,00 | 7,00 | 5,00 3,00
Min 1,00 | 1,00 | 1,00 | 1,00 | 1,00 | 0,00 | 0,00 | 0,00 | 0,00 | 1,00 | 0,00 | 0,00 | 0,00 0,00
Std.Dev| 0,70 | 7,51 | 0,00 | 2,35 | ,85 046|083 | 1,79 | 0,38 | 224 | 0,90 | 2,15| 1,37 0,99
Median | 1,00 | 6,50 | 1,00 | 1,00 | 2,00 | 0,00 | 0,00 | 1,00 | 0,00 | 2,00 | 1,00 | 0,00 | 0,00 0,50

Table 2: ImgViewer OOD metrics

Module metrics and the related p-value matrix. GenerSectior] 4) to automatically define feature concerns out
ally speaking, we consider: strong positive correlatiomf our application and to define a new software modu-
if r>0,7; weak positive correlation if 0,3<r<=0,7; stronglarization. Figur¢ R gives the rough idea about the con-
negative correlation if r<-0,7; weak negative correlatiorcept lattice for concerns extraction in ImgViewer appli-

if -0,3<r<=-0,7; and no correlation if -0,3<r<0,3; while cation, while Tablg¢[|3 shows every feature concerns/sub-
if the p-value is small (i.e., less than 0,05 for 95% ofconcerns found. F13 is the concern that identifies the
significantly), then the correlation is significantly dif- entire software system. We may define an ordering be-
ferent from zero (i.e., there is correlation). The intertween these concerns to define concerns that contain
pretation of statistical correlation does not imply thabther concerns, as following: F3, F4 < F6 < F1 < F2;
correlation equals causation. Moreover, a narrow daend F14; and F8, FO < F10 < F11; and F12 < F11.
sample could lead to a deflation in the correlation.

In our case, the analysis of Pearson’s correlations

F-Concern| Feature]

and p-values matrices for Module level metrics shows
that there are strong relationships between point-cuts
metrics (i.e., dPc and mPC) and attributes and meth-
ods size metrics (i.e.,NA or WMC). Moreover, strong
relationships also exist among coupling metrics (such
as between RFM or CMC and CBC or NOC), while
there are no relationships among every other couple of
metrics. Furthermore, we notice that InC metric is not
significant forOOD (in our case, itis a constant value).

F2 Reserved area

F1 - Server-side

F6 - Response Pages

F8 Sponsor Link Manager

F9 User Browser Identification|
F10 Control Sponsor-Browser
F11 Interface Sponsor-Browser|
F12 - Client-side

F14 Image Viewer

F13 .all features...

Figure 2: ImgViewer lattice

Table 3: ImgViewer feature concerns

Now we may compute metrics for the new software
modularization introduced by concerns extraction. Ta-
ble[4 shows application SOC and system metrics values,
and statistics for module level metrics. In this case, the
new software modularization focuses on functionalities
and it is described by some feature concerns (see Table
[3. This software structure has a SOC level more de-
fined than the previous one. SOC level metrics are very
important to describe and to evaluate the separation of
concerns degree.

For thisCOD software modularization we perform
the Pearson’s correlation and p-value analysis on the
Module and SOC level metrics, to measure the statis-
tical correlation between them. In the case of Module
level, we find strong relationships among some cou-

We have applied our concerns mining technique (sgaing metrics (such as NsM, CBC, CMC, and RFC),

SOC Metrics:]

Concern| MCo | OCo | LOCCo | DS Cc | IC | WMC_sum | CBC_sum
F1 5 4 23 0 0 3 6 12
F2 6 5 28 083 | 5 4 9 15 l System Metrics: l
F6 3 3 | u 0 10 122 4 DS | Cd| SyS | LOC | RR
F8 3 2 8 0 0 0 1 4
30% | 3 27 175 | 0,26
F9 3 4 21 0 0 0 4 4 SR2 | WMC_sum: | CBC_sum:
F10 9 8 39 0,44 | 4 2 9 23 7159 : 5 :
F11 13 9 46 0,77 | 10 | 4 12 32 J
F12 6 4 10 0,66 | 4 0 4 13
F14 4 3 53 0 0 0 7 5
F13 18 22 166 089 | 16 | 4 30 46
[Statistics of Module Metrics:]
Stat. dPC | LOC | InC | mPC | CBC | DIT | NOC | CMC | CFA | RFM | NsM | NA | WMC | iCd
Mean 1,16 | 6,56 | 0,92 | 2,52 | 260 | 0,36 | 052 | 0,88 | 0,28 | 1,68 | 0,88 | 0,80 | 1,16 0,48
Max 2,00 | 24,00 | 2,00 | 7,00 | 6,00 | 1,00 | 2,00 | 3,00 | 1,00 | 4,00 | 3,00 | 4,00 | 3,00 2,00
Min 1,00 | 1,00 | 0,00 | 1,00 | 1,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 0,00
Std.Dev | 0,37 | 6,87 | 0,57 | 1,56 | 1,22 | 0,49 | 0,87 | 0,78 | 0,46 | 1,03 | 0,83 | 1,32 | 0,94 0,82
Median | 1,00 | 5,00 | 1,00 | 2,00 | 3,00 | 0,00 | 0,00 | 1,00 | 0,00 | 2,00 | 1,00 | 0,00 | 1,00 0,00

Table 4: ImgViewer COD metrics

while there are no relationships between every other |
couple of metrics. Instead, in the case of SOC level, fe0
we find that there are strong relationships among some | s
size metrics (i.e., OCo, WMC_sum, and MCo), while | i m

there are no relationships among every other couple of | 2

B0
metrics. 40 1
A=

12 PP F P&
*1d (9%

10 Q@ @

g4

o B 00D Figure 4: OOD & COD System Metrics

mADD

in OOD. Instead, CBC and CFA average values increase
becaus€OD contains classes but also aspects and con-
cerns. In this case it is important to notice that the CBC
Figure 3: OOD & COD Module Metrics value increases only a little bit, while for other coupling
measures (i.e., CMC, RFM) the decreasing is signifi-
cant. This coupling “phenomenon” is essentially due to
Now we may compute the metrics suite for two gif-the aspects/concerns overlapping of class method exe-

ferent software modularizations of the same Web applfutions (€.g., AOP coupling).
cation. Then we analyze the measurement results (see Figure[4 shows thaCOD increases quality of the
Figureg §.15). separation of concerns at system level (DS). Moreover,
Figure[3 shows a graphical viewer of the averagéhe presence of aspects and concerns defines more mod-
values measured iBOD design at module level met- ules inCOD than inOOD, thus increasing system size
rics, it shows a general improvement (th@®D de- (Sys,LOC) and the coupling between internal system
sign) in some metrics (dPC, LOC, InC, mPC, CMC .components (CBC_sum). It also decreases system mod-
RFM, NsM, NA, WMC, and ICd), while some worse ule complexity (WMC_sum) and does not change other
values in other metrics (CBC, DIT, NOC, and CFA). Formetrics (RR, SR, Cid).
DIT, and NOC the worse values is due to the new soft- In Figure[$, the F13 concern represents the entire
ware components organization, more hierarchical thasystem inOOD design, while it represents only one

NEY P L T T

&
& §;\Qb§o§o SFL LS S &

type of concern irCOD design. In the last case, met- We are also working on some kind of mapping be-
rics show thatCOD increases the quality of separationtween “normal|standard|average” values for metrics ap-
of concerns (more concerns identified@®D than in plied on real OO software and the same metrics applied
OO0D). We may view aCOD system as composed of ato Web software (i.e., Number of methods for class
set of feature concerns interacting one another, in co20; max value of DIT= -10; Number of classes with
trast withOOD where the system may be viewed as ahildren= 30%, and so on).

black-box system implementing a list of functionalities.

A good level of SOC is very useful to understand, reusgeferences

document, maintain, and test software. In our WAAT)])

project we are using this kind of software structure anal-[1] Aspectj. hitp://eclipse.org/aspectj/

ysis to increase testing quality. In this cas€@D sys-
tem may be analyzed by some point of views: units,
clusters (or feature concerns, that are composed of unitg3] Rational Rose Web Modeler.
to realize a specific functionality), clusters integration http://www.rational.com

(of functionalities integration), and system. This set of

views may be used to focalize and prioritize test cased4] Basili, V., Briand, L., and Melo, W. A valida-
definition. tion of Object-Oriented design Metrics as Quality
Indicators. IEEE Transaction on Software Engi-
neering October 1996.

[2] Hyperj. http://www.research.ibm.com/hyperspace

2CoM [5] Basili, V., Caldiera, G., and Rombach, D. GQM
-g;o Paradigm. Computer Encyclopedia of Software
. Engineering John Wiley&Sons 1994.

mic

EWMC_sur [6] Bellettini, C., Marchetto, A., and Trentini, A. An
= CBC_sum Approach to Concerns and Aspects Mining for

aColOC

Web Applications. International Journal of In-
formation Technology (1J1TR005.

[7] Bellettini, C., Marchetto, A., and Trentini, A.
WebUmI: Reverse Engineering of Web Applica-
tions. 19th ACM Symposium on Applied Comput-
ing (SAC 2004)Nicosia, Cyprus. March 2004.

Figure 5: COD SOC Metrics

[8] Bellettini, C., Marchetto, A., and Trentini, A. Val-
idation of Reverse Engineered Web Application

We proposed a metrics suite to measure Web software Models. 2nd International Conference on Soft-

structural properties to analyze a set of Web software ware and Knowledge engineering (SKE 2005),

quality factors, such as testability, reusability, mainte- Turkey, 2005.

nance, understandability, and so on. Furthermore, this o o

suite may be used with our feature concerns miningl®] Bellettini, C., Marchetto, A., and Trentini, A. Ap-

technique to evaluate SOC quality on existing Web soft- ~ Plying MDSOC Web Applications. 9th World

ware. The suite is composed of traditional OO metrics ~ Multi-Conference on Systemics, Cybernetics and

and by new metrics tailored to Web software. Informatics (WMSCI 2005USA, 2005.

We are currently investigating the empirical valida- 10]
tion of the proposed metrics composing the suite. Our
in\{estigation focus.es on the validation of the_ relation- Starved Domains.First International Workshop
ship t.)etwee.n metrics and Web soﬁwgre quality factors, on Model-based Requirements EngineefiSgn
and, in parnc_ular, for our WAAT project, we analyze Diego, USA. 2001.
the relationship between metrics and testability.

This validation is needed because we propose thj&l] Breu, S. and Krinke, J. Aspect Mining Using
use of OO metrics (or derived) to measure traditional Event Traces. 19th. Conference on Automated
structural properties of Web software, albeit modelled Software Engineering 2004 (ASE Q4)nz, Aus-
through reverse engineering. tria. September 2004.

7 Conclusions

Boetticher, G. Using Machine Learning to Predict
Project Effort: Empirical Case Studies in Data-

[12] Briand, L., Wast, J., Daly, J., and Porter, D. Ex-[24] Fenton, N. and Neil, M.
ploring the Relationships between Design Mea-
sures and Software Quality in Object-Oriented
Systems. 20th The Journal of Systems and Soft-

ware, May 2002.

[13] Bruntink, M. and van A., D. Predicting Class

Testability using Object-Oriented Metrics4th

IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM’'042004.

[14] Bruntink, M., van Deursen, A., and Tourwé,
T. An Initial Experiment in Reverse Engineer-

ing Aspects from Existing Applications. 11th

IEEE Working Conference on Reverse Engineer-

ing (WCRE 04)Netherlands. November 2004.

[15] Bruntink, M., van Deursen, A., van Engelen, R.,
and Tourwé, T. An Evaluation of Clone Detection
Techniques for ldentifying Cross-Cutting Con-
cerns.|EEE International Conference on Software

Maintenance (ICSM 042004.

[16] Ceccato, M. and Tonella, P. Measuring the Eﬁectgzg]
of Software Aspectization1st Workshop on As-

pect Reverse Engineering (in WCRE’02004.

[17] Chidamber, S. and Kemerer, C. A Metrics Suit

for Object Oriented DesignlEEE Transactions
on Software Engieneeringune 1994.

[18] Conallen, J. Building Web Applications with

UML. Addison-Wesley, 2000.

[19] Deursen, A., Marin, M., and Moonen, L. Aspect[3(0]

Mining and RefactoringFirst International Work-

shop on REFactoring: Achievements, Challenges,

Effects (REFACEO3)anada. November 2003.

[20] Dhyani, J., Keong, W., and Bhowmick, S. A Sur-
vey of Web Metrics. ACM Computing Surveys [31]

2002.

[21] Dhyani, J., Keong, W., and Bhowmick, S. A Sur-
vey of Web Metrics. ACM Computing Surveys

2002.

[22] Di Lucca, G. A., Fasolino, A. R., Pace, F., Tra-[32]
montana, P., and De Carlini, U. WARE: A Tool for

the Reverse Engineering of Web Applicatiofith

European Conference on Software Maintenance

and Reengineering (CSMR 200Budapest, Hun-
gary. March 2002.

[23] Durand, J. and Gaudoin, O. Software Reli{33]
ability Modelling and Prediction with Hidden
Markov Chain.INRIA-Rhone-Alpe Technical Re-

port, February 2003.

Software Metrics:
Roadmap.International Conference on Software
Engineering (ICSE 2000)imerick, Ireland. June
2000.

Ganter, B. and Wille, R. Formal Concept Anal-
ysis. Springer-Verlag, Berlin, HeidelbergNew
York, 1996.

Garcia, V., Lucrédio, D., Prado, A., Almeida, E.,
Alvaro, A., and Meira, S. L. Towards an Ap-
proach for Aspect-Oriented Software Reengineer-
ing. 7th International Conference on Enterprise
Information Systems (ICEIS’20Q9)liami, USA.
May 2005.

7] Garcia, V., Piveta, E., Lucrédio, D., Almeida,

E., Prado, A., and Zancanella, L. Manipulating
Crosscutting Concernglth Latin American Con-
ference on Pattern Languages of Programming
(SugarLoafPLoP’2004)Brazil. 2004.

Herder, E. Metrics for the Adaptation of Site
Structure. German Workshop on Adaptivity and
User Modeling in Interactive Systems (ABIS02)
2002.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J., and Irwin, J. Aspect-
Oriented Programming. 11th Europeen Conf.
Object-Oriented ProgrammingSpringer Verlag.
1997.

Marinescu, R. Detecting Design Flaws via Met-
rics in Object-Oriented Systems39th Technol-
ogy of Object-Oriented Languages and Systems
(TOOLS USA 2001)Santa Barbara, CA, USA.
July-August 2001.

Murphy, G., Lai, A., Walker, R., and Robillard,
M. Separating Features in Source Code: An Ex-
ploratory Study. 23rd International Conference
on Software Engineeringloronto, Canada. May,
2001.

Noda, N. and Kishi, T. On Aspect-Oriented
Design - Applying Multi-Dimensional Separation
of Concerns on Designing Quality Attributes -.
First Workshop on Multi-Dimensional Separation
of Concerns in Object-oriented Systems (OOP-
SLA'99) November 1999.

Reina, A. and Torres, J. Analysing the Navi-
gational Aspect.Second International Workshop
on Aspect Oriented Programming for Distributed
Computing System¥iena, Austria. July, 2002.

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Reina, A., Torres, J., and Toro, M. Aspect-
Oriented Web Development vs. Non Aspect-
Oriented Web DevelopmentWorkshop of Anal-
ysis of Aspect-Oriented Software (AAOS 2003)
University of Darmstadt, Germany. July 2003.

Ricca, F. and Tonella, P. Building a Tool for
the Analysis and Testing of Web Applications:
Problems and Solutions.Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS’200) Genova, Italy. April 2001.

Rosenberg, L. Applying and Interpreting Object
Oriented Metrics. Software Technology Confer-
ence 1998.

Rosenberg, L., Hammer, T., and Shaw, J. Soft-
ware Metrics and Reliability. 9th International
Symposium on Software Reliability Engineering
Germany. November 1998.

Sant'/Anna, C., Garcia, A., Chavez, C., Lucena,
C., and Staa, v. A. On the Reuse and Mainte-
nance of Aspect-Oriented Software: An Assess-
ment Framework.17th Brazilian Symposium on
Software Engineerind@003.

Stanley, J. and Sutton, M. Multiple Dimensions
of Concern in Software Testingrirst Workshop
on Multi-Dimensional Separation of Concerns in
Object-oriented Systems (OOPSLA'98)ovem-
ber 1999.

Tarr, P., Ossher, H., Harrison, W., Stanley, J.,
and Sutton, M. N-degrees of separation: Multi-
Dimensional Separation of Concern21st In-
ternational Conference on Software Engineering
IEEE Computer Society Press, 1999.

Tonella, P. and Ceccato, M. Aspect Mining
through the Formal Concept Analysis of Execu-
tion Traces. 11th IEEE Working Conference on
Reverse Engineering (WCRE OQ4)etherlands.
November 2004.

Zakaria, A. and Hosny, H. Metrics for Aspect-
Oriented Software Design. 3th International
Workshop on Aspect-oriented Modeljria03.

Zhao, J. Measuring Coupling in Aspect-Oriented
Systems. 10th International Software Metrics
Symposium (Metrics 042004.

	Introduction
	Related Works
	Web Application Model Recovery
	Web Application Concerns Extraction
	Metrics suite
	Sample
	Conclusions

	texto1: Table 1: Quality Model

