
A Concerns-based Metrics Suite for Web Applications

ALESSANDROMARCHETTO

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

Via Comelico 39, 20135 Milano, Italy
Alessandro.Marchetto @unimi.it

Abstract.
Web applications have become very complex and crucial, especially when combined with areas such

as CRM (Customer Relationship Management) and BPR (Business Process Reengineering). The scien-
tific community has focused attention to Web applications design, development, analysis, and testing, by
studying and proposing methodologies and tools. This paper proposes a metrics suite to measure Web
software modelled via Object-Oriented techniques, in particular, the proposed suite is useful to analyze
software designed via feature concerns approach, based on Multi-Dimensional Separation of Concerns
(MDSOC). This suite lets us analyze existing software relevant to specific concern functionality, and/or
relevant to functionalities integration. The measurement approach was developed in the context of WAAT
(Web Applications Analysis and Testing) project.

Keywords: Web Applications, Separation of Concerns, Object-Oriented, Software Metrics

(Received June 27, 2005 / Accepted August 12, 2005)

1 Introduction

Web applications’ quality, reliability and functionality
are important factors because software glitches could
block entire businesses and determine strong embar-
rassments. These factors have increased the need for
methodologies, tools and models to improve Web ap-
plications (design, analysis, testing, and so on).

The approach presented in this article focuses on
legacy Web applications where business logic is em-
bedded into Web pages. The applications analyzed are
composed of Web documents (static, active or dynamic)
and Web objects. This paper describes a metrics suite
to help the user define quantitative system to measure
existing Web software and to analyze its quality factors
via structural properties. Nowadays the existing metrics
systems for Web applications measure several structural
properties, but often, they measure specific Web assets,
such as navigation paths length, pages click-stream dis-
tances, and so on (see [20] for Web metrics roadmap).
In this paper, we focus not only on Web specific mea-
sures, but, more generally, on measures related to soft-
ware in general (such as OO, Web, AO, and so on) but
applied to Web applications. Several techniques ex-
ist in literature to design Web applications via OO ap-

proaches (see Section Related Works). These approaches
are used to increase software quality in software mod-
elling (i.e., using UML, see [18]), testing ([35]), and
analysis of existing software. In this paper we define a
metrics suite to analyze Web software modelled via OO
techniques (defineda priori or a posteriorithrough re-
verse engineering techniques). Separation Of Concerns
(SOC) refers to the ability to identify, encapsulate and
manipulate the software parts (code fragments) relevant
to a particular concern. The use of a good SOC pol-
icy is useful to increase software quality and decrease
the effort to test, maintain, understand, reuse and docu-
ment software. In the project WAAT (Web Application
Analysis and Testing) under development at our univer-
sity laboratory, we have defined an approach to apply
MDSOC to Web applications [9]. Moreover we have
defined a method [6] based on feature concerns identi-
fication to slice applications via MDSOC and Concept
Analysis. The defined slices are useful to test applica-
tions functionalities. Modelling Web applications via
MDSOC or via concerns (in this paper namedCOD,
Concern Oriented Design) lets the user define a soft-
ware structure more flexible and modular than with OO
design methods (OOD). In case of concern modelling,

Alessandro.Marchetto

defining a system to analyze software based on OO met-
rics (see [42]) may not be very useful, because concerns
based modularization lets the user define a set of soft-
ware decomposition and not only the class-based de-
composition (the tyranny of dominant decomposition,
see [40]). Furthermore, introducing concepts such as
concerns, aspects in application design, the structural
properties may change their relationship with software
quality factors. For example, software components re-
lationships requires a more specific analysis, e.g., in as-
pect oriented design (AOD) is introduced an implicit
coupling between the aspects and the modules in the
principal decomposition, in that the latter may be un-
aware of the presence of aspects that intercept their ex-
ecution and/or modify their structure On the other hand,
some new metrics systems defined to study AOD soft-
ware (see [16], [38]) are also not adequate, because
they study the aspect oriented programming, and they
measure aspects properties (i.e., [29]) such as advices,
point-cuts, and so on. These aspect properties may not
be very important in case of concerns modelling, be-
cause in MDSOC aspects are only a case of possible
concerns modelling via MDSOC, and there are several
other types of concerns (i.e., functionality, and so on).

To improve the above cited approaches we propose
to define a quantitative system to study structural prop-
erties of the software to analyze application quality fac-
tors at system and concerns level, and in particular at
feature concerns level. This system is based on met-
rics applied in a Web application modelled by OO tech-
niques via concern oriented software modularization. A
metrics system, to be effectively useful in the analysis
of software modularized via feature concerns, must an-
alyze software units (such as classes, aspects, and so
on), but also clusters of units (such as feature concerns
defining a groups of units relevant for a particular task
or functionality). The proposed metrics suite inquires
the analysis of software unit and concerns (i.e., clusters
of units).

This paper is organized as follows. Section 2 de-
scribes a general state of the art about Web modelling,
aspect oriented design, and software metrics measure-
ments. Section 3 describes our OO applications mod-
elling, reverse engineering approach to model recovery
and Section 4 describes our concerns mining technique.
Section 5 introduces our concerns-based metrics suite
software measurement system. Section 6 analyzes a
sample case study. Finally, Section 7 ends this paper.

2 Related Works

Several Web applications modelling approaches are pre-
sented in literature (see [7]), and some of these are UML

based, such as Conallen’s UML extensions [18]. Our
WebUml [7] is tool to reverse engineering Web appli-
cations to describe them with UML models. Other re-
verse engineering tools are WARE [22], ReWeb [35],
and Rational Rose Web Modeler [3]

More details aboutAspect Oriented programming
are in [29], while [1] presents the famous AspectJ soft-
ware. [2],[40] describe the MDSOC and HyperJ tool,
while [32] studies the relations between quality factors
and MDSOC, while [39] the relations between MDSOC
and testing. [9] describes our approach to apply Multi-
Dimensional Separation of Concerns (MDSOC) theory
at Web applications. [34] describes SOC used to reduce
the complexity of Web applications. [33] presents an
approach to separate Web navigation concerns and ap-
plication structure. [9] describes our approach to apply
Multi-Dimensional Separation of Concerns (MDSOC)
theory at Web applications.

The authors of [14] evaluate AOD code quality in-
fluence and present an approach for reverse engineer-
ing aspects, based on concern verification and aspect
construction. [26] introduces an approach to reengineer
AOSD software. [15] evaluates the suitability of clone
detection as a technique for the identification of cross-
cutting concerns via manual concern identification. [19]
introduces aspect mining and identification in OO. [27]
another paper introducing aspect mining and refactor-
ing. [11],[41] show an approach to aspect mining based
on dynamic analysis technique via program traces in-
vestigation, to search recurring execution relations. In
[31] three different separation of concerns (SOC) mech-
anisms (HyperJ, AspectJ, and a lightweight lexically
based approach) are applied to separate features in the
two software packages. This paper studies effects that
various mechanisms have on code-base structure and on
restructuring process required while performing separa-
tions. [6] presents our approach to apply MDSOC and
Concept Analysis to identify and extract feature con-
cerns on Web applications.

Generally speaking, for a software engineer, metrics
are very useful to analyze software applications or mod-
els, to study structural software quality, and to define
prediction about software effort, such as for design ef-
fort, testing effort, and so on. However there is no con-
sensus within the community on which metrics to use or
how to calculate metrics. In particular there are many
empirically validated metrics suite and metrics. There
are many papers describing different types of metrics
involved in the different measurements, metrics defini-
tion, and analysis process. Several metrics-papers goal
is to define and validate a set of high-level design met-
rics to evaluate the quality of the application design of

a software system (for example see Chidamber and Ke-
merer (C&K) OO metrics suite [17], and [36]). Other
papers (for example see [12]) focus on empirical val-
idation of the relationships between design measure-
ment in OO systems (coupling, cohesion, and inher-
itance) and the quality of the software (the probabil-
ity of faults detection in system classes during testing).
[24] defines a software metrics roadmap for OO sys-
tems. [28] studies Web metrics definition and analysis,
while [21] proposes a Web metrics roadmap. Some pa-
pers study metrics for specific software quality aspect.
[30] defines a metrics-based approach for detecting de-
sign problems (well-known design flaws). [37] defines
metrics to promote and assess software reliability. [13]
studies the relationship between a set of OO metrics and
class test effort. [10] studies machine learning models
applied to software effort prediction. [23] introduces
an approach to software reliability prediction based on
Markov chains.

New metrics suites are derived from OO to analyze
aspectized software, for example [43] analyzes coupling
for classes and aspects in AOD software, and it inves-
tigates the different type of relationship type between
classes and aspects. [42] describes the effect of AOD on
Chidamber and Kemerer (C&K) OO metrics suite [17].
[38] defines an OO derived metrics suite and a qual-
ity model useful to measure the reusability and main-
tainability degrees of aspect-oriented systems. [16] de-
fines an OO derived metrics suite to analyze aspect ori-
ented code and to investigate the trade-off between ad-
vantages and disadvantages obtained by using the AOP
approach.

3 Web Application Model Recovery

Our approach ([7] ,[8]) to model recovery is composed
of: application behavior analysis, applicationmodel
building , andmodel validation.
- Application behavior analysis; it is performed through
static and dynamic analysis. Static and dynamic analy-
sis treat static and dynamic application components us-
ing source code and on-line interactions with the Web
server. For example, for static pages, we use traditional
source code analysis based on a language parser. While,
for a single server page generating multiple client pages,
we apply dynamic analysis to try to determine a mean-
ingful number of client pages (through mutation anal-
ysis and application executions). Then, the dynami-
cally generated client side pages are analyzed (with tra-
ditional source code analysis) to build diagrams. [7]
describes our used techniques.
- Model building; with the information extracted by the
previous phase we build an application OO model (such

as described in [35], [22]) using UML class and state
diagrams. We have defined a UML meta-model usable
to describe applications [7]. Class diagrams are used
to describe structure and components of a Web appli-
cation (e.g., forms, frames, Java applets, input fields,
cookies, scripts, and so on), while state diagrams are
used to represent behavior and navigational structures
(client-server pages, navigation links, frames sets, in-
puts, scripting code flow control, and so on).
- Model validation; the “mutation” generated model may
contain more information than needed. In particular, it
may contain “Not Valid” information, such as not valid
dynamically generated client-side pages. A client-page
is “Valid” if it is reachable in the original application
(without mutants) via an execution path. Since muta-
tion may define a model with a superset of behaviors,
we need a pruning technique. Our validation technique
is essentially based on Web server log files analysis
and “Visual Navigation validation” performed with user
help. [8] describes our used techniques.

Model construction is automatic via mutation anal-
ysis, while model validation is quite user dependent.
The traditional way to analyze existing Web software
focuses on applications source code analysis of control
flow expressions to identify the representative page in-
put values. The input values are used to define the ap-
plication feasible behaviors. The use of mutation anal-
ysis decreases user interactions needed to build applica-
tion models, and simplify them, because mutation lets
the user change the analysis perspective, from source
code analysis to application analysis. When the model
is built a user should analyze it to delete spurious infor-
mation (via Model Validation approach).

4 Web Application Concerns Extraction

The goal of our algorithm is to extract features from ex-
isting Web applications. More formally, we would like
to define a Separation Of Concern (SOC) procedure to
identify and encapsulate software concerns. “Software
concerns” are essentially software functionalities that
may be transversal to software structure (software func-
tionality for the user, features used by other features to
implement external functionality, etc.). Then these con-
cerns may be used in our WAAT project to increase the
quality of software testing or analysis.

Our approach [6] to extract concerns from existing
Web applications is based on MDSOC Hyperspaces def-
inition and Formal Concept Analysis (FCA, see [25])
applied to a set of pre-defined software artifacts. In par-
ticular, we use artifacts such as software variables and
methods, to define a hyperspace. Then, we elaborate
this hyperspace via FCA into hierarchical groups (e.g.,

artifacts sharing def-use relationships) and to define a
concept lattice describing software modularization. Fi-
nally, we elaborate the lattice to define core-concerns
dependencies and to find feature concerns. This ap-
proach let us slice applications through their artifacts re-
lationships. To apply this technique, source code anal-
ysis is needed.

5 Metrics suite

Quality Factor Internal Attribute

Maintainability
- Understandability SOC, coupling, size
- Flexibility SOC, coupling, cohesion
- Modularity SOC, coupling, size
- Testability SOC, coupling, size, complexity
- Expandability SOC, coupling, size
Reusability
- Modularity SOC, coupling, size
- Understandability SOC, coupling, size
- Adaptability coupling, size
Reliability
- Fault tolerance coupling, size, complexity
- Error proneness coupling, size, complexity
Functionality
- Flexibility SOC, coupling, cohesion
- Efficiency SOC, coupling, size
- Understandability SOC, coupling, size

In this section we describe our metrics suite. Our
suite is essentially derived from: [17], [38], and [16].
We extended some of the metrics to make them use-
ful to analyze and describeCOD software modulariza-
tion, and in particular to analyze software modularized
via feature concerns. Through the concept-lattice de-
fined via our concern mining algorithm, we may an-
alyze existing Web software to re-modularize it based
on their essential features and sub-features, moreover
we may isolate the application source code fragments
related to every feature. This new software modular-
ization is composed of classes, aspects, and concerns.
Generally speaking, we may define software units as
core-concerns (classes or aspects derived from lattice
concepts) while aggregates of core-concerns to imple-
ment single features as feature concerns. In this section
we use the term “module” to indicate any of the three
modularization units. Furthermore, in this section we
introduce a set of OO derived metrics to evaluate the
goodness of a software modularity in term of separa-
tion of concerns, and to evaluate a goodness of the in-
ternal structure of an application (components and com-
ponents interactions) in terms of several quality factors
(see Table 1).

We have used the GQM approach [5] to describe a
simple quality model to analyzeCOD modularization
specific properties (i.e., separation of concerns degree,
concerns coupling, and so on). Due to lack of space
we do not present here the entire GQM approach used
but we introduce its result: the quality model described
in Table 1. Our quality model is composed of four
different elements: (i) quality factors, (ii) quality sub-
factors, (iii) internal attributes, and (iv) software met-
rics. Table 1 describes the relationships between qual-
ity factors, sub-factors, and internal software attributes.
In particular, it presents: the quality that we want to
primarily observe in the software system (reusability,
maintainability, reliability, and functionality); the qual-
ity sub-factors that are secondary quality attributes that
influence our primary qualities (testability, understand-
ability, and so on); and the internal software properties
(related to well-established software engineering prin-
ciples) that are useful to increase (or to study) the qual-
ity in their internal factors. Table 1 is useful for metrics-
data interpretation. Furthermore, studying the internal
attributes, we have defined the set of related metrics pre-
sented in this section. Metrics are used to measure some
different internal quality factors (SOC, size, complex-
ity, coupling, cohesion), and are used at some different
level of abstraction (classes, aspects, concerns, SOC,
system).

The metrics composing our suite may be divided
into four categories based on the internal software at-
tributes that are influenced by them (coupling, cohe-
sion, size & complexity, SOC). In particular, in the fol-
lowing, we briefly present every defined metrics: met-
ric; metric level; brief metric definition.

Coupling is the degree to which the elements in
a design are connected. The coupling degree impacts
on system quality such as maintainability (modifying a
given module may require the modification of some of
its connected modules), understandability (a very con-
nected module is very hard to understand), reusability
(the more independent a module is, the easier it is to
be reused in another application), testability (a fault in
a module may cause failures in its connected modules),
modularity (low coupling between modules improves
software modularity), and efficiency (strong coupling
between modules complicates a system). Thus, a com-
mon good programming principle is to minimize the
coupling. Coupling metrics are:

• Coupling between components (CBC): for a given
module (or system) defines the number of other
modules to which it is coupled. It counts mod-
ule relationships with other software units. For ex-
ample, it counts modules that are used in attribute

declarations, or components declared return types
parameters.
For a given concern in the SOC level, CBC_sum
metric is defined as the sum of the CBC for every
module contained in the concern.
A Module with high CBC value is harder to under-
stand, change, reuse and test.

• Depth of Inheritance Tree (DIT): for a given mod-
ule, DIT is defined as the maximum length from a
given node to the root of the tree. It counts how
far down the inheritance hierarchy a module is de-
clared. High DIT value increases module com-
plexity, and furthermore, module understandabil-
ity, testability and maintainability is harder.

• Number of Children (NOC): NOC counts the num-
ber of immediate sub-modules of a given mod-
ule. The number of children of a module indicates
the proportion of modules potentially dependent
on properties inherited from the given one. High
NOC number decrease testability and reusability.

• Coupling on Method call (CMC): CMC counts the
number of modules declaring methods that are pos-
sibly called by a given module. Usage of a high
number of methods from many different modules
indicates that the function of the given module can-
not be easily isolated from the others. CMC is
related to CBC metric. High CMC is associated
with high dependencies from the functions in other
modules.

• Coupling on filed access (CFA): CFA counts the
number of modules declaring fields that are ac-
cessed by a given module. CFA measures the de-
pendencies of a given module on other modules,
in terms of accessed fields, instead of methods. In
OO systems this metric is usually close to zero.
CFA is related to CBC metric. High CFA is as-
sociated with high attributes dependencies in other
modules.

• Response for a Module (RFM): RFM counts the
methods potentially executed in response to a mes-
sage received by a given module. It measures the
potential communication between the given mod-
ule and the others. It counts the number of meth-
ods of a given module, and the number of methods
invoked by the module-methods. High RFM de-
creases testability, understandability, maintenance
and reusability.

• Number of Stub methods (NsM): NsM counts the
methods of other modules called by every mod-

ule. If a module uses a method in other mod-
ule, this method may be a stub method, i.e., in a
testing phase. High NsM decreases testability and
reusability.

• In-Cyclical Dependencies (iCd): iCd counts the
number of cyclical dependencies of the software
system containing a given module. High iCd de-
creases module testability, reusability, and mainte-
nance.

• Cyclical Dependencies (Cd): for a given concern
(or system) counts the number of cyclical depen-
dencies in the system. High Cd decreases testabil-
ity, reusability, modularity, and maintenance.

Cohesionis the degree to which software elements
within a module are related to one another and work
together to provide well-bounded behavior. High cohe-
sion indicates good module subdivision. Low cohesion
increases complexity, thereby increasing the likelihood
of errors during the development process. Cohesion
metric is:

• Lack of Cohesion in Methods (LCOM): LCOM
measures the degree of similarity of methods by
data input variables or module attributes. A tech-
nique to measure LCOM is based on module meth-
ods analysis. Class methods are more similar if
they operate on the same set of attributes. LCOM
counts the number of disjoint sets produced from
the intersection of the sets of attributes used by the
methods. This metric influence modularity, func-
tionality, reusability, and testability.

Size & Complexity Software size metrics measure
the size of systems, typically by counting modules con-
tained within. For example: the number of operations
in a class, the number of classes in a package, and so
on. Size is traditionally used to effort estimates for im-
plementation, review, testing, or maintenance activities.
A good practice is to avoid containing too much big en-
tities in a module, because big entities may be prob-
lematic, and they can be really difficult and complex to
understand. The modules with both a high complex-
ity and a large size tend to have the lowest reliability.
Modules with low size and high complexity are also a
reliability risk because they tend to contain very terse
code, which is difficult to change or modify. High sys-
tem size value for a software system decreases its un-
derstandability, reusability, adaptability, and testability.
Size/Complexity metrics are:

• System size (SyS): SyS counts the number of sys-
tem modules, i.e. the number of classes and as-

pects into the system. This metric measures the
system components size.

• Lines of code (LOC): LOC counts the lines of code
of every module or concern. In this case LOC does
not include comment lines.

• Number of Attributes (NA): NA metric counts the
number of attributes of each module. Inherited at-
tributes are not included in the count.

• Weighted Operations per Component (WOC): it
measures the complexity of a module in terms of
the sum of its operations complexities. The oper-
ation complexity measure is obtained by counting
the number of parameters of the operation, assum-
ing that an operation with more parameters than
another is likely to be more complex.
For SOC level we define WOC_sum as the sum of
modules complexity.

• Reuse Ratio (RR): RR measures the module reuse1

in terms ofRR = #super−modules
#total−modules . An RR near

to 1 describes a linear hierarchy structure (poor de-
sign), while RR near to 0 describes a shallow depth
structure.

• Specialization Ratio (SR): SR measures the spe-
cialization ratio1 in term of module and super-
module: SR = #sub−modules

#super−modules . An SR near to
1 describes a poor designed structure, while a high
SR describes a good abstraction in super-modules.

Metrics for Separation Of Concerns (SOC) de-
fine a set of structural software measures of concerns
such as: size and complexity of concerns in a software
system, or internal and external concerns/modules cou-
pling. Quality factors such as: understandability, adapt-
ability, reusability, maintainability, testability, flexibil-
ity, modularity, and modifiability may be influenced by
a SOC level metrics. We suggest to treat every fea-
ture concern as a unique module such as a class or as-
pect. This intuition let us apply some existing metrics
to describe concerns and separation of concerns degree.
SOC metrics are:

• Modules for Concern (MCo): MCo counts the num-
ber of modules for a given concern.

• Operations for Concern (OCo): OCo counts the
number of operations in modules of a given con-
cern.

1Reuse is in OO definition, where it is strongly connected with
inheritance and specialization hierarchy

• LOC for Concern (LOCCo): LOCCo counts the
number of code lines for each concern as the sum
of its modules LOC.

• Degree of SOC (DS): DS measures the separation
degree of a given concern from the system in term
of its modules.DS = sharedModules

modules , where:mod-
ulesis the number of concern modules, andshared-
Modulesis the number of modules of the concern
shared with other concerns. For a given concern,
DS values near to 1 describes concerns with shared
(with other system concerns) modules, thus poor
separation of concerns.
For the entire system, DS is defined by the sum
of every concern DS as:DS = (sum

sumMax) ∗ 100,
where:sumis the sum of actual DS value for every
concern, andsumMaxis the max of possible sum.
It corresponds tosumMax = 1 ∗# concerns.
DS is an indicator of concern understandability,
testability, adaptability, and reusability.

• Concern coupling (Cc): Cc counts the number of
modules common to more than one concern. To
define common modules for a given concern, its
sub-concerns are considered, while concerns ag-
gregating the given concern are not considered. Cc
defines a coupling measure for a given concern, in
term of shared components between concerns or
system.

• Number of Inner-Concerns (IC): IC counts the num-
ber of sub-concerns contained in a concern. IC
defines a measure for concerns composition. IC
defines an internal-coupling measure for a given
concern, in terms of its sub concerns.

• Number of In-different-concerns (InC): InC counts
the number of different concerns to which a given
module is participating. A module present in more
than one concern, but in the same concern hierar-
chy, is counted only once. InC may be an indicator
of separation of concerns degree in a given system.

• Number of Module point-cuts (mPC): mPc counts
the number of potentially definable point-cuts in
a given module and potentially accessed by other
modules. A point-cut is a module point potentially
called by other modules. For example, methods
or attributes declarations may be point-cuts. mPC
defines a potential diffusion degree of a module
in a system. mPC defines a coupling measure, in
terms of module diffusion.

• Number of Degree diffusion point-cuts (dPC): dPc
counts the number of modules that access point-

cuts defined in a given module. dPC defines the
aspect degree diffusion on modules. It measures
the number of modules depending on point-cuts
defined in this module. dPC defines a potential
coupling measure, in term of module diffusion.

6 Sample

This section shows the actual computation of the met-
rics we propose on a small Web application.

For every different modularization, we may perform
a metrics based software evaluation to define the good-
ness of components structure in term of the quality of
the modularization itself. In literature there are several
empirical experiments defining various set of quality
rules useful to analyze software structure with OO de-
rived metrics. For example, a set of rules are:

1. The average method size should be less than 10.
Bigger averages indicate OO design problems (i.e.
function-oriented coding).

2. The average number of methods per class should
be less than 20. Bigger averages indicate too much
responsibility in too few classes.

3. The average number of instance variables per class
should be less than 6. More instance variables in-
dicate that one class is doing more than it should.

4. Class hierarchy nesting level should be less than
6. Deeply nested classes are more complex, inher-
ently due to inheritance.

5. The number of class-to-class relationships within
a subsystem should be relatively high. A class or
group of classes (e.g., a framework) with a low
amount of coupling to other classes will be more
reusable.

6. The number of subsystem-to-subsystem relation-
ships should be less than the average number of
class-to-class relationships within a subsystem.

7. High cyclical dependencies in a system increases
the difficulty to test components integration.

For every metric, it is possible to define a set of
experience-derived quality rules, useful to evaluate the
structure of a system. Instead, in this section, we fo-
cus on metrics suite analysis through the study of two
different software modularizations of the same applica-
tion. In particular, we compute metrics onOOD mod-
elled software structure, and then we apply our con-
cerns mining technique to extract application feature
concerns and to define a new software modularization

based on them. Then, we compute metrics on this new
COD modelled software structure. Finally, we perform
an analysis on measurements results.

“ImgViewer” (see Figure 1 for Home Page) is the
application selected as a case study for experiments.
ImgViewer is a small (see Table 2) images-viewer Web
application composed of fifteen PHP/HTML files and
few flat file databases. ImgViewer functionalities are:
images viewer, reserved area (login + password), spon-
sor links manager, users-browser identification.

Figure 1: ImgViewer Home Page

By examining application source code and model
(extracted via our reverse engineering techniques) we
compute metrics measurement on the OOD-modelled
ImgViewercomponents structure. Table 2 shows appli-
cation SOC and system metrics values and statistics for
module level metrics.

In this case, the IC metric is estimated by an expert
developer based on his/her application know-how. The
expert has estimated IC=3, where 3 are the main appli-
cation functionalities. Moreover in thisOOD modelled
structure, there is only one concern that matches the en-
tire system.

After measurement computation for theOOD mod-
elled system, we may calculate the Pearson’s correla-
tion (r) for Module level metrics. This correlation mea-
sure is the most used and common measure to define
the existence of a statistical linear correlation between
two variables (i.e., see [4]). The statistical correlation
between two variables reflects the statistical degree to
which the variables are related. Moreover, for every
computed correlation value we may also calculate its
related p-value to define the statistical significance of
the computation. The p-value is used to test the hy-
pothesis of no correlation against the alternative that
there is a non-zero correlation. Due to lack of space
we omit the Pearson’s correlation matrix compiled for

SOC Metrics:

Concern OCo DS Cc IC
F-all 22 0,89 16 4

System Metrics:

DS Cd SyS LOC RR SR2 WMC_sum CBC_sum
89% 5 18 166 0,11 2,5 30 46

Statistics of Module Metrics:

Stat. dPC LOC InC mPC CBC DIT NOC CMC CFA RFM NsM NA WMC iCd
Mean 1,39 9,33 1,00 2,72 2,56 0,28 0,28 1,56 0,17 2,78 1,11 1,50 1,67 0,83
Max 3,00 25,00 1,00 8,00 7,00 1,00 3,00 8,00 1,00 10,00 3,00 7,00 5,00 3,00
Min 1,00 1,00 1,00 1,00 1,00 0,00 0,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00
Std.Dev 0,70 7,51 0,00 2,35 ,85 0,46 0,83 1,79 0,38 2,24 0,90 2,15 1,37 0,99
Median 1,00 6,50 1,00 1,00 2,00 0,00 0,00 1,00 0,00 2,00 1,00 0,00 0,00 0,50

Table 2: ImgViewer OOD metrics

Module metrics and the related p-value matrix. Gener-
ally speaking, we consider: strong positive correlation
if r>0,7; weak positive correlation if 0,3<r<=0,7; strong
negative correlation if r<-0,7; weak negative correlation
if -0,3<r<=-0,7; and no correlation if -0,3<r<0,3; while
if the p-value is small (i.e., less than 0,05 for 95% of
significantly), then the correlation is significantly dif-
ferent from zero (i.e., there is correlation). The inter-
pretation of statistical correlation does not imply that
correlation equals causation. Moreover, a narrow data
sample could lead to a deflation in the correlation.

In our case, the analysis of Pearson’s correlations
and p-values matrices for Module level metrics shows
that there are strong relationships between point-cuts
metrics (i.e., dPc and mPC) and attributes and meth-
ods size metrics (i.e.,NA or WMC). Moreover, strong
relationships also exist among coupling metrics (such
as between RFM or CMC and CBC or NOC), while
there are no relationships among every other couple of
metrics. Furthermore, we notice that lnC metric is not
significant forOOD (in our case, it is a constant value).

Figure 2: ImgViewer lattice

We have applied our concerns mining technique (see

Section 4) to automatically define feature concerns out
of our application and to define a new software modu-
larization. Figure 2 gives the rough idea about the con-
cept lattice for concerns extraction in ImgViewer appli-
cation, while Table 3 shows every feature concerns/sub-
concerns found. F13 is the concern that identifies the
entire software system. We may define an ordering be-
tween these concerns to define concerns that contain
other concerns, as following: F3, F4 < F6 < F1 < F2;
and F14; and F8, F9 < F10 < F11; and F12 < F11.

F-Concern Feature

F2 Reserved area
F1 - Server-side
F6 - Response Pages
F8 Sponsor Link Manager
F9 User Browser Identification
F10 Control Sponsor-Browser
F11 Interface Sponsor-Browser
F12 - Client-side
F14 Image Viewer
F13 ..all features....

Table 3: ImgViewer feature concerns

Now we may compute metrics for the new software
modularization introduced by concerns extraction. Ta-
ble 4 shows application SOC and system metrics values,
and statistics for module level metrics. In this case, the
new software modularization focuses on functionalities
and it is described by some feature concerns (see Table
3). This software structure has a SOC level more de-
fined than the previous one. SOC level metrics are very
important to describe and to evaluate the separation of
concerns degree.

For thisCOD software modularization we perform
the Pearson’s correlation and p-value analysis on the
Module and SOC level metrics, to measure the statis-
tical correlation between them. In the case of Module
level, we find strong relationships among some cou-
pling metrics (such as NsM, CBC, CMC, and RFC),

SOC Metrics:

Concern MCo OCo LOCCo DS Cc IC WMC_sum CBC_sum
F1 5 4 23 0 0 3 6 12
F2 6 5 28 0.83 5 4 9 15
F6 3 3 11 0 0 2 2 4
F8 3 2 8 0 0 0 1 4
F9 3 4 21 0 0 0 4 4
F10 9 8 39 0,44 4 2 9 23
F11 13 9 46 0,77 10 4 12 32
F12 6 4 10 0,66 4 0 4 13
F14 4 3 53 0 0 0 7 5
F13 18 22 166 0,89 16 4 30 46

System Metrics:

DS Cd SyS LOC RR
30% 3 27 175 0,26
SR2 WMC_sum: CBC_sum:
2,71 29 65

Statistics of Module Metrics:

Stat. dPC LOC InC mPC CBC DIT NOC CMC CFA RFM NsM NA WMC iCd
Mean 1,16 6,56 0,92 2,52 2,60 0,36 0,52 0,88 0,28 1,68 0,88 0,80 1,16 0,48
Max 2,00 24,00 2,00 7,00 6,00 1,00 2,00 3,00 1,00 4,00 3,00 4,00 3,00 2,00
Min 1,00 1,00 0,00 1,00 1,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Std.Dev 0,37 6,87 0,57 1,56 1,22 0,49 0,87 0,78 0,46 1,03 0,83 1,32 0,94 0,82
Median 1,00 5,00 1,00 2,00 3,00 0,00 0,00 1,00 0,00 2,00 1,00 0,00 1,00 0,00

Table 4: ImgViewerCODmetrics

while there are no relationships between every other
couple of metrics. Instead, in the case of SOC level,
we find that there are strong relationships among some
size metrics (i.e., OCo, WMC_sum, and MCo), while
there are no relationships among every other couple of
metrics.

Figure 3: OOD& CODModule Metrics

Now we may compute the metrics suite for two dif-
ferent software modularizations of the same Web appli-
cation. Then we analyze the measurement results (see
Figures 3,4,5).

Figure 3 shows a graphical viewer of the average
values measured inCOD design at module level met-
rics, it shows a general improvement (thanOOD de-
sign) in some metrics (dPC, LOC, lnC, mPC, CMC,
RFM, NsM, NA, WMC, and lCd), while some worse
values in other metrics (CBC, DIT, NOC, and CFA). For
DIT, and NOC the worse values is due to the new soft-
ware components organization, more hierarchical than

Figure 4: OOD& CODSystem Metrics

in OOD. Instead, CBC and CFA average values increase
becauseCODcontains classes but also aspects and con-
cerns. In this case it is important to notice that the CBC
value increases only a little bit, while for other coupling
measures (i.e., CMC, RFM) the decreasing is signifi-
cant. This coupling “phenomenon” is essentially due to
the aspects/concerns overlapping of class method exe-
cutions (e.g., AOP coupling).

Figure 4 shows thatCOD increases quality of the
separation of concerns at system level (DS). Moreover,
the presence of aspects and concerns defines more mod-
ules inCOD than inOOD, thus increasing system size
(Sys,LOC) and the coupling between internal system
components (CBC_sum). It also decreases system mod-
ule complexity (WMC_sum) and does not change other
metrics (RR, SR, Cid).

In Figure 5, the F13 concern represents the entire
system inOOD design, while it represents only one

type of concern inCOD design. In the last case, met-
rics show thatCOD increases the quality of separation
of concerns (more concerns identified inCOD than in
OOD). We may view aCOD system as composed of a
set of feature concerns interacting one another, in con-
trast withOOD where the system may be viewed as a
black-box system implementing a list of functionalities.
A good level of SOC is very useful to understand, reuse,
document, maintain, and test software. In our WAAT
project we are using this kind of software structure anal-
ysis to increase testing quality. In this case, aCODsys-
tem may be analyzed by some point of views: units,
clusters (or feature concerns, that are composed of units
to realize a specific functionality), clusters integration
(of functionalities integration), and system. This set of
views may be used to focalize and prioritize test cases
definition.

Figure 5: CODSOC Metrics

7 Conclusions

We proposed a metrics suite to measure Web software
structural properties to analyze a set of Web software
quality factors, such as testability, reusability, mainte-
nance, understandability, and so on. Furthermore, this
suite may be used with our feature concerns mining
technique to evaluate SOC quality on existing Web soft-
ware. The suite is composed of traditional OO metrics
and by new metrics tailored to Web software.

We are currently investigating the empirical valida-
tion of the proposed metrics composing the suite. Our
investigation focuses on the validation of the relation-
ship between metrics and Web software quality factors,
and, in particular, for our WAAT project, we analyze
the relationship between metrics and testability.

This validation is needed because we propose the
use of OO metrics (or derived) to measure traditional
structural properties of Web software, albeit modelled
through reverse engineering.

We are also working on some kind of mapping be-
tween “normal|standard|average” values for metrics ap-
plied on real OO software and the same metrics applied
to Web software (i.e., Number of methods for class∼=
20; max value of DIT∼= -10; Number of classes with
children∼= 30%, and so on).

References

[1] Aspectj. http://eclipse.org/aspectj/.

[2] Hyperj. http://www.research.ibm.com/hyperspace.

[3] Rational Rose Web Modeler.
http://www.rational.com.

[4] Basili, V., Briand, L., and Melo, W. A valida-
tion of Object-Oriented design Metrics as Quality
Indicators. IEEE Transaction on Software Engi-
neering, October 1996.

[5] Basili, V., Caldiera, G., and Rombach, D. GQM
Paradigm. Computer Encyclopedia of Software
Engineering, John Wiley&Sons 1994.

[6] Bellettini, C., Marchetto, A., and Trentini, A. An
Approach to Concerns and Aspects Mining for
Web Applications. International Journal of In-
formation Technology (IJIT), 2005.

[7] Bellettini, C., Marchetto, A., and Trentini, A.
WebUml: Reverse Engineering of Web Applica-
tions. 19th ACM Symposium on Applied Comput-
ing (SAC 2004), Nicosia, Cyprus. March 2004.

[8] Bellettini, C., Marchetto, A., and Trentini, A. Val-
idation of Reverse Engineered Web Application
Models. 2nd International Conference on Soft-
ware and Knowledge engineering (SKE 2005),,
Turkey, 2005.

[9] Bellettini, C., Marchetto, A., and Trentini, A. Ap-
plying MDSOC Web Applications. 9th World
Multi-Conference on Systemics, Cybernetics and
Informatics (WMSCI 2005), USA, 2005.

[10] Boetticher, G. Using Machine Learning to Predict
Project Effort: Empirical Case Studies in Data-
Starved Domains.First International Workshop
on Model-based Requirements Engineering, San
Diego, USA. 2001.

[11] Breu, S. and Krinke, J. Aspect Mining Using
Event Traces. 19th. Conference on Automated
Software Engineering 2004 (ASE 04), Linz, Aus-
tria. September 2004.

[12] Briand, L., Wüst, J., Daly, J., and Porter, D. Ex-
ploring the Relationships between Design Mea-
sures and Software Quality in Object-Oriented
Systems.20th The Journal of Systems and Soft-
ware, May 2002.

[13] Bruntink, M. and van A., D. Predicting Class
Testability using Object-Oriented Metrics.4th
IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM’04), 2004.

[14] Bruntink, M., van Deursen, A., and Tourwé,
T. An Initial Experiment in Reverse Engineer-
ing Aspects from Existing Applications.11th
IEEE Working Conference on Reverse Engineer-
ing (WCRE 04), Netherlands. November 2004.

[15] Bruntink, M., van Deursen, A., van Engelen, R.,
and Tourwé, T. An Evaluation of Clone Detection
Techniques for Identifying Cross-Cutting Con-
cerns.IEEE International Conference on Software
Maintenance (ICSM 04), 2004.

[16] Ceccato, M. and Tonella, P. Measuring the Effects
of Software Aspectization.1st Workshop on As-
pect Reverse Engineering (in WCRE’04), 2004.

[17] Chidamber, S. and Kemerer, C. A Metrics Suite
for Object Oriented Design.IEEE Transactions
on Software Engieneering, June 1994.

[18] Conallen, J. Building Web Applications with
UML. Addison-Wesley, 2000.

[19] Deursen, A., Marin, M., and Moonen, L. Aspect
Mining and Refactoring.First International Work-
shop on REFactoring: Achievements, Challenges,
Effects (REFACE03), Canada. November 2003.

[20] Dhyani, J., Keong, W., and Bhowmick, S. A Sur-
vey of Web Metrics. ACM Computing Surveys,
2002.

[21] Dhyani, J., Keong, W., and Bhowmick, S. A Sur-
vey of Web Metrics. ACM Computing Surveys,
2002.

[22] Di Lucca, G. A., Fasolino, A. R., Pace, F., Tra-
montana, P., and De Carlini, U. WARE: A Tool for
the Reverse Engineering of Web Applications.6th
European Conference on Software Maintenance
and Reengineering (CSMR 2002), Budapest, Hun-
gary. March 2002.

[23] Durand, J. and Gaudoin, O. Software Reli-
ability Modelling and Prediction with Hidden
Markov Chain. INRIA-Rhone-Alpe Technical Re-
port, February 2003.

[24] Fenton, N. and Neil, M. Software Metrics:
Roadmap.International Conference on Software
Engineering (ICSE 2000), Limerick, Ireland. June
2000.

[25] Ganter, B. and Wille, R. Formal Concept Anal-
ysis. Springer-Verlag, Berlin, Heidelberg, New
York, 1996.

[26] Garcia, V., Lucrédio, D., Prado, A., Almeida, E.,
Alvaro, A., and Meira, S. L. Towards an Ap-
proach for Aspect-Oriented Software Reengineer-
ing. 7th International Conference on Enterprise
Information Systems (ICEIS’2005), Miami, USA.
May 2005.

[27] Garcia, V., Piveta, E., Lucrédio, D., Almeida,
E., Prado, A., and Zancanella, L. Manipulating
Crosscutting Concerns.4th Latin American Con-
ference on Pattern Languages of Programming
(SugarLoafPLoP’2004), Brazil. 2004.

[28] Herder, E. Metrics for the Adaptation of Site
Structure. German Workshop on Adaptivity and
User Modeling in Interactive Systems (ABIS02),
2002.

[29] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C., Loingtier, J., and Irwin, J. Aspect-
Oriented Programming. 11th Europeen Conf.
Object-Oriented Programming, Springer Verlag.
1997.

[30] Marinescu, R. Detecting Design Flaws via Met-
rics in Object-Oriented Systems.39th Technol-
ogy of Object-Oriented Languages and Systems
(TOOLS USA 2001), Santa Barbara, CA, USA.
July-August 2001.

[31] Murphy, G., Lai, A., Walker, R., and Robillard,
M. Separating Features in Source Code: An Ex-
ploratory Study. 23rd International Conference
on Software Engineering, Toronto, Canada. May,
2001.

[32] Noda, N. and Kishi, T. On Aspect-Oriented
Design - Applying Multi-Dimensional Separation
of Concerns on Designing Quality Attributes -.
First Workshop on Multi-Dimensional Separation
of Concerns in Object-oriented Systems (OOP-
SLA’99), November 1999.

[33] Reina, A. and Torres, J. Analysing the Navi-
gational Aspect.Second International Workshop
on Aspect Oriented Programming for Distributed
Computing Systems, Viena, Austria. July, 2002.

[34] Reina, A., Torres, J., and Toro, M. Aspect-
Oriented Web Development vs. Non Aspect-
Oriented Web Development.Workshop of Anal-
ysis of Aspect-Oriented Software (AAOS 2003),
University of Darmstadt, Germany. July 2003.

[35] Ricca, F. and Tonella, P. Building a Tool for
the Analysis and Testing of Web Applications:
Problems and Solutions.Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS’200), Genova, Italy. April 2001.

[36] Rosenberg, L. Applying and Interpreting Object
Oriented Metrics. Software Technology Confer-
ence, 1998.

[37] Rosenberg, L., Hammer, T., and Shaw, J. Soft-
ware Metrics and Reliability. 9th International
Symposium on Software Reliability Engineering,
Germany. November 1998.

[38] Sant’Anna, C., Garcia, A., Chavez, C., Lucena,
C., and Staa, v. A. On the Reuse and Mainte-
nance of Aspect-Oriented Software: An Assess-
ment Framework.17th Brazilian Symposium on
Software Engineering, 2003.

[39] Stanley, J. and Sutton, M. Multiple Dimensions
of Concern in Software Testing.First Workshop
on Multi-Dimensional Separation of Concerns in
Object-oriented Systems (OOPSLA’99), Novem-
ber 1999.

[40] Tarr, P., Ossher, H., Harrison, W., Stanley, J.,
and Sutton, M. N-degrees of separation: Multi-
Dimensional Separation of Concerns.21st In-
ternational Conference on Software Engineering,
IEEE Computer Society Press, 1999.

[41] Tonella, P. and Ceccato, M. Aspect Mining
through the Formal Concept Analysis of Execu-
tion Traces. 11th IEEE Working Conference on
Reverse Engineering (WCRE 04), Netherlands.
November 2004.

[42] Zakaria, A. and Hosny, H. Metrics for Aspect-
Oriented Software Design. 3th International
Workshop on Aspect-oriented Modeling, 2003.

[43] Zhao, J. Measuring Coupling in Aspect-Oriented
Systems. 10th International Software Metrics
Symposium (Metrics 04), 2004.

	Introduction
	Related Works
	Web Application Model Recovery
	Web Application Concerns Extraction
	Metrics suite
	Sample
	Conclusions

	texto1: Table 1: Quality Model

