

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

Defining the Logical Boundary of a Service: An Improved Formal Model and

Novel Metrics for Service-Oriented Systems

RUPINDER PAL SINGH1

HARDEEP SINGH2

1Research Scholar

I.K.G. Punjab Technical University, Kapurthala, India

E-mail: rupi.pal@gmail.com

2Deptt. of Computer Science

G.N.D. University, Amritsar, India

E-mail: hardeep.dcse@gndu.ac.in

Abstract— In the field of service-oriented systems, a service is considered as an artifact that has a logical

representation. However, the logical boundary of a service is not clearly defined. In particular, it needs to be defined

clearly at the design level. Without such a definition, it is not possible to delineate outgoing coupling of a service. It

would be difficult to analyze overall static, inter-modular coupling of a service. Further, one cannot devise effective

metrics for design characteristics like complexity, cohesion and coupling of a service. A definition that is both

technology-agnostic and independent of the physical packaging of a service would be most suitable. This paper defines

clearly the logical boundary of a service and makes other improvements to a generic formal model. Thus, it presents

a comprehensive formal model that leads to novel metrics and helps in explaining microservices architecture as a

special case.

Index Terms— Service-Oriented System, Service-Oriented Architecture, Formal Model, Metrics, Logical Boundary

 (Received October 1st, 2020 / Accepted November 11st, 2020)

1. Introduction

A Service-oriented system, SOA-based system or SOA

solution is a distributed software system that is based on

the architectural style service-oriented architecture

(SOA), where systems consist of service users and

service providers [23, 35]. The computing paradigm that

utilizes SOA as the architectural style for developing

service-oriented software is called service-oriented

computing (SOC) [44]. An SOA ecosystem is an

environment encompassing one or more social

structure(s) and SOA-based system(s) that interact

together to enable effective business solutions. A social

structure is defined as a nexus of relationships amongst

people brought together for a specific purpose.

SOA can be understood in terms of two basic concepts:

layers and binding. Fig.1 shows the SOA layers or the

SOA stack [13][44][47][49]. In static binding (Fig. 2) the

service requesters are bound to provided services at

design time, whereas in the case of dynamic, run-time

scenario (Fig. 3), service requesters dynamically

discover, select the requisite services from a registry, and

bind thereof to selected services.

In the field of service-oriented systems, a service is

considered as an artifact that has a logical representation.

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

The stress is on identifying a service by its network-

publishable interface. While it is important to maintain

this essential black-box user view of a service, it is not a

restriction at the design-level. However, a clear design-

level definition of the logical boundary of a service is not

available. Without such a definition, it is not possible to

delineate outgoing coupling of a service. It would be

difficult to analyze overall static, inter-modular coupling

of a service in terms of various types of coupling. Further,

one cannot devise effective metrics for design

characteristics like complexity, cohesion and coupling of

a service. A definition that is both technology-agnostic

and independent of the physical packaging of a service

would be most suitable. This paper defines clearly the

logical boundary of a service and makes other

improvements to a generic formal model. Thus, it

presents a comprehensive formal model that leads to

novel metrics and helps in explaining microservices

architecture as a special case.

The remaining paper is structured as follows. Section 2

discusses the related work and establishes the need of our

work. Section 3 provides theoretical ground for our work.

Section 4 presents a heuristic argument leading to the

definition of logical boundary of a service, gives the

definition and explains the improved model. Section 5

defines metrics using the improved model. Section 6

concludes and discusses future research possibilities.

2. Related Work

Except for the Perepletchikov-Ryan-Frampton-Schmidt

model (explained in the Section 4) and the SCA (Service

Component Architecture) implementation paradigm of

SOA, we found not much in the literature on models and

metrics for service-oriented systems that could be

considered to define the logical boundary of a service

[17][18][27][29][30][47][48][54][55].

Fig. 1. The SOA Layers.

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

 Fig. 2. Static binding. Fig. 3. Dynamic binding.

The logical boundary of a service is not clearly defined

in the Perepletchikov-Ryan-Frampton-Schmidt model

and we discuss this in Section 4. The SOA

implementation paradigm, SCA, defines publically

addressable services as composites. A composite is a unit

of deployment. An incoming coupling can enter a

composite only through one of the points on it called

services. Each service is typed by an interface. An

outgoing coupling can exit the composite through one of

the points on it called references. Each reference is typed

by an interface. Components within a composite are

configured instances of a component’s implementation.

However, components cannot directly access any

component or composites outside of the composite that

deploys them. Nor can any composite or component not

deployed by the composite can access any component

within it directly [51]. Clearly, the graph connecting the

components and the interfaces is used to define the

logical boundary of a composite. Since component

instances are configured (via XML scripts) within a

composite, an SCA runtime cannot assign a component

instance dynamically to any thread other than that

requesting a service from the composite.

Guidi and Lucchi [19] define a service as a tuple with an

element called internal process that should express

service functionality using some formalism. They do not

delve further into it and do not ground that element in

terms of logical boundary. Massuthe et al. [31] define a

service with the need to specify execution of its

operations as per some internal control structure.

3. Theoretical Foundation for the Improved

Formal Model

Some well-established ideas support our choice of

control flow graphs (CFG) to delineate the logical

boundary of a service. The earliest support for our

approach emanates from the work of Dijkstra who

reported the “THE” operating system as a society of

abstract sequential processes organized as a hierarchy of

levels [11]. He summarizes that the work of his team

shows that the logical soundness of such a

multiprogammimg system can be proved a priori and its

implementation can admit exhaustive testing. His ideas

were implemented as function-call hierarchy

(call/invoke hierarchy) in most operating systems [20,

52]. Parnas cites Dijkstra’s work frequently [36-37].

The gist of Parnas’s work related to modular design is

that there are forms of hierarchy other than the one

reported for the “THE” operating system (“gives work

to” hierarchy) and the function-call hierarchy, and that

modular hierarchy is not necessarily either of these two

hierarchies. It should be called “uses” hierarchy and is

mainly decided at design-time. He asserts that defining

an application program in the manner of “flowchart” or

“chains of data transforming components” (as in gives-

work and invoke hierarchies) could be an equivalent

runtime representation but not a design-time

representation. He seems to stress that “uses” modular

hierarchy is design-time and it plays significant role in

viewing software as a family of programs. It is apparent

that this line of thinking has had much influence on the

way software application systems (including service-

oriented systems) were viewed later in the research

domain and practice. It seems that in all these

developments the need to delineate in a modular

hierarchy the logical boundary of an application

program as one abstract sequential process was not

adequately emphasized. All the same, besides Dijkstra’s

work, there are a few other studies and ideas that support

this need.

Pressman describes application software as consisting

of standalone programs that solve a specific business

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

need [45]. So, if we generically consider software to be

a family of programs, the boundary of one application

program should be discernible. The concept of

transaction in database systems is an important heuristic

for our approach. A transaction constitutes a logical

boundary to a set of database access operations such that

they leave the database in a consistent state and they do

not conflict with other sets of database access

operations. The way transaction serves as a logical unit

is by imposing an abstract sequence on the operations

within it. The sequential flow is abstract since every

transaction has its own flow and the database system

implements those transactions, not the underlying

operating systems or machines directly.

The work by Broy[8] emphasizes that to correctly

compose large, modular and hierarchical systems from

components, merely specifying syntactic interfaces

(function signature and parameters along with types) of

a component is not enough; its black-box I/O behavior

needs to be formally specified by a logical function

between input channel(s) and output channel(a channel

is the identifier for an infinite timed-stream of

messages). He also shows that such functions are state

machines.

 Ravindran’s work on dynamic real-time distributed

systems [46] is relevant. He defines a software sub-

system of such systems as a set of application programs,

a set of devices (sensors and actuators), a communication

graph of application programs and devices, and a set of

paths. The connectivity of a path is the graph of

application programs and devices that belong to the path.

A path always has a root node (i.e., the beginning of the

path) and a sink node (i.e., the end of the path). The root

node of the path is the only node in the path that does not

have an incoming edge from any other application

programs or devices that belong to the path. The sink

node of the path is the only node in the path that does not

have an outgoing edge to any other application programs

or devices that belong to the path. Michaloski et al.

employ ideas similar to those described by Dijkstra to

describe a concurrent hierarchical robot system. The

application uses virtual control loops—akin to cyclic

abstract sequential processes used by Dijkstra—that

communicate with each across levels in the hierarchy and

thus achieve pipeline concurrency to implement high-

performance real-time system [33].

McCabe’s work [32] provides strong theoretical support

to our ideas. McCabe argues that tracking the cyclomatic

complexity of a program under development and keeping

it low should help in modularization of the program and

thus keep it testable and maintainable. More specifically,

he explains that every structured program can be reduced

to the CFG shown in the Fig. 4 by successively replacing

its every control flow subgraph (that is, a subgraph with

unique entry and exit nodes) with a single node. The CFG

in the Fig. 4 has essential complexity (ec) of 1. Likewise,

every unstructured CFG with m control subgraphs has

essential complexity,

ec = C − m (1)

where C is its cyclomatic complexity. If all its control

subgraphs are successively removed, replacing each with

a single node, we get a fully unstructured CFG with

essential complexity equal to its cyclomatic complexity.

ec = C − 0 = C (2)

Fig. 4. The CFG with unit essential complexity.

Each removed control graph can be implemented as a

separate module. In other words, whether a structured or

unstructured graph, the process of modularization

involves reducing its cyclomatic complexity to a suitable

essential complexity. Composition is a related process.

One starts with a CFG of suitable complexity and as more

and more nodes are implemented as interface

invocations/calls to separately developed modules or

components, some of which could be third-party or

COTs, the overall complexity of the program increases.

Significantly, to compute overall cyclomatic complexity

of the program, McCabe presents a result [32]. He

provides justification using an example as reproduced in

Fig. 5. Suppose there is a main routine M that calls

subroutines A and B. All three routines taken together

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

are treated as one collection consisting of three connected

components.

Fig.5. McCabe’s example.

The reason is that the main routine maintains its abstract

sequential control. It does not transfer this control to any

of the sub-routines. The main routine suspends (blocks)

its abstract sequential control by storing the current

program counter (PC) on a call stack. In other words, the

main routine only transfers the machine control to a

subroutine, which then starts its complete sequential flow

till the end and then transfers back the machine control to

the main routine. The main routine resumes its abstract

sequential flow at the PC it blocked by retrieving it from

the stack. This scenario applies to the situations where an

operation of a service implementation element e or a

composite service calls operations on some other

composing components or services. If it is an

asynchronous call, the main routine does not even

suspend. For example, in JAX-RS, an asynchronous http

method invocation is set up as a computation node of the

type CompletionStage<T>, where T is the return type of

the method [9]. The call to an http method returns the

CompletionStage<T> instance immediately after

spawning a thread (non-request) to carry out the actual

computation. At a later stage, the thread calls this

instance to complete the computation. It does not disturb

the ongoing control flow of the program that spawned it.

Applying the formula for connected components to the

example in Fig.5 with p=3, the complexity C is,

C = e − n + 2p = 13 − 13 + 2x3 = 6 (3)

Also,

C = C(M) + C(A) + C(B) = 2 + 2 + 2 = 6 (4)

In general, the complexity of a collection of k control

graphs is equal to the summation of their individual

complexities,

 𝐶(𝐺) = 𝑒 − 𝑛 + 2𝑝 = ∑ 𝑒𝑖
𝑘
1 − ∑ 𝑛𝑖

𝑘
1 + 2𝑘 =

 ∑ (𝑒𝑖
𝑘
𝑖 + 𝑛𝑖 + 2) = ∑ 𝐶𝑖

𝑘
𝑖 (5)

McCabe’s work signifies that if a large application

system (such as a service in our context) is broken up into

a main program and subroutines, clearly specifying the

logical boundaries of such individual components can

help us compute aggregate/overall properties.

4. An Improved Formal Model of a Service-

Oriented System

We found no model, other than the Perepletchikov-Ryan-

Frampton-Schmidt model [40]-[43], which follows a

bottom-up approach and explicitly attempts to define of

the logical boundary of a service. Moreover, the model

extends the widely-cited generic graph-theoretic model

for a software application system by Briand et al. [7].

First, we summarize the Perepletchikov-Ryan-Frampton-

Schmidt model. In the general case, a service-oriented

system, SOS, is formally defined as: SOS =<SI, BPS, C,

I, P, H, R>, where SI is the set of all service interfaces in

the system; BPS is the set of all business process scripts;

C is the set of all object-oriented (OO) classes; I is the

set of all OO interfaces; P is the set of all procedural

packages; and H is the set of all package headers.

Generically, the elements of these sets are called service

implementation elements, e. Given a system, SYS, a service

s can be defined as:

s =<sis, BPSs, Cs, Is, Ps, Hs, Rs> is a service of SYS if

and only if sis Є SI ۸ {(BPSs BPS ۸ Cs C ۸ Is

 I ۸ Ps P ۸ Hs H) ۸ (BPSs  Cs  Is  Ps  Hs

<> s) ۸ Rs R}

The <> symbol represents service membership. A service

boundary is logical rather than physical. The model

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

proposes that we need to examine the possible call paths

in response to invocations of service operations via the

service interface in order to determine whether an

element is a member of a service. sis is a singleton set

since a service s will have just one service interface sis. R

is the set of overall static coupling relationships (design-

time and inter-module) defined on EXE, i.e., R EXE,

where E is the set of all service implementation elements

e’s, i.e. E= SI BPSCI P H. R is the set of all

common and possible relationships of the system SOS.

The static coupling relationships of service s, Rs, can be

categorized as:

Interface to implementation relationships, IIR(s) = {(si,

e): si = sis ۸ e Є (BPSs  Cs  Ps)} (6)

Internal service relationships, ISR(s) = {(e1, e2): e1, e2 Є

(BPSs Cs Is Ps Hs) (7)

Incoming relationships, IR(s)

 = {(e1, e2): e1 Є (BPS-BPSs  C-Cs  I - Is  P - Ps  H -

Hs) ۸ e2 Є (BPSs  Cs  Is  Ps  Hs)} (8)

Outgoing relationships, OR(s)

 = {(e1, e2): e1 Є (BPSS  CS  Is  PS Hs) ۸ e2 Є (BPS-

BPSs  C- Cs  I - Is P - Ps  H - Hs)} (9)

Service incoming relationships, SIR(s) = {(e, si): e Є

(BPS - BPSs  C - CS  P - Ps) ۸ si= sis} (10)

Service outgoing relationships, SOR(s) = {(e, si): e Є

(BPSs  Cs  Ps) ۸ si ≠ sis} (11)

Rs=IIR(s)ISR(s)IR(s)OR(s) SIR(s) SOR(s) (12)

In general, any static model tries to estimate what will

happen at the later stages of lifecycle [10]. For example,

some static dependencies are resolved at run-time.

Header-file dependencies are resolved at compile time.

However, some concerns that we identify in relation to

the model are:

a) The logical boundary of a service is not clearly

defined. Given the graph union of sets CSes,

where a CS itself is a graph union of all

invocation/call sequences (each denoted as cs)

possible for a service operation across elements

(or modules, e’s), the model defines the set of

elements across this graph union to be the

logical boundary of the service. Symbolically,

this set is BPSsCsIsPsHs. The model

restricts the elements of this set to “reachable”

elements, excluding called/invoked elements

participating in OR(s). The model excludes

them for atomic services (SOR(s) OR(s) = Φ)

but includes them for composite services

(SOR(s)OR(s) ≠ Φ). This is inconsistent. It

appears that the model has not clearly

distinguished among the concepts of abstract

sequential control flow (as represented by a

CFG) of an executable artifact, invocations/calls

the artifact would make as function calls (e.g.,

recursive, static method calls etc.),

invocations/calls on injected dependencies (also

an e) like dynamic web components, the nested

calls those calls might make in turn (again, on

called/invoked elements participating in the

respective OR(e)’s of those elements, whether

functions or injected dependencies) and calls to

composing-service operations.

b) An atomic service is not clearly defined. The

definition given is: A service s with

SOR(s)OR(s) = Φ is called an atomic service.

It misses requiring that the set BPSs be a null set.

BPSes are, as also assumed in this model,

executable composite services. As another gap,

a CDI-style bean that is defined as a JAX-RS

root resource class [9] as in the Listing 1 would

be exposed as an atomic service. The element

type e1, the root resource class, shows

dependency on another element type e2, a

container-managed component,

MyOtherCdiBean. The element e2 is a reusable

component and could be injected anywhere else

as well in the global namespace of the web

server. This dependency is clearly an outgoing

relationship and thus an element of OR(s).

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

c) The standard definition of an atomic service, as

follows, does not necessarily require OR(s) to

be a null set: An atomic service is a well-

defined, self-contained function that does not

depend on the context or state of other services

[4, 14]. Defining atomic services clearly would

make the model more in line with the widely

accepted layering shown in Fig.1 and the

ISO/IEC 18384-1-3 standard [23]. It is clear that

atomic services are basic blocks whereas

composite services can appear in the higher

business process layer of an SOS as well. The

definition of SIR(s) does not include static

incoming relationships from composite services

other than BPS. For example, from the kind of

composite services possible to implement using

standard application programming frameworks

(e.g. Java EE). Hansen [22] calls such

applications “enterprise-quality SOA

applications.”

d) A composite service or an atomic service itself

has not been included as an element of either a

system SOS or a service s. If services are

allowed to be composed from atomic and other

composite services, those composing services

themselves become elements of the SOS. The

ISO/IEC 18384-1-3 standard [23] specifies that

any service, whether atomic or composite,

would itself be an element of SOS.

The above points lead us to conclude:

I. The logical boundary of any public service

operation should be the union of the CFG of its

main thread of execution and CFGs of all its

explicit child threads (if any). Each such CFG

constitutes a separate connected component.

Function- and injected-dependency calls

(synchronous, asynchronous, global, static

method calls, recursive or any valid

combination thereof) and composing-service

calls will each be represented as a node in the

CFGs and thus be part of the logical boundary.

The executions of such calls are not part of the

logical boundary. All possible executions of a

call constitute separate CFG. The logical

boundary of a service should be the graph union

of all such logical boundaries of its operations.

If there is a call c1 to an operation o1 of an

element e and another call c2 to a different

operation o2 of e, each such call is a node. If

there is another call c3 to the same operation o1

of the same element e, it will also be a separate

node.

II. The logical boundary can be defined similarly

for elements other than services as well.

However for elements like header files

(elements of H; never instantiated) or OO

interfaces (element of I; do not have any

execution), no such special definition is

required. For example, for a header-file, the

source file itself serves as the logical boundary.

All other header files embedded by include-

relationship are elements of its outgoing

coupling. If a header-file is being reused across

elements (by include), each such reuse is an

incoming coupling of that file.

III. An SOS should be defined as SOS =<SI, CPS,

C, I, P, H, A, R>, where A denotes all atomic

services and CPS denotes all composite services

in the system. CPS will include composite

services created on top of service composition

engines as also those created on top of

application programming frameworks.

Regarding the points I) and II) above, as we explained in

the Section 3, for example, the underlying context-

switches in the case of a uniprocessor machine only

signifies sequential machine control transfer and not the

transfer of the abstract sequential control of a CFG.

1. @Path("/cdibean")
2. public class CdiBeanResource {
3. @Inject MyOtherCdiBean bean; // CDI
4. injected bean
5. @GET
6. @Produces("text/plain")

7. public String getIt() {
8. return bean.getIt(); }
9. }

 Listing 1. A JAX-RS root resource class.

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

Even in the case of threads, for example, in Java, calls

isAlive() and join() that a thread might make on another

thread does not branch the individual sequential control

flow of either thread [11][50]. In the event the threads are

communicating amongst themselves using wait(),

notify() or notifyAll() while sharing a synchronized

object, the threads do not branch out the sequential

control flow of any thread or make a unique control entry

into any thread. A call wait() by a thread causes it to stop

and a notify() or notifyAll() by another thread is a

message to the waiting thread(s) to resume. As soon as a

waiting thread receives a message from notify() or

notifyAll(), the call wait() can treated to be over.

We can now define a service recursively as follows.

Given a service-oriented system, SYS, a service s can be

defined as:

a) s = <sis, Cs, Is, Ps, Hs, fs, Rs> is a service of SYS if and

only if sis Є SI ۸ {(Cs C ۸ Is I ۸ Ps P ۸ Hs

H) Λ Cs  Is  Ps  Hs=D(fs) ۸ (Rs R)}. fs, the logical

boundary the service s. Only elements that are inlined

(such as header files in C++) to the logical boundary of

a service or used (such as OO interfaces) by elements

that are in the logical boundary and not reused anywhere

else except within a service can be regarded as

exclusively belonging to the service. These elements are

extracted by D() as the set D(fs). Such a service is called

an atomic service.

b) s=<sis, CPSs, Cs, Is, Ps, Hs, As, fs, Rs> is also a service

of SYS if and only if sis Є SI ۸ {(CPSs CPS ۸ Cs C

۸ I I Λ Ps P ۸ Hs H ۸ As A)۸ Cs  Is  Ps 

Hs = D(fs)۸ (Rs R) }. Such a service is called a

composite service.

R E x E, where E is the set of all elements (modules),

e’s, i.e. E= SICIPHACPS. R is the set of all

common and possible relationships of an SOS.

With the definition of logical boundary of a service as

above, statically-resolved dependencies like global

function calls in C++ or static function calls in Java

would be removed from the set ISR(s) and would be

typed along with injected dependencies by the elements

of set OR(s). SOR(s) gets merged with OR(s). Services

share most components and resources of the system

except those within their respective sets D(fs). However,

for example, if a C++ header file containing inline

functions is reused in different elements or services, it is

not typed by an element belonging to the set D(fs). It will

be an element of OR(s). All such dependencies (that are

not calls/invocations to functions, injected dependencies

etc.) will be typed by elements included in the set DD(fs).

The set IR(s) and SIR(s) are merged as IR(s). All

incoming coupling is typed by a service interface. Nodes

typed by D(fs) are not directly coupled to any element

outside of the service. This notion of a service is similar

to one for service composite in the SCA paradigm of

SOA. Thus, for an atomic service, s:

OR(s) = E(fs) DD(fs) (13)

E() extracts the set of unique elements, e’s,

corresponding to various dependency invocations/calls,

i.e., invocations whose executions are not inlined.

IR(s) = {(e, si): eЄ (C-CsP -Ps) ۸ si= sis} (14)

Cs, Ps Є D(fs)

Cs Is  Ps  Hs=D(fs) (15)

 (13)

For a composite service, the only change is in IR(s),

IR(s)={(e, si):e Є (CPS-{s}C-CsP-PsA-

{s})۸si=sis} (16)

Cs , Ps Є D(fs)

We can specialize this model to the microservices

architecture (MSA) style. MSA is a subset of the SOA

style [3]. A microservice is a highly autonomous

software component that cannot be composed out of

other microservices or services. A microservice is

characterized by inter-related characteristics of service

independence, single responsibility, self-containment,

high decoupling, high resilience and decentralized data

management. The applications built using MSA should

keep the microservices decoupled and fully independent.

Any choreography in an MSA is performed by the

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

initiating application and not from within or by the

microservices. Thus, an atomic service as of an SOS is a

microservice if the responsibility of development and

maintenance of as as also of most of the dependencies

participating in OR(as) lies with a single team .

We have discussed theoretical foundation for our logical-

boundary definition in the Section 3. Here we discuss

some more supporting ideas. The original model

associates a set of classes, OO interfaces, package

headers etc. to one particular service interface element as

its logical boundary. Apart from the concerns mentioned

earlier in this section, it is in conflict with reuse of such

elements across services. For example, package headers,

in any case, are required to even inline functions defined

within them; they could be reused across services.

Services exposed out of legacy systems might be reusing

a lot of elements across services. Moreover, the original

model excludes from the logical boundary of a service

the ownership of programming logic/algorithms (also

implementable in an elements in D()) that could be

unique to the service. The definition of logical boundary

should be technology-agnostic (e.g., unlike logical

grouping package in Java or namespace in XML) and

physical-packaging-independent (ultimately packages

and namespaces are resolved from specific files). A

definition of logical boundary that can be resolved with

respect to a universal convention is what we are seeking.

For example, a layer in TCP/IP stack serves as boundary

for calls from the layers adjacent to it. Developers

implement it in operating systems and both users and

developers can delineate this boundary with respect to the

universal standard TCP/IP protocol stack they follow.

CFG is also a universal convention. Our definition of

logical boundary in terms of CFG addresses all these

concerns as well.

CFG is an important tool for analyzing structured and

object-oriented programs [5][10][15]. A program’s CFG

is a necessity to calculate its cyclomatic complexity.

Cyclomatic complexity provides upper bound on the

number of test cases that will be required to ensure that

every statement in the program is executed at least once

[45]. Ito [24] shows that, for another important type of

graphs, program dependence graphs (PDGs), employed

in static analysis by a compiler, PDGs constructed for

usual programs are deterministic and that such PDGs are

semantically equivalent to the corresponding CFGs.

If services are being developed afresh, due care can be

taken during design-time to ensure that CFGs are

available early-on. Methods to extract control flow

graphs from UML sequence diagrams are described in

[15][28]. On the other hand, if services are being exposed

from legacy code and components, there are several static

analysis tools that can help in generating CFGs.

Amighi et al. and Gomes et al. [2][3][16] report

techniques to extract incremental, modular CFGs from

incomplete Java bytecode programs with exceptions.

They argue that such techniques would be handy in the

event that some components are not available for systems

under development. If at all such components become

available, there source code might not be available, for

example, in the case of third-party software. Diniz and

Diogo [12] report automatic extraction of CFGs by

process mining. Kirkegaard and Moller [26] describe a

tool for generating, at compile time, sound CFGs from

web applications constructed with Java servlets and JSP

scripts. Halfond [21] describes tool for generating CGFs

from web applications. Jovanovic et al. [25] describe a

tool that converts each PHP script file of a web

application that is visible in a browser into CFG as an

intermediate result. Yang et al. [54] describe a tool that

generates CFGs from web applications. In [34], Monga

et al. report a tool that converts a web application

constructed form PHP scripts into a CFG. These tools are

applicable to web services since a web service is basically

a web application with a service interface (API) in lieu of

a user-interface/frontend.

The significance of CFGs and availability of tools to

automatically extract them support our choice of CFG as

a formal construct to represent the logical boundary of a

service.

5. Metrics

Basic metrics are readily available from the model. The

metric, incoming coupling of service, ic(s), is

𝑖𝑐(𝑠) = |𝐼𝑅(𝑠)| (17)

The metric, outgoing coupling of a service, oc(s), is

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

𝑜𝑐(𝑠) = |𝑂𝑅(𝑠)| (18)

For an atomic service s, let the logical boundary an

operation of an atomic service s be fo.

Collect all elements D(fo), DD(fo) and E(fo) into a set.

Count common elements from such sets across all the

operations oi of the service s. Let this be denoted by

count1.

 𝑐𝑜𝑢𝑛𝑡1 =

|⋂ [𝐷(𝑖 𝑓𝑜𝑖) ⋃ 𝐷𝐷(𝑓𝑜𝑖) ⋃ 𝐸(𝑓𝑜𝑖)]| (19)

Count total unique elements across all the sets. Let this

be denoted by count2.

 𝑐𝑜𝑢𝑛𝑡2 =

|⋃ [𝐷(𝑓𝑜𝑖) ⋃ 𝐷𝐷(𝑓𝑜𝑖) ⋃ 𝐸(𝑖 𝑓𝑜𝑖)]| (20)

The cohesion of the service s, coh(s), is

𝐼𝑓 𝑐𝑜𝑢𝑛𝑡1 = 0, 𝑐𝑜ℎ(𝑠) = 0

 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑐𝑜ℎ(𝑠) =
𝑐𝑜𝑢𝑛𝑡1

𝑐𝑜𝑢𝑛𝑡2
 (21)

If very low, due consideration should be given to split

operations as separate atomic services.

If a service s has no outgoing coupling OR(s), we

consider it to have lowest instability. We assume this

value as 1. Suppose it has outgoing coupling |OR(s)|=m.

We model absolute instability of s as follows

𝑖𝑛𝑠(𝑠) = 1 + ∑ 𝑤𝑖

𝑚

1

 (22)

wi is the weight (a positive integer) assigned to the ith

element of OR(s) in proportion to the degradation it may

cause to the overall functionality of s in the event of

being unavailable due to maintenance, breakdown etc.

For example, if a service has 5 public operations. If ith

element of OR(s) degrades any two public operations, wi

=2.

Degree of self-containment of a service s, sc(s), reflects

its stability, that is, the extent to which it does not depend

on outgoing coupling. It also signifies the extent to

which it would be coupled more through its service

interface (incoming coupling) and thus be more loosely

coupled.

𝑠𝑐(𝑠) =
1

𝑖𝑛𝑠(𝑠)
 (23)

We consider |IR(s)| to be the absolute criticality of the

service s [6]. We define relative criticality of the service

s, rcr(s), as,

𝑟𝑐𝑟(s) = |𝐼𝑅(𝑠)| ∗ 𝑖𝑛𝑠(𝑠) (24)

Suppose two services s1 and s2 have equally high absolute

criticalities |IR(s1)| and |IR(s2)| respectively. If s1’s

absolute instability ins(s1) is higher than s2’s absolute

instability ins(s2), s1 is at more risk of getting unavailable

and thus requires relatively more critical attention than

s2.

6. Conclusion and Future Work

We described the concept of logical boundary of a service

in concrete terms. An improved and comprehensive

formal model of service-oriented systems was presented

and its utility in defining some novel design metrics was

shown. It was explained that the model can explain a

microservice too. We discussed many existing theoretical

and practical concepts from computer science and

software engineering to ground our ideas. Our ideas are

also broadly applicable to large, distributed and

component-based software systems. In future work, we

intend to take forward the work reported here and

elaborate using many diverse application software

scenarios and domains.

REFERENCES

[1] Amighi, A, & Gomes, P., Gurov, D. & Huisman, M., Sound

Control-Flow Graph Extraction for Java Programs with

Exceptions, 33-47, 2012 https://doi.org/10.1007/978-3-642-

33826-7_3

[2] Amighi, A., Gomes, P., Gurov, D. et al. Provably correct

control flow graphs from Java bytecode programs with

exceptions, Int J Softw Tools Technol Transfer 18, 653–684,

2016 https://doi.org/10.1007/s10009-015-0375-0

[3] Balakrushnan, S. et al., Microservices Architecture, The Open

Group, San Francisco. CA, USA, 2016

 https://publications.opengroup.org/w169

https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1007/978-3-642-33826-7_3
https://doi.org/10.1007/s10009-015-0375-0
https://publications.opengroup.org/w169

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

[4] Barry, D.K. & Dick, D., Architectures, and Cloud Computing:

The Savvy Manager’s Guide, Second Edition, Elsevier Inc.,

2013

[5] Besson, F. & Jensen, T. & Métayer, D., Model Checking

Security Properties of Control Flow Graphs, Journal of

Computer Security, 9. 217-250. 10.3233/JCS-2001-9303, 2001

[6] Bishop P., Bloomfield R., Clement T. & Guerra S.,Software

Criticality Analysis of COTS/SOUP, In: Anderson S., Felici M.,

Bologna S. (eds) Computer Safety, Reliability and Security.

SAFECOMP 2002, Lecture Notes in Computer Science, vol 243,

Springer, Berlin, Heidelberg, 2002

[7] Briand, L.C., Morasca, S. and Basili, V.R., Property-based

software engineering measurement, In IEEE Transactions on

Software Engineering, vol. 22, no. 1, pp. 68-86, 1996, doi:

10.1109/32.481535

[8] Broy, M., A Theory of System Interaction: Components,

Interfaces, and Services, In: Dina, G., Scott, A.S. & Wegner, P.

(Eds.) Interactive Computation: The New paradigm, Springer,

2006

[9] Bucek, P. & Pericas-Geertsen, S. (eds.), JAX-RS: Java™ API for

RESTful Web Services, Version 2.1, Final Release, Oracle Corp.,

US, 2017

[10] Cooper, K.D. and Torczon, L., Engineering a Compiler, 2nd Ed.,

Elsevier Inc., US, 2012

[11] Dijkstra, E.W., The Structure of the “THE”-Multiprogramming

System, Comms. of the ACM, vol. 11, No. 5, 1968

[12] Diniz, P.C. & Diogo R. F., Automatic Extraction of Process

Control Flow from I/O Operations, In: 6th International

Conference on Business Process Management (BPM 2008),

volume 5240 of Lecture Notes in Computer Science, Springer,

2008

[13] Emig, C. et al. , The SOA’s Layers, http://www.cm-

tm.uka.de/CM-

Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf

[14] Ganci, J., Patterns: SOA Foundation Service Creation Scenario,

2006

http://www.redbooks.ibm.com/redbooks/pdfs/sg247240.pdf

[15] Garousi, V. et al., Control Flow Analysis of UML 2.0 Sequence

Diagrams, Carleton University TR SCE-05-09, 2005

[16] Gomes, P. & Picoco, A. & Gurov, D., Sound Control Flow

Graph Extraction from Incomplete Java Bytecode Programs,

2014 10.1007/978-3-642-54804-8_15.

[17] Gonen, B. et al., Maintaining SOA Systems of the Future: How

Can Ontological Modeling Help, In Proceedings of the

International Conference on Knowledge Engineering and

Ontology Development (KEOD-2014), pages376-381, ISBN:

978-989-758-049-9, 2014

[18] Gruhn, V. & Laue, R., Complexity Metrics for Business Process

Models, http://ebus.informatik.uni-

leipzig.de/~laue/papers/metriken.pdf

[19] Guidi, C. & Lucchi, R., Formalizing mobility in Service

Oriented Computing, Journal of Software, vol. 2, no. 1, 2007

[20] Habermann, A.N., Lawrence, F. & Cooprider, L.,

Modularization and Hierarchy in a Family of Operating Systems,

Comm. ACM, vol. 19, No. 5, 1976

[21] Halfond W.G.J., Identifying Inter-Component Control Flow in

Web Applications. In: Cimiano P., Frasincar F., Houben GJ.,

Schwabe D. (eds) Engineering the Web in the Big Data Era.

ICWE 2015, Lecture Notes in Computer Science, vol 9114.

Springer, Cham, 2015

[22] Hansen, M. D., SOA Using Java Web Services, Pearson

Education, Inc., USA, 2007

[23] ISO/IEC, Information technology--Reference Architecture for

Service Oriented Architecture (SOA RA), ISO/IEC 18384-1, 3 &

3. First edition 2016-06-01, 2016

[24] Ito, S., Semantical Equivalence of the Control Flow Graph and

the Program Dependence Graph, arXiv:1803.02976v1 [cs.PL],

2018

[25] Jovanovic, N. et al., Precise Alias Analysis for Static Detection

of Web Application Vulnerabilities, PLAS’06, Ottawa, Ontario,

Canada. ACM 1-59593-374-3/06/0006, 2006

[26] Kirkegaard, C. & Moller, A., Static Analysis for Java Servlets

and JSP, BRICS Report Series , RS-06-10, ISSN 0909-0878,

Department of Computer Science, University of Aarhus,

Denmark, 2006 http://www.brics.dk/RS/06/10/

[27] Korostelev, A. et al., Error Detection in Service-Oriented

Distributed Systems, Proc. of IEEE Int. Conf. on DSN 2006,

vol. 2, pp. 278-282, Philadelphia, USA, 2006

[28] Kundu, D., Samanta, D. and Mall, R., An Approach to Convert

XMI Representation of UML 2.x Interaction Diagram into

Control Flow Graph, ISRN Software Engineering Volume 2012,

Article ID 265235, 2012 doi:10.5402/2012/265235

[29] Liu, Y. & Traore, I., Complexity Measures for Secure service-

Oriented Software Architectures, In the Proc. of the 3rd IEEE

International PROMISE Workshop, Minneapolis, Minnesota,

USA, 2007

[30] Mao, C., Control Flow Complexity Metrics for Petri Net based

Web Service Composition, Journal of Software, Vol. 5, No. 11,

2010

[31] Massuthe, P., Wolfgang, R. and Schmidt, K., An Operating

Guideline Approach to the SOA, Annals of Mathematics,

Computing & Teleinformatics, VOL 1, NO 3, 2005

[32] McCabe, T.J., A Complexity Measure, IEEE Transactions on

Software Engineering, Vol. Se-2, No. 4, 1976

[33] Michaloski, J.L., Wheatley, T.E. and Lumia, R., Analysis of

Computational Parallelism with a Concurrent Hierarchical Robot

Control System, NISTIR 90-4251, NIST, US, 1990

[34] Monga, M. & Paleari, R. & Passerini, E., A hybrid analysis

framework for detecting web application vulnerabilities, 25-32,

10.1109/IWSESS.2009.5068455, 2009

[35] OASIS, Reference Architecture Foundation for Service

Oriented Architecture Version 1.0, 04, OASIS Standard, 2012

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-

cs01.html

[36] Parnas, D.L., On a “Buzzword”: Hierarchical Structure. In: Gries

D. (eds) Programming Methodology. Texts and Monographs in

Computer Science. Springer, New York, NY, 1978

[37] Parnas, D.L., Designing Software for Ease of Extension and

Contraction, IEEE Trans. SE, vol SE-5, No. 2, 1979

[38] Parnas, D.L., On the Criteria To Be Used in Decomposing

Systems into Modules, Comm. ACM, vol 15, No. 12, 1972

[39] Parnas, D.L., On the Design and Development of Program

Families, IEEE Trans. SE, vol SE-2, No. 1, 1976

[40] Perepletchikov, M., Ryan , C. and Frampton, K., Cohesion

Metrics for Predicting Maintainability of Service-Oriented

Software, In 7th International Conference on Quality Software,

Portland, USA, 2007

[41] Perepletchikov, M., Ryan , C. and Frampton, K., Coupling

Metrics for Predicting Maintainability in Service-Oriented

Designs, In 18th International Conference on Software

Engineering (ASWEC2007), Melbourne, Australia, 2007

http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf
http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf
http://www.cm-tm.uka.de/CM-Web/07.Publikationen/%5BEL+06%5D_The_SOAs_Layers.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247240.pdf
http://ebus.informatik.uni-leipzig.de/~laue/papers/metriken.pdf
http://ebus.informatik.uni-leipzig.de/~laue/papers/metriken.pdf
http://www.brics.dk/RS/06/10/
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-cs01.html

Singh & Singh Defining the Logical Boundary of a Service: An Improved Formal Model & Novel Metrics for SOSes

INFOCOMP, v. 19, no. 2, p. 10-22, December 2020

[42] Perepletchikov, M., Ryan , C., Frampton, K. and Schmidt, H.,

Formalising Service-Oriented Design, Journal of Software,

Vol.3, No. 2, 2008

[43] Perepletchikov, M., Software Design Metrics for Predicting

Maintainabaility of Service-Oriented Software, Ph.D. Thesis,

RMIT Univ., Melbourne, 2009

https://researchbank.rmit.edu.au/view/rmit:1479/n2006006582.p

df

[44] Portier, B., SOA Terminology overview, Part1: Service,

architecture, governance, and business terms, 2007

http://www.ibm.com/developerworks/webservices/library/ws-

soa-term1/?S_TACT=105AGX04&s

[45] Pressman, R. S., Software Engineering: A Practitioner’s

Approach Sixth Ed., Int. Ed., McGraw-Hill, 2005

[46] Ravindran, B., Engineering dynamic real-time distributed

systems: architecture, system description language, and

middleware, in IEEE Transactions on Software Engineering,

vol. 28, no. 1, pp. 30-57, 2002, doi: 10.1109/32.979988.

[47] Rud, D., Schmietendorf , A., and Dumke, R., Resource metrics

for service-oriented infrastructures, In Proc. SEMSOA 2007, pp.

90-98, May 10-11, Hannover, Germany, 2007

http://www.cs.uni-magdeburg.de/~rud/papers/Rud-13.pdf

[48] Rud, D., Schmietendorf, A., and Dumke, R. Dumke, Product

metrics for service-oriented infrastructures, In Proc.

16th International Workshop on Software Measurement/DASMA

Metrik Kongress 2006, Potsdam, Germany, 2006

http://www.cs.uni-magdeburg.de/~rud/papers/Rud-07.pdf

[49] Russell, D. and Xu, J., Service Oriented Architecture in the

Provision of Military Capability, UK e-Science All Hands

Meeting, 2007

http://www.comp.leeds.ac.uk/NEC/doc/SOACapabilityAHM200

7.pdf

[50] Schildt, H., The Complete Reference: Java, 9th Ed., McGraw Hill

Education, 2014

[51] Service Component Architecture: Assembly Model Specification,

SCA Version 1.00, 2007

https://web.archive.org/web/20070712102723/http://www.osoa.

org/display/Main/Service+Component+Architecture+Specificati

ons

[52] Silberschatz, A., Galvin, P.B. and Gagne, G., Operating System

Concepts, 8th Ed., John Wiley & Sons, US, 2009

[53] Xu, T., Qian, K. and He, X., Service Oriented Dynamic

Decoupling Metrics, The 2006 Intl. Conf. on Semantic Web and

Web Services (SWWS’ 06), June 26-29, 2006 WORLDCOMP’

06, Las Vegas, USA, 2006

[54] Yang, J-T et al., Constructing an Object-Oriented Architecture

for Web Application Testing, Journal of Information Science

and Engineering 18, 59-84, 2002

[55] Zhao, W., Liu, Y., J. Zhu & Su, H., Towards Facilitating

Development of SOA Application with Design Metrics,

Service-Oriented Computing - ICSOC 2006, 4th International

Conference, Chicago, IL, USA, 2006

https://researchbank.rmit.edu.au/view/rmit:1479/n2006006582.pdf
https://researchbank.rmit.edu.au/view/rmit:1479/n2006006582.pdf
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/?S_TACT=105AGX04&s
http://www.ibm.com/developerworks/webservices/library/ws-soa-term1/?S_TACT=105AGX04&s
http://www.cs.uni-magdeburg.de/~rud/papers/Rud-07.pdf
http://www.cs.uni-magdeburg.de/~rud/papers/Rud-07.pdf
http://www.comp.leeds.ac.uk/NEC/doc/SOA/CapabilityAHM2007.pdf
http://www.comp.leeds.ac.uk/NEC/doc/SOA/CapabilityAHM2007.pdf
https://web.archive.org/web/20070712102723/http:/www.osoa.org/display/Main/Service+Component+Architecture+Specifications
https://web.archive.org/web/20070712102723/http:/www.osoa.org/display/Main/Service+Component+Architecture+Specifications
https://web.archive.org/web/20070712102723/http:/www.osoa.org/display/Main/Service+Component+Architecture+Specifications

