

Domain Reuse Guidelines

Muthu Ramachandran
School of Computing

Leeds Metropolitan University
LEEDS, UK

m.ramachandran@leedsmet.ac.uk

Abstract. In this paper, we discuss the general area of software development for reuse and reuse
guidelines. We identify, in detail, language-oriented and domain-oriented guidelines whose effective use
affects component reusability. This paper also proposes a tool support which can provide advise and can
generate reusable components automatically and it is based on domain knowledge (reuse guidelines
represented as domain knowledge).

(Received April 06, 2005 / Accepted July 2, 2005)

1. Introduction
Software component reuse is the key to significant
gains in productivity. However, to achieve its full
potential, we need to focus our attention on
development for reuse, which is a process of
producing potentially reusable components. We
know clearly the difficulties that are faced when
trying to reuse a component that is not designed for
reuse. Therefore, the emphasis of the research
described here is on development for reuse rather
than development with reuse, which is a process of
normal systems development (i.e., existing form of
reuse). The process of developing potentially
reusable components depends solely on defining
their characteristics such as language features and
domain abstractions. Reuse guidelines can
represent such characteristics clearly. Therefore,
we need to formulate objective and automatable
reuse guidelines.

There have been previous studies on reuse
guidelines (Booch 1987; Gautier and Wallis 1990;
Braun and Goodenough 1985; Dennis 1987;
Hooper and Chester 1991; Hollingsworth 1992;
Weide et al. 1991; Meyesr 2004), but these authors
emphasise on general advice including
documentation and management issues; their
guidelines are sometimes unrealisable and
contradictory. More recently, Meyers (2004) has
clearly described with examples from C++
components on how best to design components
interfaces.

In this paper, we will explore the general area of
development for reuse and discuss how we can
formulate realisable and objective reuse guidelines.
We will also review some of these existing
guidelines and present our guidelines. Why do we
need such objective and realisable reuse
guidelines? They are important for:

♦ Assessing the reusability of software
components against objective reuse
guidelines.

♦ Providing reuse advice and analysis.

♦ Improving components for reuse which is
the process of modifying and adding
reusability attributes.

Reuse guidelines can be categorised into many
classes (described in a later section, Figure 2). In
this paper we mainly describe the following two
categories:

1. Language-oriented reuse guidelines: Most
existing programming languages including object-
oriented languages provide features that support
reuse. However, simply writing code in those
languages doesn't promote reusabil ity. Components
must be designed for reusability using those
features. Such features must be listed as a set of
design techniques for reusability before design
takes place.

2. Domain-oriented reuse guidelines: Guidelines
that are relevant to a specific application domain.
We discuss more on this in a later section of this
paper.

The language we have chosen for study is Ada, and
the application domain chosen is components of
abstract data structures (ADS). The main reason for
choosing Ada is because of its explicit technical
support for reuse, features such as the packaging
mechanism, generics, support for abstraction,
exceptions, parameterisation, building blocks, and
information hiding. The reason for choosing ADS
as the application domain is partly because, as
computer scientists, we might be considered

domain experts ourselves in this area and partly
because it has been extensively studied and
documented. These components are the
fundamental building blocks for many applications.

3. Reuse Guidelines
Development for reuse requires that the language
features must be used effectively. The objective of
language-oriented reusability is to exploit the use
of language support for reuse and to capture the
domain knowledge efficiently. There have been
experiments conducted to show that experienced
programmers can reuse better than novices
(Soloway and Ehrlich 1984). The idea is to
formulate a set of objective reuse guidelines
(derived from experts, existing systems and
literature) which can assists Software Engineers
when creating components for reuse. It needs to be
like a cook book on software reuse.

The major technical problems of development for
reuse are:

♦ How to identify the characteristics of a reusable
component?

♦ How to assess and improve reusabil ity
attributes of a component automatically?

♦ How to encode and analyse application domain
knowledge?

The work described here addresses these problems
and hence considers factors affecting reusabil ity
such as language factors and domain factors. We
believe objective and realisable guidelines wil l
help to solve these problems. Existing studies on
creating reusable components (Holl ingsworth
1992; Weide et al. 1991; Gautier and Wallis 1990;
Booch 1987; Dennis 1987; Braun and Goodenough
1985; Meyers 2004) fall into the following classes:

1. Highly Conceptual studies which try to be
language independent but very abstract. For
example, all such studies say reusable components
should be:

♦ Highly cohesive, meaning that they should
represent a single abstraction.

♦ Loosely coupled, meaning that they should be
largely independent of any other abstraction.

There are other three such criteria proposed by
(Gargaro and Pappas 1987) specifically for Ada
programs. A reusable program should be:

♦ Transportable
♦ An orthogonal composition (context–

independent), and
♦ Independent of the runtime system.

More recently, Hollingsworth (1992) proposed a
set of discipline for constructing high-quality
components:

♦ Correctness
♦ Composability
♦ Reusability
♦ Understandability

Similarly, Weide at al. (1991) have proposed a
framework based on a highly abstract ideas, known
as the 3C model:

♦ Concept: a statement of what a piece of

software does, factoring out how it does it;
abstract specification of functional behavior.

♦ Content: a statement of what a piece of
software achieves the behavior defined in its
concept; the code to implement a functional
specification.

♦ Context: aspects of the software environment
relevant to the definition of concept or content
that are explicitly part of the concept or content.

These are interesting principles on program design.
Our objective was to identify understandable,
measurable, objective and automatable reuse
guidelines.

Our work has taken the existing studies as a
starting point and has attempted to produce a
scheme for classification and to produce more
detailed and practical guidelines on the way in
which language and domain features affect
reusability. Our main aim was to formulate reuse
guidelines that are practical and objective (as much
as possible), domain-specific, comprehensive,
classified, support design for reuse, and
automatable. Figure 1 shows a classification
mechanism for reuse guidelines.

Reuse
guidelines

Language-specific

Design-specific

Domain-specific

Product-specific

Architecture-Specific

Figure 1 Classifying reuse guidelines

Organisational &
managerial

Reuse guidelines are classified into:

♦ Language-specific which deals with language
support for reuse. How to make use of language
features effectively. For example when to use
private and public in most of the current OO
languages.

♦ Design-specific deals with design principles
that support reuse such as OO and other
component paradigms like
COM/DCOM/.NET/EJB.

♦ Domain-specific deals issues on how to identify
and classify components for a specific
application domain.

♦ Product-specific deals with ad hoc reuse
guidelines emerging from experience for a
specific product or a product line.

♦ Architecture-oriented deals with how to design
an architecture which supports reuse explicitly.
This includes various types of architecture.

♦ Organisational & managerial deals with how to
set up a reuse programme and how to train and
motivate engineers on reuse.

4. Domain-Oriented Reusability
Domain analysis and modelling deal with
identifying reusable abstractions and architectures
for the development of a family of software
systems as opposed to the traditional system
analysis methods and knowledge-based systems
that have concentrated on developing a single and
specific problem. Domain modelling has been
widely studied in recent years and it plays a major
role into software reusability research. For
example, the Draco system (Neighbors 1984) is
based on the domain analysis towards constructing
software parts from existing components.

Neighbors (1984) points out that "the key to
reusable software is best captured in domain
analysis in that it stresses the reusability of analysis
and design, not code". The Draco system has a
domain language for describing programs in each
different problem area. A domain analyst
represents analysis information about a problem
domain in terms of objects and operations in a
domain language. A domain designer specifies
different implementations for these objects and
operations in terms of the other domains already
known to Draco.

Other interesting approaches include, CAMP
(1987) project on missile application domain,
Booch's (1987) work on designing reusable
components of abstract data structures, and more
recently Maiden and Sutcliffe's (1992; 1993) work
on reuse of requirements specification and
architectures based on analogy and examples.

There are a number of other approaches stated in
Prieto-Diaz and Arango (1991) and Schafer et al
(1994).

Wartik and Prieto-Diaz (1992) provides a detailed
account on comparing various approaches to
domain analysis based on a number of criteria.
Most of these approaches to domain analysis
(McCain 1985; Prieto-Diaz 1990; Lubars 1991;
Simos 1991; Moore and Bailin 1991) consider
organisational issues such as business analysis,
infrastructures, workproducts, data collection and
analysis, and classification rather than specific
technical problems. Among these approaches,
commonalties are stronger than differences. These
are based on informal techniques using ad hoc
approaches.

A conclusion is that neither Neighbors' nor other
existing works address the issues of “how to
conduct a domain analysis process and how to
identify reusable components”. The success of
domain-oriented systems depends on the evolution
of new techniques to do the domain analysis and
modelling the system. We need to address the
following issues:

♦ How to identify frequently reusable
abstractions?

♦ What are the domain roles?

♦ How to classify the application domain?

♦ What is the best representation technique?

In this research, we have tried to bridge the gap
between application domain knowledge and
language knowledge. The idea here is to use reuse
guidelines for knowledge representation, and to
provide analysis and advice on reusable
abstractions in the domain of abstract data
structures. Our approach is to support development
for reuse encoding the application domain
knowledge and language knowledge in the form of
reuse guidelines.

In our approach to domain analysis, we have
identified the following:

Support for frequently reusable abstractions.

♦ A specific set of domain roles.

♦ Practical and objective reuse guidelines to
represent the application domain knowledge
and language knowledge, and to provide reuse
analysis and advice.

♦ A rule-based approach for the domain
representation.

♦ Methods for assessing and improving
components for reuse.

The domain-oriented system should support the
following roles:

1. Identifying the abstractions that exist in a
domain. To identify potentially reusable
components, the reuse assessor must know what
the important domain abstractions are and how
frequently these abstractions are used in systems
developed for that domain. This wil l help the
designer avoid producing a component that is
rarely used.

2. The attributes of an abstraction for reuse.
Advice is necessary on what attributes of an
abstraction must be generalised to make it reusable.
The domain analyser and improver must know the
attributes to be generalised within that domain so
that it enhances reusabil ity of that abstraction. For
example, if a component of a dynamic abstract data
structure is to be generalised then the system
should check for generic abstraction.

3. Advice on structural information. It is necessary
to provide advice on structural information on
existing abstractions and on newly required
abstractions. For example, it is not always clear
how to select the most suitable abstract data
structure for a specific application, and how to hide
representation details.

4. Advice on the usage and applications of existing
domain abstractions. It is always difficult for the
reuser to understand how a particular abstraction
can be reused and what are the possible
applications. For example, it is not always clear to
component reusers what are the possible
applications of a selected abstraction. Therefore,
the domain analyser must know to advise on how
to reuse and what are the possible applications of
an abstraction.

5. Reuse assessment and improvement. The domain
system should analyse and assess components
against reuse guidelines that are represented and
should report the percentage of matching
guidelines, so that the designer is aware of his
component's potential for reuse. Also it should
provide suggestions on how that abstraction can be
improved for reuse automatically. Assessment
reports can be produced based on the grading
system introduced earlier, a component is weakly/
limitedly/ strongly/ immediately reusable.

4.1 Domain classification
Domain classification is an important and difficult
part of modern domain engineering. It helps to
identify effective reusable abstractions and model
the problem domain. Booch (1987) has proposed a
classification scheme, known as Booch's
components. In his scheme, components are
classified into structures, tools, and subsystems. He
has characterised a structure as an ADT (abstract

data type) or ASM (abstract state machine). Most
of the ADS are considered as monolithic or
polylithic components. Monolithic components are
stacks, strings, queues, dequeues, rings, maps, sets,
and bags. Polylithic components are lists, trees, and
graphs. Tools are uti lities, filters, pipes, sorting,
searching, and pattern matching. Again these are
further classified into various forms of a
component, which represent variations on the
theme of components for differences on time and
space requirements. The forms are sequential,
guarded, concurrent, and multiple.

Booch's work has been used as a starting point for
constructing reusable components. However, his
notion of forms represents only minor variations in
implementation and is cumbersome for the reuser
to choose a particular implementation because
there are too many variants. For example there are
more than twenty-six variant forms of stack
components.

Our objective is to formulate realisable domain
reuse guidelines to represent the design of reusable
components of abstract data structures (ADS).
These reuse guidelines are kept as general as
possible, and not specific to any particular
language, but specific to this domain of ADS. The
main purposes of these guidelines are firstly, to
support development for reuse in the application
domain of ADS. Secondly, to estimate the reuse
potential of a program automatically, and thirdly,
to improve components for reuse by representing
these guidelines within this domain. Domain reuse
guidelines are based on a proposed classification
scheme.

In our work, we have proposed a classification
scheme for the domain of abstract data structures
(ADS) as shown in Figure 2. In this scheme, ADS
have been classified into sequential and concurrent
structures. The sequential structure is further
classified into linear, and non-linear structures. An
important further sub-classification is static and
dynamic abstractions which can be kept together as
a single abstraction. This classification is important
for the following reasons.

♦ Guidelines that have been formulated refer to
specific parts of the classification structure,
mainly sequential structures.

♦ Sub-classification is limited to static and
dynamic structures which are single,
generalised, and easy to reuse.

♦ A single and generalised abstraction is more
reusable than an abstraction with several
versions, which are called forms in Booch's
components (Booch 1987).

♦ The domain boundary is clearly defined which
is important to do domain analysis effectively.

Booch's sub-taxonomy needs further refinement
and his classification scheme is far too general
(structures, tools, and subsystems) which makes
the domain boundary and scope undefined and
divergent. Also there are good reasons for keeping
abstractions together rather than having several
versions (or forms) for each minor variation. It may

be di fficult for the reuser to understand each of
these minor variations before reusing a component.
For example, Booch's notion of bounded and
unbounded components should always be designed
as manageable. In our work on domain analysis,
support is provided in identifying frequently
reusable abstractions.

Abstract
Data Structure

Sequential

Dynamic

Static

Concurrent

Linear

Non-linear

Figure 2: Classification of Abstract Data Structures

Dynamic

Static

Mutual Exclusion

Message
Passing

Semaphores

Monitors

Ada Rendezvous
(CSPs)

Distributed
Processors

4.2 Domain reuse guidelines
As mentioned earlier, our objective is to produce a
set of objective and practical domain reuse
guidelines which can be applied systematically to
improve reusabil ity. Ideally, we would l ike their
expression and their application to be so systematic
that it can be completely automated.

Compared to some of the existing guidelines
(Hollingsworth 1992; Weide et al. 1991; Gautier
and Wallis 1990; Booch 1987; Braun and
Goodenough 1985) discussed in the earlier section
on reuse guidelines, our guidelines are domain
specific, classified, and objective. Our domain
reuse guidelines fall into a number of classes based
on the domain classification:

♦ Design of abstract data types
♦ Design of interfaces
♦ Design of static structures
♦ Design of dynamic structures
♦ Design of concurrent structures
♦ Design of space management

1. Design of abstract data types. The notion of an
abstract data type allows you to express real world
entities of an application domain. It allows you to
separate a specification from an internal
representation of a structure (principle of
information hiding). It means that we are able to

specify an abstraction of a component in terms of
its actual interface descriptions together which is
useful to generalise that abstraction for reuse. It
allows the designer to view a system at a more
abstract level and to change the representation of
ADS without affecting their use in other parts of
the system.

One of our guidelines on ADS states that,

♦ For all complex structures, provide two

representations such as static and dynamic
structures for each domain abstraction.

This guideline says, for each structure, provide two
abstractions such as static which is represented
using an array structure and dynamic which is
represented using dynamic structure
(access/pointer). This provides a choice and
maximum flexibil ity for the reuser with improved
reuse potential. For example, in Ada, we can
design two packages for each structure
implemented statically and dynamically. If an
abstraction is to be represented in Ada then we can
apply various Ada reuse guidelines. For example,
one on the rationale for choosing private types.
That is, choose l imited private for complex and
dynamic structures, and choose private type for
static structures. However, the Ada library

mechanism is inadequate in that it rises naming
conflict when there are two l ibrary units with
similar names which means that the
implementation of similar components must have
different names.

Another important guideline (Braun and
Goodenough 1985) on the design of abstract data
structures emphasises the need for providing
methods for a l ist of operations such as object
creation, object termination, state change, state
inquiry, and input and output. They have not
considered operations on exceptions that deal with
error conditions. We believe that the operations on
exceptions and handling are significant for reusable
and reliable components. In our work we have
extended this guideline to include operations on
exceptions handling.

Our extended guideline on ADS states that a
reusable component should be provided with the
following functions.
♦ Creation
♦ Termination
♦ Conversion
♦ State inquiry
♦ State change
♦ Input/ output representation, and
♦ Exceptions

Creation involves both creating and initialising an
object, termination is a means of making the object
inaccessible for the remainder of its scope,
conversion allows for the change of representation
from one type to another, state inquiry functions
allow the user to determine the state of the object
and boundary conditions, state change functions
allow modifying or changing the contents of the
object, input/ output representations are primarily
useful for debugging purposes, and exceptions deal
with error conditions and exception handling
procedures. Each operation emphasises one or
more functionality so that the services offered by
the component are increased thus leading to
improved reusability. Sometimes components
which do not provide all these operations may well
be reused. In such cases, the component has to be
measured based on the degree of reusability.

2. Other guidelines. Our guidelines on the design
of reusable static and dynamic structures, and on
space management are essential, objective and
realisable. Some of our important domain
guidelines are:
♦ Always, define a constrained array structure to

represent a component of static structure.
♦ Always select dynamic object representation

for all complex structures and hide detailed
structural information.

♦ If the abstract structure is complex and all
operations are independent of the type of the
structure element then that component should
be implemented as a generic package with the
element type as a generic parameter.

♦ Always provide a procedure to record the
maximum size of the free list with a counter so
that the user may increase or decrease the size
of the free list. when decreasing the free list
size, space in excess of the new size is returned
to the system.

♦ Always provide a procedure to release the free
list, so that all space in the free list is returned
to the system completely.

♦ For each exception, provide an exception
handler.

5. Automation
The guidelines discussed in this paper have been
partially or completely automated in our system for
which a prototype has been developed as shown in
Figure 3. Some of them involve straightforward
transformation and others might need user
interaction and domain knowledge. This system
takes an Ada component, checks through various
reuse guidelines that are applicable, provides reuse
advice and analysis to the reuser, and generates that
component which is improved for reuse. Ada
components are modelled using component
templates and reuse guidelines are checked
objectively against that template. Some of these
domain reuse guidelines have been represented and
analysed using component templates. For most of
these guidelines, automation depends on some user
interactions and domain knowledge.

One of the major objective of this system is to
demonstrate, how well-defined reuse guidelines
can be used to automate the process of reuse
assessment by providing support for language
analysis and domain analysis. For example, this
system takes an Ada component specification,
assesses it through two analysis phases, estimates
its reusability according to how well it satisfies a
set of reuse guidelines and generates a component
which is improved for reuse.

The system interacts with the engineer to discover
information that can't be determined automatically.
The conclusion of this first pass is an estimate of
how many guidelines are applicable to the
component and how many of these have been
breached. The report generator produces a report
with all the information that has been extracted
about that component and changes that have been
made for reuse.

Component
Language
analyzer

Domain
analyzer

Reuse
engineer

Language
knowledge

Domain
knowledge

Reusability
analysis

Reusability
advice

Figure 3 : The reuse assessor and improver system

Modified
Component

The second pass involves applying domain
knowledge to the system. The component
templates have been modelled representing static
and dynamic structures. Their reusability is
assessed by comparing the component with that
template. The support provided by the system
ensures that the reuse engineer carries out a
systematic analysis of the component according to
the suggested guidelines. He or she need not be a
domain expert. Again, an analysis is produced
which allows the engineer to assess how much
work is required to improve system reusability.

For example, a scheme for automating one of our
domain guideline is shown algorithmically in
Figure 4. This scheme involves identification of
procedures and domain related information against
a component template, and adds operations
automatically to those components with perhaps
some human assistance.

Figure 4: Scheme for automating domain guidelines

For each ADS do
 Analyse abstractions and advice;

 Identify attributes for static and dynamic
 structures with user interactions;
 Identify procedures against Braun and
 Goodenough's list;

 Add operations that are missing;
 Follow further schemes for Static and/ or Dynamic

 Produce reports and potentially reusable
 components;

End loop

Guidelines for automation are represented in two
distinct ways:
♦ Wherever possible, a rule-based representation

is used so that it is clear when a guideline
should be applied. We have found that rule-
based representations are mostly applicable for
language-oriented guidelines.

♦ For domain-oriented guidelines, we are mostly
concerned with checking that a component fits
a model of a reusable domain abstraction. In
this case, we have developed templates of these
abstractions which represent the reuse
guidelines.

However, it remains to see how many numbers of
guidelines are significant for reuse, and further
investigation is underway to improve its
limitations. The system has demonstrated that it is
possible to formulate and automate practical and
objective reuse guidelines supporting the
development of potentially reusable software
components.

6. Conclusion
Reusable components can be produced and re-
engineered effectively in a large scale if we can
formulate objective and realisable guidelines and
apply them systematically. We took the existing
work on reuse guidelines as a starting point and
made possible to use it for automation. Domain
analysis can play a major role in supporting
development for reuse. we have proposed a
classification scheme for guidelines and for the
domain of ADS components. We also believe that
our approach is applicable to other languages,
methods, tools, and application systems.

7. References

[1] Biggerstaff, T.J. and Perlis, A.J. (1984),

"Foreword to the special issue on software
reusability", IEEE trans. on software
engineering, September.

[2] Biggerstaff, T.J. and Perlis, A.J. (Editors)
(1989), "Software Reusability: Concepts and
Models", Vol.I & II, ACM Press, Addison-
Wesley.

[3] Booch, G. (1987), "Software Components with
Ada", Benjamin/Cummings.

[4] Bott, M.F. and Wallis, P.J.L. (1988), "Ada and
software reuse", Software Engineering Journal,
September.

[5] Braun, C.L. and Goodenough, J.B. (1985),
"Ada Reusability Guidelines", Report 3285-2-
208/2, USAF.

[6] CAMP (1987), "Common Ada Missile
Packages", Final Technical Report, Vols. 1, 2
and 3. AD-B-102 654, 655, 656, Airforce
Armament Laboratory, FL.

[6] Carter, J.R. (1990), " The Form of reusable Ada
Components for Concurrent Use", Ada Letters,
vol.X, No.1, Jan/Feb.

[7] Dennis, R.J.St. (1987), "Reusable Ada (R)
software guidelines", proc. of the 12th annual
Hawaii International conference on system
sciences, pp.513-520.

[8] Gargaro, A. and Pappas, T.L. (1987),
"Reusability issues and Ada", IEEE software,
pp.43-51, July.

[9] Gautier, R.J. and Wallis, P.J.L. (Editors)
(1990), "Software Reuse with Ada", Peter
Peregrinus Ltd for IEE/BCS.

[10] Genil lard, C., Ebel, N., and Strohmeier, A.
(1989), "Rational for the design of reusable
abstract data types implemented in Ada", Ada
letters, vol.IX, No.2, March/April.

[11] Hall, P. A. V., (1993) Domain analysis,
Walton, P and Maiden, N (Editors) Íntegrated
Software Reuse: Management and Techniques,
Ashgate Publishers.

[12] Hollingsworth, J (1992). Software components
design for reuse: a language independent
discipline applied to Ada, PhD thesis, Dept. of
computing and Information, Ohio State Univ.,
Columbus, December.

[13] Hooper, J. W. and Chester, R. O. (1991).
Software Reuse: Guidelines and Methods,
Plenum Press.

[14] Keenan, P. (1987), "Reuse of Designs as a
First Step Towards the Introduction of Ada
Component Reuse", IEE Colloquium on
Reusable Software Components, May.

[15] Krueger, C (1992) Software Reuse, ACM
Surveys, Vol. 24, No. 2, June 1992.

[16] Latour, L. (1991), " A methodology for the
design of reuse engineered Ada components",
Ada Letters, spring.

[17] Lubars, M. (1991), Domain analysis and

domain engineering in IDeA, Prieto-Diaz, R
and Arango, G (ed) Domain Analysis and
Software Systems Modeling, IEEE Computer
Society Press Tutorial.

[18] Maiden, N A M and Sutcliffe, A G (1992)
Exploiting reusable specifications through
analogy, Communications of the ACM 34(5),
May, 1992.

[19] McCain, R. (1985), "Reusable Software
Component Construction: A Product Oriented
Paradigm", In Proceedings of the 5th
AIAA/ACM/NASA/IEEE Computers in
Aerospace Conference, Long Beach, CA, 125-
135, October 21-23.

[20] Moore, J M and Bailin, S C 1991. Domain
Analysis: Framework for reuse, Prieto-Diaz, R
and Arango, G (ed) Domain Analysis and
Software Systems Modeling, IEEE Computer
Society Press Tutorial.

[21] Neighbors, J.M. (1984), "The Draco Approach
to constructing Software from reusable
components", IEEE Trans. on Software
Engineering, vol.SE-10, No.5, pp.564-574,
September.

[22] Prieto-Diaz, R and Frakes, W. B (1993)
Advances in software reuse, Proc. of the second
international workshop on software reusability
(IWSR-II Lucca, Italy, March 1993) IEEE
Computer Society Press, March 1993.

[23] Prieto-Diaz, R. (1990), "Domain Analysis: An
Introduction", ACM SIGSOFT, Software
Engineering Notes, vol 15, no.2, Page 47,
April.

[24] Prieto-Diaz, R. and Arango, G (1991)
Software Modelling and Domain Analysis,
IEEE Computer Society Press Tutorial.

[25] Ramachandran, M. (2005) Automated
Improvement for Component Reuse,
INFOCOMP Journal of Computer Science, V.4,
N.1, Brazil

[26] Ramachandran, M. (1994) Knowledge-based
support for reuse, Proceedings of Intl. conf. on
software engineering and knowledge
engineering (SEKE94), Latvia, July.

[27] Ramachandran, M. and Sommerville, I. (1995)
A framework on automating reuse guidelines,
Proceedings of Intl. conf. on software
engineering and knowledge engineering
(SEKE95), USA.

[28] Schafer, W., Prieto-Diaz, R., and Matsumoto,
M. (1994). Software Reusability, Ell is
Horwood.

[29] Simos, M. (1991), The growing of an
Organon: A hybrid knowledge-based
technology and methodology for software
reuse, Prieto-Diaz, R and Arango, G (ed)
Domain Analysis and Software Systems

Modeling, IEEE Computer Society Press
Tutorial.

[30] Soloway, E and Ehrlich, K. (1984), "Emprical
studies of programming knowledge", IEEE
Transactions on Software Engineering, Vol.
SE-10, No.5, September.

[31] Sommerville, I. and Morrison, R. (1987),
"Software Development with Ada", Addison-
Wesley.

[32] Sommerville, I. and Ramachandran, M.
(1991), "Reuse Assessment", First International
Workshop on Software Reuse, Dortmund,
Germany, July.

[33] Wartik S and Prieto-Diaz, R. (1992), Criteria
for comparing reuse-oriented domain analysis
approaches, Intl. J. of Soft. Eng. and knowledge
Eng., Vol 2, No. 3.

[34] Weide, B.W et al. (1991) Reusable software
components, Advances in Computers, Yovits,
M. C (ed.), Vol. 33, Academic Press.

