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Abstract. The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and complex 
combinatorial problem, which has received considerable attention in recent years. The VRPTW benchmark 
problems of Solomon (1987) have been most commonly chosen to evaluate and compare all exact and heu-
ristic algorithms. A genetic algorithm and a set partitioning two phases approach has obtained competitive 
results in terms of total travel distance minimization. However, a great number of heuristics has used the 
number of vehicles as the first objective and travel distance as the second, subject to the first. This paper 
proposes a three phases approach considering both objectives. Initial ly, a hierarchical tournament selection 
genetic algorithm is applied. It can reach all best results in number of vehicles of the 56 Solomon’s prob-
lems explored in the literature. After then, the two phase approach, the genetic and the set partitioning, is 
applied to minimize the travel distance as the second objective. 
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1. Introduction 
Vehicle routing problems (VRP) have received 
considerable attention in recent years. The usual 
static version, namely Vehicle Routing Problem 
with Time Windows (VRPTW) includes capacity 
and time window constraints. In the VRPTW, a 
fleet of identical vehicles supplies goods to N 
customers. All vehicles have the same capacity 
Q.  For each customer i, i = 1,…,N, the demand 
of goods, qi , the service time si, and the time 
window [ai,bi] to meet the demand in i are 
known.  The component si  represents the loading 
or unloading service time at the customer i, and 
ai  describes the earl iest time when it is possible 
to start the service. If any vehicle arrives at cus-
tomer i before ai i t must wait. The vehicle must 
start the customer service before bi . All vehicle 
routes start and finish at the central depot. Each 
customer must be visited once. The locations of 
the central depot and all customers, the minimal 
distance di j and the travel time ti j between all 
locations are given. Different objectives have 
been proposed in the li terature, including the 
minimal total travel distance, the minimal num-
ber of vehicles used, the total wait time, the total 
time to complete the whole service and combina-
tion of these. 

Alvarenga [1] and [11] has proposed a ge-
netic and a set partitioning two phases approach 
for the VRPTW using travel distance as the 
unique objective. The tests were produced using 
both, real numbers and truncated data type, and 

the results were compared with previous pub-
lished heuristic and exact methods. These results 
show that the heuristic CGH (Column Genera-
tion Heuristic) proposed is very competitive in 
terms of travel distance (TD) minimization. In 
present paper, an extension of that approach is 
proposed to minimize the number of vehicles 
(NV) first and the total travel distance is mini-
mized as a second objective.  

Berger [2] has improved some of the results 
of Solomon’s benchmark using parallel two-
population co-evolution genetic algorithms, Pop1 
and Pop2. The first population, Pop1, has the 
objective to minimize TD to a fixed number of 
vehicles. On the other hand, Pop2 works to 
minimize the violated time window, in order to 
find at least one feasible individual. In Pop2, NV 
is fixed as the number obtained by Pop1 minus 
one. The global objective is to minimize NV, and 
after that to minimize TD, in a second priority. 
Pop1 works to minimize TD over the population 
received from Pop2, where at least one feasible 
solution is known. Each time a feasible individ-
ual is found the population Pop1 is substituted by 
Pop2 and the fixed number of vehicles consid-
ered in both populations is decreased by one.  

Berger has also tested the algorithm in the 56 
Solomon’s instances. Berger found 6 new results 
(for instances R108, R110, RC105, RC106, R210 
and R211).  Currently, three of them continue to 
be the best solutions known (R108, RC105 and 
RC106), considering NV as the first objective 



and TD as the second. One of the most important 
advantages of his work is the total NV for all 56 
instances of Solomon, with 405 vehicles, one of 
the best results in the literature. 

Homberger [7] has also presented good re-
sults for many Solomon’s benchmark problems 
using two evolutionary metaheuristic methods in 
a similar two-stage strategy. Two different heu-
ristic methods were proposed, ES1 and ES2. 
Homberger emphasizes the importance of the 
evaluation criterion. The travel distance selection 
does not drive the search in the number of vehi-
cles global minimum. Consequently, it is neces-
sary to add new evaluation criteria. The first new 
criterion explored is the number of customers in 
the shortest route. The second criterion is namely 
the minimal delay DR. That is the sum of the 
minimal time violations caused by the forced 
elimination of the customers from the shortest 
route R, equation (1).  �
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Where 
• Dk = 0 i f the customer k can be eliminated 

and inserted in any other route R’ �  R; 
•  Dk = ∞  i f the insertion of k always results 

in a capacity violation to any route R’ �  R; 
• Dk = the minimal violated time, if the inser-

tion of the customer k results in any time 
window violation. In this case, the minimal 
sum of time violations for the entirely route 
which received the customer k is assigned 
to Dk. 

Both, ES1 and ES2 have considered two phase 
approach in the search. In the first step, the total 
travel distance is suppressed. In the second and 
last step, after the number of vehicle has been 
minimized, the search is redirected to minimize 
the total travel distance. The difference between 
ES1 and ES2 stay on the existence or not of the 
crossover to produce a new generation. In the 
ES1 the new generations are produced directly 
by mutations. These heuristic methods reduced 
the number of vehicles in two instances from the 
class R1 (R104 and R112). In the instance R109, 
the strategy ES1 sti ll produced a new result, 
maintaining NV and reducing TD. In the same 
way, ES2 improved the results of TD in R105 
and R107. In the class R2, five new results were 
produced by ES1 and three by ES2. The results 
in the classes, C1 and C2, were equivalent to the 
best known for all problems. ES2 stil l produced 
two new results for RC1 and two others for RC2, 
while ES1 produced two other new results for 
RC2. In summary, 20 new results were produced, 
where only 2 sti ll continue undefeated. 

This paper is organized as follows. Section 2 
describes the first phase of the search (GA_NV), 
in order to minimize the number of vehicles. 
Section 3 describes how CGH is applied to 
minimize the second objective, travel distance, 
and the overall algorithm. The sections 4 and 5 
describe the results and conclusions, respec-
tively.  

 
2. Hierarchical Tournament Selection Genetic 
Algorithm 
In the first phase, an independently genetic algo-
rithm is proposed to reduce the number of vehi-
cles. Strategies exploring the number of vehicles 
(NV) and travel distance (TD) objectives in dis-
tinguished phases have reached the best results 
at the moment in the li terature. It’ s possible to 
see the best results in [13] and their respective 
references. 

Although the number of vehicles is consid-
ered as the first objective, the total travel dis-
tance minimization continues to be very impor-
tant, because it is the differentiate criterion as a 
second objective, once many algorithms have 
reached the same number of vehicles for many 
instances. By one side, the genetic algorithm and 
set partitioning two phase approach, composing 
the column generation heuristic CGH proposed 
by [1] showed to be competitive to minimize TD. 
Consequently, the main question is if the pro-
posed CGH continues to be efficient when the 
NV is fixed in a minimized solution. However, 
an additional phase to minimize the NV is nec-
essary. This is a second objective of this paper, 
because it’ s very difficult for a robust algorithm 
to present good NV results to different instances. 
In this way, the fitness approach of Homberger 
evolution strategy, summarized in the previous 
section, was extended adding new criteria to 
evaluate how easy could be to eliminate one 
route from the individual solutions. The basic 
idea of the genetic algorithm GA_NV to  mini-
mize NV is the same utilized in [1]. However, 
new operators are necessary to change the 
search. The main characteristics of the algorithm 
are described bellow.  

Chromosome and Individual Representation 
The individual representation is the same util-
ized in [1]. Each customer has a unique integer 
identifier i,  i = 1,..,N, where N is the number of 
customers. The chromosome is defined as a 
string of integers, representing the customers to 
be served by only one vehicle. An individual, 
that represents a complete solution, and conse-
quently many routes, is a set of chromosomes. 
The central depot is not considered in this repre-



sentation, because all routes necessarily start and 
end on it. 

Initial Population 
To start the first generation in the GA, the sto-
chastic PFIH (Push Forward Insertion Heuristic) 
also proposed in [1] is uti lized. It can produce 
quickly diversified individuals. In the original 
PFIH, see [14], the first customer in each new 
route is deterministically defined. Customers 
then are chosen one by one minimizing the 
travel distance. The original PFIH is determinis-
tic, but differently, in the stochastic PFIH a ran-
dom choice is used to define the first customer 
for each new route. That is necessary to produce 
distinguished individuals in the first GA genera-
tion.  

Fitness 
There are basically two main alternatives to 
evaluate individuals to the VRPTW in order to 
minimize the number of vehicles. In the first one 
the search occurs by the unfeasible region, and 
the evaluation is based on how much the time 
windows are violated. This option was adopted, 
for example in the genetic algorithm proposed by 
[2]. On the other hand, the second one treats 
only feasible individual solutions. This option 
needs the identification of characteristics in the 
individual solutions. They have hints of easiness 
to reduce routes, once the main objective NV is 
not sufficient to differentiate individuals and 
ensure the population evolution. 

In this paper, a k-way tournament selection 
method is used in the GA. In a k-way tourna-
ment, k individuals are selected randomly. Then, 
the individual with the highest fitness is the 
winner. This process is repeated unti l the neces-
sary number of selected individuals to the cross-
over phase has been reached. Two individuals 
are selected for each crossover, which produces 
only one new offspring. As showed before, [7] 
propose some criteria of evaluation in a lexicog-
raphy order. The first criterion is the number of 
vehicle by itself, followed by the number of cus-
tomers in the shortest route and the minimal 
delay time DR, previously described. It’s possible 
to see that the minimal delay time resembles the 
idea of the search by the unfeasible time win-
dows region. 

The strategy uti lized in this paper to expand 
the fitness idea proposed by [7] evaluates how 
hard is to eliminate customers from the shortest 
route. However, it is possible to show that the use 
of all three criteria of evaluations from Homber-
ger is not enough to differentiate the individuals. 
In other words, it’ s possible to find different in-

dividuals with the same value in all three crite-
ria. Consequently, the idea is to use additional 
parameters to identify the easiest individual from 
the current tournament  to eliminate a shortest 
route. Surprisingly, no less than nine additional 
criteria of evaluation can be useful in order to 
permit the identification and to eliminate one 
more route or a customer in the shortest route. 
These fitness criteria are presented bellow in 
their respective hierarchical order in the selec-
tion algorithm: 
    1st - Number of Routes (Fitness_NV): The 
main objective of the problem (NV) is the first 
criterion 
    2nd - The Number of Customers in the 
Shortest Route (Fitness_NCSR): Naturally, the 
number of customers in the shortest route is the 
second criterion to identify the easiest individual 
solution to eliminate one more route.  
 
    3rd - Difficulty to Eliminate One Customer 
from the Shortest Route (Fitness_1CSR): This 
criterion is very similar with the minimal delay 
time Dk proposed by [7], but only one customer 
from the shortest route is considered (the mini-
mal Dk). The other difference is that no delay 
time is added in Dk for subsequent not violated 
time windows. In contrast, Homberger considers 
all delay in any customer caused by a previous 
violated time window.  
    4th - Difficulty to Eliminate All Customers 
from the Shortest Route (Fitness_AllCSR): 
This criterion (DR) is the sum of Dk to all cus-
tomers in the shortest route (equation (1)). This 
is the main additional criterion uti lized by [7]. 
The difference mentioned above to calculate the 
delay persists.  
    5th - Difficulty to Eliminate One Customer 
from the Taker Route (Fitness_1CTR): The 
taker route presents the minimal time window 
violation if receives a customer from the shortest 
route. Sometimes, it’s necessary to eliminate 
customers from this route, because inserting 
some customers in another route can make pos-
sible the reception of others from the shortest 
route. Obviously the shortest route cannot be 
used as destination of these customers.  
    6th - Difficulty to Eliminate All Customers 
from the Taker Route (Fitness_AllCTR): 
Again, the sum of the violated time for all cus-
tomers from the taker route is considered to cal-
culate the Fitness_AllCTR. The idea is the same 
applied to Fitness_AllCSR, but now the focus is 
the taker route and not the shortest route. 
    7th - Total Travel Distance (Fitness_TD): 
The total travel distance (TD) minimization was 



mentioned as a concurrent objective to the NV 
minimization. In fact, this can guide the search 
to a minimal TD with a bigger NV. However, 
when applied following all priority criteria 
above, it is verified to be useful to minimize NV. 
    8th - The number of customers in the taker 
route  (Fitness_NCTR): This criterion is moti-
vated by the fact that a short route has more 
probabili ty to receive other customers without 
violated constraints.  
    9th - Sum of Squares of the Number of Cus-
tomers (Fitness_SSNC): The sum of squares of 
the number of customers is as large as the con-
centration of customers in few routes. This crite-
rion is interesting because has an effect over all 
routes together.  
    10th - Total load in the Taker Route (Fit-
ness_TLTR): Any route with few loads inside 
has more capacity to receive any other customer 
from the shortest route. This criterion is useful 
for instances where the capacity is more critical 
than the time window constraints. 
 

Selection 
In the k-way tournament selection method k in-
dividuals are selected randomly. Then, the indi-
vidual who presents the highest fitness is the 
winner and wil l participate of the crossover. In 
the hierarchical tournament there is not only one 
fitness value but many. Each fitness criterion is 
used to maintain in the tournament process only 
those individuals which present the highest val-
ues. One or more individuals continue in the 
tournament selection considering the other hier-
archical fitness criteria. The hierarchical criteria 
utilized, as showed in the previous section, can 
differentiate solution individuals with different 
number of vehicles, the main objective, but also 
identify those individuals, with the same number 
of vehicles, that are easier to eliminate customers 
in the last route and consequently to eliminate 
that route.  

Crossover 
The crossover algorithm is based on the cross-
over operator proposed by [1] and [11]. In the 
first step, the algorithm select a route from each 
parent individual in turns, in order to inherit 
routes with maximum number of customers. Af-
ter all feasible routes have been inserted in the 
offspring, the insertion of the remainder custom-
ers is tested in the existing routes (second step). 
If some customers continue to be without any 
route there is no other option than to insert them 
in empty vehicles (new routes). In this case, the 
stochastic PFIH is again applied. 

Mutation 
Many mutation operators in the GA proposed by 
[1] are not appropriated to minimize NV. Those 
operators give directions to minimize the total 
travel distance which can represent a local 
minimum in terms of NV. The new set of opera-
tors is proposed, as explained below: 

Random Customer Migration (M_RCM): This 
operator chooses a vehicle randomly and a ran-
dom customer associated to it; a migration of this 
customer to other non-empty vehicle is tried. If 
the insertion results a feasible route, then it is 
accepted independently of the new function cost.  

Simple Customer Exchange (M_SCE): This 
operator tries a random customer exchange be-
tween two different routes. The unique require-
ment to do the exchange is the feasibility of the 
resulted individual solution. 

Two Customers Swap (M_TCS): This operator 
is very similar with M_SCE, but the customers 
come from the same route. 

Customer Exchange with Gain in Fit-
ness_1CSR, Fitness_AllCSR or Fitness_1CTR 
(M_CEGF1): Two routes are randomly selected. 
Every possible pair of customers, one from each 
route is candidate to exchange. The customer 
position in the target route is not necessarily the 
empty position. The exchange is performed only 
if there is gain in at least one of these fitness 
criteria: Fitness_1CSR, Fitness_AllCSR or Fit-
ness_1CTR. 

Customer Exchange with Gain in Fit-
ness_1CSR, Fitness_AllCSR (M_CEGF2): 
Two routes are randomly selected. Every possible 
pair of customers, one from each route is candi-
date to exchange. The customer position in the 
target route have to be the empty position. The 
exchange is performed only if there is a gain in 
at least one of these fitness values: Fitness_1CSR 
or Fitness_AllCSR.  

Simple Customer Exchange with Travel Dis-
tance Gain (M_SCETDG): This operator tries a 
random customer exchange between two differ-
ent routes. Differently of the M_SCE this ex-
change is performed only if the resulted solution 
presents a TD reduction. 

Customer Exchange with Travel Distance 
Gain (M_CETDG): This operator tries a ran-
dom customer exchange between two different 
routes. Differently of the M_SCETDG the cus-
tomer previous position does not necessarily 
need to be used. Again the exchange only is per-
formed if the resulted solution presents a TD 



reduction. 

Taker Route Customer Migration 
(M_TRCM): This operator chooses a random 
customer from the taker route; a migration of 
this customer to another non-empty, different of 
the shortest route, and a  random vehicle is tried. 
If the insertion results a feasible route, then it is 
accepted independently of the new function cost. 
If it is impossible to insert this customer in that 
vehicle, another one is randomly selected until  
all available vehicles have been tested. 

Customer Reinsertion with TD Gain 
(M_CRTDG): This mutation randomly choses 
customer in a route and try all position available. 
If there is another feasible position with travel 
distance reduction the position is changed. 

All Customers Reinsertion (M_AllCR):  This 
mutation is very similar with M_CRTDG but 
this operation is repeated to every customer in a 
randomly selected route. Every new position with 
travel distance reduction is performed. 

Taker Route Elimination (M_TRE): This mu-
tation tries to find a new feasible position for 
every customer of the taker route in another one. 
Obviously, the shortest route is not considered as 
destination once the objective is to improve the 
capacity to receive customers from that one. 

Last Customer Elimination from the Shortest 
Route including Customer Removal in the 
Destination (M_LCE1): This operator gets this 
last customer and tries to insert into other non-
empty route. If necessary, a second customer in 
the destination route is removal to permit the 
insertion. In the last case, a new destination to 
the removed customer is tried, initially, in all 
nonempty route in the individual solution. If 
another feasible position to the removed cus-
tomer is found, the shortest route has been 
eliminated. Otherwise the removed customer is 
inserted in an empty route and stays as the new 
shortest route. 

Last Customer Elimination from the Shortest 
Route including 2 Customers Removal in the 
Destination (M_LCE2): This operator is very 
similar to M_LCE1, but includes the possibili ty 
to remove 2 customers in order to permit the 
insertion of the last customer from the shortest 
route. If other feasible positions to the removed 
customers are found, the shortest route has been 
eliminated. Otherwise the remainder customers 
are inserted in an empty route and a different 
new shortest route has been established. 

Shortest Route Elimination (M_SRE): This 

mutation tries to find a new feasible position for 
every customer of the shortest route in another 
one. 

 
3. Second Phase and the Complete Algorithm 
In the previous sections, the new genetic algo-
rithm GA_NV is proposed to minimize the num-
ber of vehicles. The algorithm is applied for a 
fixed interval (15 min.) in order to find a solu-
tion to the VRPTW with the minimal number of 
vehicles as possible. After that, the entire final 
population produced by GA_NV is used as the 
first population in the Column Generation Heu-
ristic (CGH) proposed by [1] to minimize the 
second optimization criterion , the total travel 
distance. 

The result of GA_NV, block 1 in the 0 are 50 
solution individuals containing the best solution 
in terms of NV. The CGH proposed by [1] gets 
this population many times to produce many 
local minima, while the TIME_LIMIT (block 3) 
permits. But now, the objective is to minimize 
TD after NV. Because there are many individu-
als with the same NV and the operators uti lized 
in CGH unlikely can reduce NV, actually TD is 
the practical objective to be reduced.  

The complete algorithm CGH_NV, described 
in Figure 1, is composed by the basic CGH algo-
rithm (for details see [1] and [11]) joined with 
GA_NV. It’s important to emphasize the main 
aspects of that approach. The loop from the 
block 4 to 8 produces many different routes or 
local minima using the GA_TD (genetic algo-
rithm wirh the criterion of travel distance mini-
mization). The number of solutions, Max_Evol, 
generated is 10. The set partitioning problem 
SSP then is solved to obtain the optimal solution 
over this limited set of routes R, block 9. The 
solution then is applied to divide the whole prob-
lem into many different sub-problems, solved 
again using the GA_TD, blocks 11 to 16. These 
2 cycles are repeated unti l the TIME_LIMIT (60 
min.) is reached. Finally, the SPP is solved over 
all previous routes generated and included in the 
set RGLOBAL. 
 
4. Computational Results 
The GA_NV parameters were empirically ad-
justed. A fixed period of 15 minutes has been 
used to run GA_NV. After that, as show the 0, 
the final population is passed to CGH in order to 
minimize TD. This phase has an additional pe-
riod of 60 minutes to perform the search. In or-
der to define the best hierarchical way to evalu-
ate the individuals the GA_NV algorithm was 
tested with different options. The Fitness_NV is 



always the first, because this is the main objec-
tive. Again the number of customers in the 
shortest route (Fitness_NCSR) demonstrates 
clearly as the second fitness to be applied in the 
selection. Homberger [7] has used the difficulty 
to eliminate all customer from the shortest route 
as third criterion (Fitness_AllCSR) or delay 
time, but there was not information if the author 
has tried another criterion or comparisons.  Also 
the GA_NV in this work has produced the best 
results considering the difficult to eliminate all 
customers in the shortest route (Fitness_AllCSR) 
in the third priority. The use of Fitness_1CSR 
has been used in forth priority. The use of Fit-

ness_1CSR as the third criterion has produced 
fast customer elimination in the first phase but 
has increased the possibility to entrap in the local 
minima. The Fitness_TD produces better results 
only in seventh priority, but with substantial 
relevance in the search. 

Table 1 shows the main results from the lit-
erature and the results from CGH_NV proposed. 
They are positioned in crescent order of NV, the 
main objective. The results of the CGH_NV are 
very expressive in NV, reaching the best known 
value for 100% of the problems. However, in the 
second objective TD, the results stay a bit above 
of the best known, produced by Berger. 

 
 
 

Final_POP as 
Initial Population

NPop = 0

GA Minimizing 
Travel Distance (TD)

Best Individual
GA (VRPTW)

solution 

Insert Individual
routes in R

NEvol > 
Max_Evol

SPP MIP is
solved using the  

set R

YesNo

SPP (VRPTW)
Solution 

(local minimum)

Initial Population
Stochastic PFIH

NPop = 0

Best Individual
GA VRPTW

solution

Insert Individual
routes in R

NEvol > 
Max_Evol2

YesNo

TIME_LIMIT > 
Now – Init_Time

END 
SOLUTION

SPP MIP is 
solved using 

RGLOBAL

Insert R routes
in RGLOBAL.

R is emptyYes

No

Generate a new 
Reduced Problem

1

START
Init_Time = now

NEvol=NEvol+1

NEvol=0

NEvol=NEvol+1

NEvol=0

GA_NV: Minimize NV
Final Population = Final_POP

GA Minimizing 
Travel Distance (TD)

Reduced Problem

2

3

4

5

6

7

8

13

12
11

9

10

14

15

16

16

17

18

 
 
 

Figure 1:CGH_NV heuristic proposed 
 
 
 



NV Reference R1 R2 C1 C2 RC1 RC2 
DT 

11.92 2.73 10.00 3.00 11.50 3.25 405 Berger et al. (2003) 
1221 975.4 828.5 590 1390 1159 5795
11.92 2.73 10.00 3.00 11.50 3.25 405 CGH_NV (this paper) 
1224. 1012. 828.4 590.9 1417. 1195. 5891
12.00 2.73 10.00 3.00 11.50 3.25 406 Braysy et al. (2004) 
1220. 970.4 828.4 589.9 1398. 1139. 5779
11.92 2.73 10.00 3.00 11.63 3.25 406 Homberg et al. (1999) 
1228. 970.0 828.4 589.9 1392. 1144. 5787
12.08 2.82 10.00 3.00 11.50 3.25 408 Homberg et al (in press) 
1211. 950.7 828.5 590.0 1395. 1135. 5742
12.08 2.91 10.00 3.00 11.75 3.25 411 Liu et al. (1999) 
1215. 953.4 828.4 589.9 1385. 1142. 5746
12.25 3.00 10.00 3.00 11.88 3.38 416 Taillard et al. (1997) 
1216. 995.4 828.5 590.3 1367. 1165. 5799
12.58 3.09 10.00 3.00 12.38 3.62 427 Rochat et al. (1995) 
1197. 954.4 828.5 590.3 1369. 1139. 5712

 
Table 1: Best known results (july/04) GCH_NV 

 
 

5. Conclusions 
In the literature, the main results minimizing 
NV for Solomon’s test set have been compared 
with the results produced by CGH_NV. The pro-
posed approach has produced the best NV results 
and a reasonable TD. The GA_NV proposed to 
minimize NV has produced the best results in 
NV using only 15 minutes of execution using a 
Pentium IV 2.4 GHz.  

The new hierarchical tournament selection 
proposed has been the main reason to the excel-
lent performance of GA_NV in the NV minimi-
zation. However the CGH proposed by [1] 
changed to minimize first NV and then TD as 
the second criterion seems to have difficulty to 
perform the search in narrow routes. Once the 
TD results from CGH without any NV restriction 
were very significantly [1], i t’s interesting to 
extend this work producing new mutation opera-
tors in the GA_TD to work with narrow routes 
found in the GA_NV. 
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