
A statistical evaluation of an interactive elementary

programming model – A pedagogical approach

Dr. Payal Gohel, Researcher Scholar,

Saurashtra University, Rajkot, India

Payalgohel.ce@gmail.com

Dr. Kishor Aatkotia,

Professor, Saurashtra University, Rajkot, India

ABSTRACT - Indian’s target to achieve a 5 trillion economy by 2024 will require them to train a high

skilled labor force. India being the youngest country in the world, it has to use leverage of its top position in

computing and software services. In computing education, coding is considered to be the most challenging

subject to understand especially for new students. The author conducted literature review focusing on how

to overcome this challenge and how to resolve it have been a focused area for the researchers since last

decade. The fragmented use of technology and multimedia has hampered realizing the potential of an

education sector. Therefore, it’s time that appropriate teaching methodology should be developed using

pedagogy-based curriculum to ease students' learning difficulty caused by lack of experience. Amongst

many, two principal theories, first, theory of Constructivism and second, Cognitive Load theory have been

identified and investigated. Then, qualitative and quantitative methods were applied to identify the trends

and learning challenges for beginners. An extensive survey was conducted targeting 360 population which

helped to identify the current state of coding challenges and what can be done to improve it. Then, the 12

semi-structured interviews were conducted with lecturers to gain more insight into the state of teaching and

difficulties with students. Based on literature and data collection findings, this research proposes a theoretical

process framework to design and develop a visual coding instruction model in the realms of technology,

pedagogy and theoretical concepts. Then, the evaluation and assessment of the proposed research model was

conducted using quasi-experimental designs to understand the impact of it. Many factors were considered

while analyzing the data collected through experiments with 60 odd first time coding students. After the

rigorous data quantification, a significant improvement was observed in VProEn users than Turbo C users

earlier but in the longer run no significant evidence was detected.

KEYWORDS: Theory of constructivism, Cognitive Load Theory, Computer Science Education,

Visualization methodology, Smart Interactive technology, Statistical Analysis.

(Received June 1st, 2020/ Accepted June 11st, 2020)

1. INTRODUCTION

As per recent government data, India’s superpower in

IT and computing services is responsible for about

3.86 million direct IT employment and about 12

million indirect [1]. By 2020, India will have 5.2

million developers, a nearly 90% increase, versus 4.5

million in the U.S., a 25% increase through that period

(Figure 1). India's software development growth rate

is largely attributed, in part, to its educated population

size, over a billion with about half the population

under 25 years of age and highly ambitious

competitive youth. Hence, at a time when India is

considered a leader of computing services for the

world market, skill in coding is important for the next

generation of programmers. Learning programming at

the elementary and college level becomes an entry

point for most professionals. However, many

researchers pointed out that students are facing

learning difficulties in the conventional way of

teaching. There are many reasons including lack of

experience in teaching; complex subject to learn;

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

difficult to read coding syntax. Even with the

advancement of technology, the education sector is

still not fully realizing the power of technology.

Therefore, it’s high time that we evolve learning and

teaching methodologies using interactive approaches

to ease students' learning difficulty, caused by lack of

experience. The author believed, main issue with the

education sector is to only look at the technology and

not how it is being used. Smart class doesn’t make

smart students. Then, the question arises about what

tutors need to deliver and how students’ should learn

in order to appropriately incorporate technology into

their teaching has received a great deal of interest in

last decade [2], [3], [4]).

Figure 1: Direct/Indirect IT employment period

(2008-09 to 2016-17) - Press Information
Bureau, India

The important objectives of the proposed research are

(a) the critical exploration of different learning

theories to identify main principles for coding tool for

beginners, (b) quantitative and qualitative data

collection to identify the trend through empirical data,

(c) the design and development of a novel framework

to demonstrate identified design principles and (d) the

evaluation and assessment of the proposed model to

verify the enhancement of the learning in new

students.

2. EXPLORE LEARNING THEORIES

This research work has been aimed at theoreticians

and researchers, as well as practitioners and educators.

Use of interactive pedagogy-based teaching

environments, in particular with the integration of

learning theories, have the potential to increase the

student's attention span and enable focused learning.

From various learning theories, the proposed research

focused on two important theories, i) Constructivism

and, ii) Cognitive Load Theory [5]. Author believes

integration of such learning concepts in modelling

could show tremendous potential for students which

help them while self-study, and further cut down the

mental load.

2.1 CONSTRUCTIVISM THEORY

Constructivism is a theory of knowledge and how it

can be achieved by people. Many research studies

have referred to constructivism as an educational

tool. However, one of the first research to study of the

implications of applying constructivism was

conducted by [7][8]. The author identified the

learning difficulties in students when they used a

what-you-see-is- what-you-get (WYSIWYG) word

processor. The author found that CS students lacked

a cognitive framework to guide them, in order to gain

knowledge from their regular interaction with a

computer. Second the computer presents an

accessible ontological reality. A number of

researchers have focused on this area. The InSTEP

[9] was developed to provide a constructivist learning

experience for computer engineering students as an

introductory course. His work demonstrated that

students who received feedback from the InSTEP

system needed minor help from teachers in learning

than the students who had no feedback from the

system. [10] developed a constructivist approach in

creating teaching material and guidelines for basic

coding classes. He echoed that constructivism theory

enhanced students’ understanding of the subject

material. Then, A pedagogical approach based on

constructivism was presented by [11] for teaching

object-oriented concepts for students. The research

indicated that students improved their problem-

solving skills and theoretical understanding of coding

concepts.[12], They conducted three case studies on

how real-life data can be used from constructivism to

teach the sorting algorithms, solve puzzles and

recognize groups from their multiplication tables.

[13] applied constructivism to demonstrate the

concept of ‘static’ in Java programs and why it is

often hard to understand. Another graphical

environment was presented by [14] to guide teachers

programmatically produce their teaching material

using constructivism theory.

2.2 COGNITIVE LOAD THEORY

This theory aims to create a conceptual framework of

how information is understood mentally by an

individual to achieve greater learning outcomes. [15]

presented a 4C/ID model for developing instructional

programs for complex skills acquisition. [16][17]

presented how cognitive load theory can assist

multimedia learning and the design of such software.

[18] developed a pedagogical design using cognitive

load theory and other theories for teaching Object

Oriented Coding concepts. [19] investigated the effect

of various strategies on the different learning

measurements for cognitive load theory to acquire

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

coding-knowledge especially loops acquired. [20]

presented case-study for particular coding concepts.

[21] The model was developed using the Cognitive

load and Human computer interaction principles.

However, not every researcher found cognitive load

theory useful in enhancing learning [22][23][24], there

has been some criticism. [25] raised some concerns

regarding the effectiveness of cognitive load theory in

a practical environment.

3. SURVEY METHODOLOGY

The aim of the survey is to understand the current state

of coding learning for beginners and identifying the

underlying pertinent issues with coding tools PL/IDE

and what kind of features required for interactive,

cognitive and intuitive IDE for beginners [26]. The

results will provide directions in research,

development, training, and strategies that will respond

to the needs of the academic courses. The survey was

sent by email, posted on social network and group

messaging through WhatsApp to a statistical sample

of 380 people. The sample was selected at random

order to ascertain reliability about the population. The

prior consent was taken, and the answers provided

were kept confidential and used for statistical purposes

and released in aggregate form only.

3.1 DATA QUANTIFICATION OF SURVEY

The findings presented here are based on an overall

34.6% return rate, 194 respondents. Even though an

average response was obtained, the findings of the

survey presented a clear trend towards the current

coding tools and its complexity while learning for

beginners, useful information about the respondent’s

first hand view and identified specific concerns while

learning coding. The results of the survey are

classified within the following four topics: Exposure

to coding, List of current PL/IDE usage, Advantages

and disadvantages of current coding tools; and

research directions.

Figure 2 : Questionnaire Population Classification

As it presents (refer to figure 2), students participated

overwhelmingly amounting to 70% that gave a clear

trend of their difficulties and challenges in learning

coding in existing teaching methodologies. There

were also 22.2% programmers who provided us some

insight about present IDEs and what can be done to

improve the current state. Among those respondents,

more than 58% of the population were exposed to

coding between 1-3 years that shows most of the

respondents were either familiar with the coding or

had some knowledge about it.

Figure 3 : i) Coding as a Subject, and ii)

Respondent’s domain

While selecting the population, authors decided to

select students from School to diploma, bachelors and

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

master to teachers and programmers. It gave a wider

perspective about how they see coding as a subject and

how to develop an effective methodology for

beginners (figure 3). Next chart spells out the

languages and environment they were exposed to for

the first time in their life. It explains today's teaching

curriculum that is exposing the students to complex

coding structures without building their base and

developing a basic understanding using natural coding

language. Majority of the respondents were excited to

learn coding, almost 89% but found it boring while

learning in class (figure 4). Surprisingly maximum

respondents cited part of a curriculum as their reason

for learning coding, some said they are using particular

IDE because their teachers said so while some

minority suggested they are learning only for exams

Figure 4 : i) Exposure to Coding and, ii) Reason for

choosing Environment/Tools

However, there were the majority of the respondents

who enjoyed coding as a subject and found Interactive

UI and Easy declaration one of the important features

for using any specific PL/IDE. One of the major

revelations was, more than 60% people found syntax

semantics in different environments confusing

including complex IDE and dull interface (figure 5).

They thought aforementioned are the main

disadvantages for the beginners.

Figure 5 : Advantages and Disadvantage of

Current PL/IDE

Figure 6 : i) Desired features of the PL/IDE and ii)

Learning Methods for coding students

When the author asked for desired features for

proposed PL/IDE, majority suggested having natural

language easy commands, step by step instruction to

write program and visual interface and some desired

intelligent hints while writing codes (refer to figure

6). When the author asked about their current mode

of teaching, the majority answered, they are learning

in traditional classroom setup or in labs or learning

from friends. Majority of the programmers said they

prefer to learn from video tutorials or getting help

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

from online communities. They were quite up to date

with their knowledge and wanted instantaneous help.

Figure 7 : i) Current Challenges in Coding courses

and ii) Fundamental issues for novices

In another question, respondents addressed their

challenges in the current course. Different syntax for

different coding environments was a major complaint

from almost 35% respondents while 21% opined

learning in the classroom is the most boring way to

learn coding. There were 15% who said they didn't

understand the teacher at all. Most beginners have

difficulty in learning coding in C and Java

environments, especially when they are beginning to

learn (refer to figure 7). Most students found

difficulty in basic understanding of the difference

between data types and variables. Hence, having an

instruction in natural language for the beginners can

be easy to understand and program. Many

participants said they knew the entire logic and steps

for the program but still they couldn’t create the

program. They were missing a basic understanding of

code.

When the author asked for important features they

would like to have in the proposed PL/IDE, majority

responses were simplified syntax, instant error

detection and visual way of coding (refer to figure 8).

It seems they were quite clear about what they would

prefer in a coding environment. Almost unanimously

all participants agreed that a Icon based visual coding

is a better way to get exposed to coding as it is a

cognitive and constructive way to learn it.

Figure 8 : i) Respondent’s suggestion for new

PL/IDE and, ii) User’s preference for Visual Coding

3.2 OPEN-ENDED INTERVIEW DISCUSSIONS

During the research, the author found little

information was available in the international

literature about the current status of introductory

programming education in India. India being the

largest software developer community, author

strongly believes that it is pertinent to take the stock

of the situation in India regarding programming. The

author interviewed 12 lecturers who were teaching

coding to beginners. As part of this research

methodology, open ended interviews were conducted

to get insight into the teacher’s challenges and took

their opinion about why it exists in today’s techno

savvy time and what should be done to resolve this

issue. Teachers were informed about the aim of the

research. During these interviews, author was

focused on specific issues:

i) The software tool that participants have used to

teach coding and their opinion on its

effectiveness;

ii) The problems that beginners face during

introductory coding courses, as per their

experience;

iii) The desired features for an educational coding

tool for teaching and learning introductory

coding.

The answers of all respondents were categorized per

question. More specifically, analysis was conducted

either by identifying common answers and emerging

patterns or by synthesizing all responses to produce

an aggregated response for a category.

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

During the discussion, majority teachers said that

educational coding languages used were QBasic, C,

Visual Basic and Java. The main disadvantages of

these languages are that the majority of these coding

languages (i) are too complex and (ii) provide

features beyond those that are required for

pedagogical purposes. In particular, they lack a user-

friendly environment, and their set of instructions is

too large. Thus, an unnecessary complexity is

imposed by the use of these tools. Many tutors said

that many students know the steps of a solution and

the commands, still they are unable to structure the

final program. They think this happens because

beginners seem to lack the knowledge and experience

of using coding commands to translate the steps of

the solution into a program. Other major problems

that beginners have are distinguishing the commands

they should use in a program and lacking knowledge

of how data types, arrays and functions should be

used. According to the interviewees, an educational

coding language suitable for teaching introductory

coding should have a set of desirable characteristics

in order to serve its educational purpose. The results

of the interviews revealed that this set should include

a visual environment, which would be simple to learn

and use, a small and simple set of instructions, easy

syntax close to natural language, and a visual

representation of coding elements. Concisely, a new

coding language and integrated development

environment should support the following features:

● GUI Environment, which will help and guide

students during the creation of programs;

● Simplified coding syntax;

● Structured visualization of basic coding

structures and examples;

● A small set of commands; and

● Documentation of the set of instructions and

supported features by the coding language and

development environment.

Overall, it took the author 14-16 weeks to complete

this process and collect 194 participants data that

helped to identify the aforementioned issues with the

current mode of learning especially for beginners.

Most respondents found traditional ways of learning

tedious and confusing and desired to have a tool that

would help the coding interactively in simplified

commands and instant error detection. The results

from Surveying and Open-ended interviews echoed

each other’s sentiment and identified the root causes.

4. THEORETICAL PROCESS FRAMEWORK

The basis of our framework is the understanding that

learning and teaching is a highly complex activity

that draws on many kinds of individual perception

and knowledge. In the realm of this research, the

importance of developing a framework goes well

beyond a coherent way of thinking about theoretical

learning concepts, Technological and pedagogical

integration [27]. Many scholars have argued that

knowledge about technology cannot be treated as

context-free and that a robust methodology requires

an in-depth view of how technology relates to the

pedagogy and theoretical contents [28] [29] [30].

While discussing the framework components and the

relationships between its contents, this research

proposes a framework that is based on Technological,

Theoretical and Pedagogical (refer to figure 9).

This framework focuses on integration of these

components that would develop a robust and

pragmatic conceptual framework to build a strong

research base. The author argued that a proposed

conceptual framework is, based on the relationship

between technology, theory and pedagogical

learning, can transform the conceptualization and the

practice of learning and teaching. It can also have a

significant impact on the kinds of research questions

that need to be explored. How this framework has

guided the proposed research and analysis of the

effectiveness in this pedagogical approach.

Figure 9 : Union of Theoretical, pedagogical and

Technological approach
The aim of this research is to present a theoretical

conceptual framework to develop an interactive

pedagogical interface for beginners to learn coding

using cognitive load and constructivism theories

(refer to figure 10).

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

Figure 10 : Top level Process framework

Figure 11 briefly explains the meaning of each

guiding design principles. This framework assists to

identify, employing seven guiding design principles.

 Figure 11 : Design Principles

5. EVALUATION OF THE VproEn

VProEn (Visualized Coding Environment) was

designed as a coding interface fulfilling all the above-

mentioned guiding principles (refer to figure 11).

Figure 12 presents this basic research design for

statistical evaluation.

Figure 12: Research experiment design

i) the VProEn model evaluation, ii) the impact of

such research on acquisition of a coding and level of

skills quality on new students and, iii) The

comparative study of proposed design model and

partially complied tool (refer to table 1).

Table 1: Key design for the two coding interfaces

used in the Quasi-Experimental Designs

The proposed research conducted a quasi-

experimental study to evaluate the efficacy of the

model. In the experiment, the first-year students were

divided into three groups S1 and S2 sizing

approximately 20 students each. To conduct the

experiment in class, all groups were asked to use

Turbo C and the VProEn as their coding interface.

The author distributed the teaching material,

classroom examples, homework and teaching herself

with the help of college. Moreover, the author was

actively involved in the process and monitored all

groups to gather unbiased data throughout the

experiment session. The coursework to learn coding

included First Theoretical notes about different

coding concepts, second illustration of coding

concepts in coding interface, Third Coding examples

for learning to apply in coding concepts and Fourth,

An exercise (refer to figure 12). In each coursework,

students have the option to learn coding either using

a nature language or the commands that were

provided in the coding interface.

First few commands were provided to them to

encourage and make them interested in learning by

giving easy exercise.

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

Figure 13 : Design of a Quasi-experimental
group study

The author had to keep in mind that this was the first

time that all his target population were learning to

code. At the same time, they may not have access to

software at their home. So, their productivity and

focus were very crucial. At the end of each session, the

author asked to return all the assignments and made

sure that they finished their exercise in the classroom

itself. There were two reasons for it, first students can

finish their coursework while learning it and second do

exercise while the concepts are fresh. After collecting

the data from the designed experiment, data

quantification was carried out.

The important objective for quantifying the data was

to verify the mediation analysis. Therefore, the results

gathered from quantifying the data were to identify: i)

coding interface can have impact on participant’s skill,

ii) Changes in the significant percentage of variance.

The author has decided to use following test that can

present the results are: (a) analysis of variance

(ANOVA), and (b) analysis of covariance (ANCOVA)

and, (c) hierarchical multiple regression (HMR) when

covariates should be included (Field, 2009). A

regression analysis was conducted for all covariates as

the internal parameter and the imperative-coding

scores as the external parameter, to identify the

important covariates. The only common significant

predictor in the three quantified data was Participant’s

lack of experience. when the coding interface was

included in the regression model of each

quantification, all covariates that were significant

before the inclusion ceased to be, with the exception

of Participant’s lack of experience (Refer to table 2).

Table 2: Regression Analysis of imperative-coding

The mediation quantification establishes whether the

independent variable (IV) has significant impacts on

the dependent variable (DV). The skill level of

imperative cognizance was quantified using a

number of parameters that was gathered from data

collection from participants' ability to predict the

outcome of codes, complete missing codes and

change existing programs. Before testing the user's

ability, all the concepts were taught to them and they

were already aware of each of these commands. The

difference in the group scores between VProEn and

Turbo C was small to medium (refer to table 3).

Table 3: Descriptive Statistics of the sample data
quantification

Note: Because not all students attended the test session,
sample size was reduced in VProEn group

Moreover, data quantification of the test scores

indicated that VProEn users appeared to perform

better than users of Turbo C in the following coding

aspects: i) Declaration of variables and use of input

and output commands, ii) Use of correct semantics,

iii) Identify the correct order and scope of the code,

iv) Executability of the code and correctness of

program execution. In nutshell, a significant

improvement was observed in VProEn users than

Turbo C users earlier but in the longer run no

significant evidence was found. The outcomes of

statistical assessment of collected data revealed that,

at the end of the study, first timer coders who used

VProEn tool fulfilling proposed design concepts

seems to have augmented neither a higher level of

coding skills nor richer logical models in introductory

coding than first timer coders who used Turbo C

fulfilling partial set of design concepts.

6. CONCLUSION

Many researchers suggested that learning

programming for novices has always been

demanding and frustrating. There were many reasons

identified in many researches including sometimes

lack understanding by the teacher, hesitant to ask any

questions; the subject is very complicated to

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

understand and, at times, it’s very boring to sit

through entire class if you don’t know how to read

and write the syntax of the code. Therefore, to

investigate such issues, this paper conducted an

extensive review of two important learning theories

that have a greater impact on learning while coding,

i) theory of constructivism and, ii) Constructive Load

Theory. After the thorough and critical review, this

research identified and presented seven guiding

principles for coding tool. As discussed, and

described, these principles are (i) Project

management, (ii) Abstraction of commands, iii)

Common syntax semantics, (iv) Visual presentation,

vi) User guidelines, (vii) Error detector and (viii) An

interactive IDE. From the review of the past

literature, some vital gaps in knowledge were

identified. First, many researchers have employed

constructivism and cognitive load theory into their

research, but this research proposes to integrate both

the learning theories for the design of educational

coding tools. Second, many researchers discussed the

set of design principles using aforementioned

theories but not many researchers have measured the

impact of such educational coding tools empirically.

Then, to gather quantitative data through survey,

targeting 360 population and collect qualitative data

using open ended interviews from 12 lecturers. The

results of the interviews revealed that this set should

include a visual environment, which would be

supportive and simple to learn and use, a small and

simple set of instructions, easy syntax close to natural

language, and a visual representation of coding

elements. Based on the data quantification and

critical investigation of no of research, this paper

proposes a theoretical process framework of a novel

methodology as a validation of these proposed

principles. The framework defines the relationships

between theoretical, pedagogical and technological

concepts. Data quantification of the test scores

indicated that VProEn users appeared to perform

better than users of Turbo C in the following coding

aspects: i) Declaration of variables and use of input

and output commands, ii) Use of correct semantics,

iii) Identify the correct order and scope of the code,

iv) Executability of the code and correctness of

program execution. In nutshell, a significant

improvement was observed in VProEn users than

Turbo C users earlier but in the longer run no

significant evidence was found. Furthermore, the

future work will contribute towards the development

of the coding tool to support different regional

languages. Evaluation of the model was carried out

using regression analysis. It will be done using real-

life data to develop a robust and novel methodology

in line with the proposed principles.

REFERENCES

1. Press Information Bureau, Ministry of

Electronics & IT, Government of India (2017),

http://pib.nic.in/newsite/PrintRelease.aspx?reli

d=162046

2. International Society for Technology in

Education. (2000). National educational

technology standards for students: Connecting

curriculum and technology. Eugen

3. Zhao, Y. (Ed.). (2003). What teachers should

know about technology: Perspectives and

practices. Greenwich, CT: Information Age.

4. PRAZERES, Cássio V. S.; PEIXOTO, Maycon

L. M (2013), “A Multimodal Interface for the

Discovery and Invocation of Web

Services”. INFOCOMP Journal of Computer

Science, Volume 12, Issue 2, p.p. 23-31.

Available at:

<http://www.dcc.ufla.br/infocomp/index.php/I

NFOCOMP/article/view/24>

5. Payal Gohel and Dr. Kishor Atkotiya (2017),

“An Investigation of Constructivism and

Cognitive Load Theory for Computer

Programming Tool”, International Journal of

Innovative Research in Computer and

Communication Engineering, Volume 5, Issue

9;

6. Ben-Ari, M. (1998). Constructivism in

computer science education. ACM SIGCSE

Bulletin 30(1), 257-261.

7. Ben-Ari, M. (2001). Constructivism in

computer science education. Journal of

Computers in Mathematics and Science

Teaching, 20(1), 45-73.

8. Odekirk-Hash, E. & Zachary, J. L. (2001).

Automated feedback on programs means

students need less help from teachers. SIGCSE

Bulletin, 33(1), 55-59.

9. Hadjerrouit, S. (2005). Constructivism as

guiding philosophy for software engineering

education. SIGCSE Bulletin, 37(4), 45-49.

10. Gonzalez, G. (2004). Constructivism in an

introduction to coding course.Journal of

Computing Sciences in Colleges, 19(4), 299-

305

11. Beynon, M. (2009). Constructivist computer

science education reconstructed.Innovation in

Teaching And Learning in Information and

Computer Sciences,8(2), 73-90.

12. Milner, W. W. (2010). Concept development in

novice programmers learning Java. PhD thesis,

The University of Birmingham, Birmingham.

13. Lee, Y.-J. (2011). Empowering teachers to

create educational software: A constructivist

approach utilizing etoys, pair coding and

http://pib.nic.in/newsite/PrintRelease.aspx?relid=162046
http://pib.nic.in/newsite/PrintRelease.aspx?relid=162046
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/24
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/24

Gohel Payal and Atkotia Kishor - A statistical evaluation of an interactive elementary programming model – A pedagogical approach

INFOCOMP, v. 19, no. 1, p.pp-pp, June 2020

cognitive apprenticeship. Computers &

Education, 56(2), 527-538

14. Van Merriënboer, J. J. G. (1990a). Instructional

strategies for teaching computer coding:

Interactions with the cognitive style reflection-

impulsivity. Journal of Research on Computing

in Education, 23(1), 45-53.

15. Van Merriënboer, J. J. G. & Kirschner, P. A.

(2007). Ten steps to complex learning: A

systematic approach to four-component

instructional design. Mahaw, New Jersey:

Erlbaum.

16. Mayer, R. E. & Moreno, R. (2002). Aids to

computer-based multimedia learning. Learning

and Instruction, 12(1), 107-119.

17. Mayer, R. E. & Moreno, R. (2003). Nine ways

to reduce cognitive load in multimedia

learning. Educational Psychologist, 28(1), 43-

52.

18. Caspersen, M. E. & Bennedsen, J. (2007).

Instructional design of a coding course: A

learning theoretic approach. 3rd international

workshop on Computing education research,

Atlanta, Georgia, USA.

19. Abdul-Rahman, S.-S. & du Boulay, B. (2014).

Learning coding via worked examples:

Relation of learning styles to cognitive load.

Computers in Human Behavior, 30(0), 286-

298.

20. Gray, S., Clair, C. S., James, R. & Mead, J.

(2007). Suggestions for graduated exposure to

coding concepts using fading worked

examples. 3rd international workshop on

Computing education research, Atlanta,

Georgia, USA.

21. Hollender, N., Hofmann, C., Deneke, M. &

Schmitz, B. (2010). Integrating cognitive load

theory and concepts of human-computer

interaction. Computers in Human Behavior,

26(6), 1278-1288.

22. Simon, B., Fitzgerald, S., McCauley, R.,

Haller, S., Hamer, J., Hanks, B. et al. (2007).

Debugging assistance for novices: A video

repository. ITiCSE on Innovation and

technology in computer science education,

Dundee, Scotland.

23. Teague, D. & Roe, P. (2008). Collaborative

learning: Towards a solution for novice

programmers. 10th conference on Australasian

computing education Volume 78, Wollongong,

NSW, Australia.

24. Hristova, M., Misra, A., Rutter, M. & Mercuri,

R. (2003). Identifying and correcting Java

coding errors for introductory computer

science students.SIGCSE Bulletin, 35(1), 153-

156.

25. Wiedenbeck, S., Ramalingam, V., Sarasamma,

S. & Corritore, C. (1999). A comparison of the

comprehension of object-oriented and

procedural programs by novice programmers.

Interacting with Computers, 11(3), 255-282.

26. Pane, J. F. & Myers, B. A. (1996). Usability

issues in the design of novice coding systems

(school of computer science technical report

cmu-CS- 96-132). Pittsburgh, PA: Carnegie

Mellon University.

27. Rajiv Chavada, Nashwan Dawood, Mohamad

Kassem (2012). Construction workspace

management: the development and application

of a novel nD planning approach and tool,

ITcon Vol. 17, pg. 213-236,

http://www.itcon.org/2012/13

28. Hughes, J. (2005). The role of teacher

knowledge and learning experiences in

forming technology-integrated pedagogy.

Journal of Technology and Teacher Education,

13(2), 277–302.

29. Lundeberg, M. A., Bergland, M., Klyczek, K.,

& Hoffman, D. (2003). Using action research

to develop preservice teachers’ beliefs,

knowledge and confidence about technology

[Electronic version]. Journal of Interactive

Online Learning, 1(4). Retrieved June 29,

2004, from

http://ncolr.uidaho.com/jiol/archives/2003/spri

ng/toc.asp

30. Neiss, M. L. (2005). Preparing teachers to

teach science and mathematics with

technology: Developing a technology

pedagogical content knowledge. Teaching and

Teacher Education, 21(5), 509–523.

http://www.itcon.org/2012/13
http://ncolr.uidaho.com/jiol/archives/2003/spring/toc.asp
http://ncolr.uidaho.com/jiol/archives/2003/spring/toc.asp

