Hash Tables with Pseudorandom Global Order

WOLFGANG BREHM

wolfgang.brehm @cfel.de
Coherent Imaging Division, CFEL,
DESY, NotkestraAe 85 22607 Hamburg

Abstract. Given a sorting of the keys stored in a hash table one can guarantee a worst case time com-
plexity for associations of O(log(n)) and an average complexity of O(log(log(n))) , thereby improving
upon the guarantees usually encountered for hash tables using open addressing. The idea is to use the
numerical order given by a hashing function and resolve collisions upholding said order by using in-
sertion sort on the small patches that inevitably form. The name patchmap has been devised for the
implementation of this data-structure and the source code is freely available.

Keywords: hash table, complexity analysis, c++

(Received February 20th, 2019 / Accepted June 22th, 2019)

1 Introduction

Hashmaps are an essential part of many algorithms as
they allow associative retrieval of n elements in aver-
age constant time and have a space complexity of O(n).
The key is associated to the value by computing a hash
function of the key and storing the key value pair in an
array at the position indicated by the hash. This posi-
tion is called bucket. As long as there are no collisions,
that is two different keys that produce the same posi-
tion, different hash map implementations are conceptu-
ally identical. This can be the case in the limit for an
infinitely large array or in the case of a perfect hash-
ing function. As memory is constrained and there can
be no one predetermined perfect hash function for ar-
bitrary keys the key step where different hash map im-
plementations differ is the resolution of hash collisions.
The better the hash collisions are handeled, the more of
them can be allowed to occur and the smaller the inter-
nal array can be. Different hash table implementations
are therefore to be judged by the tradeoff between mem-
ory required and the time to find, insert or delete a key
they offer.

Collision resolution strategies are commonly classi-
fied into open addressing and chaining. Chaining means
that each position in the array stores a pointer to another

data structure that stores all the entries with the same
hash value. Using a data structure with O(log(n)) worst
case lookup, insertion and deletion like a balanced tree
will yield strong worst case guarantees for all opera-
tions but low practical performance due to the high de-
gree of indirection and therefore likely cache misses.
Open addressing means that the address in the hash ta-
ble is not directly determined by the hash of the key
but “open”. The position to store an entry is found by
starting from the position indicated by the hash value
and then searching for a free bucket with some probing
strategy. For hash tables using open addressing the load
factor «, the ratio between elements in the table and
the total number of buckets, is the main determinant for
memory efficiency.

The idea to revisit ordered hash tables was inspired
by a scientific use case. Many large histograms needed
to be computed and the standard c++ hash table was
not able to hold all the elements it would have needed
to within the given memory constraints. The interim
solution was to use sorted arrays, which provided the
minimum possible memory footprint, but a higher time
complexity. The desire arose to interpolate between the
two solutions. A data structure that would act like a
sorted array when memory is tight and gradually more
like a hash map the more memory becomes available

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

Brehm

Hash Tables with Pseudorandom Global Order 2

would be the ideal solution.

The central idea of this publication is to use an or-
dering of the keys consistent with the hash value of the
key to resolve the collisions that occur in a hash table.
The hash function is chosen in a way that its application
to the keys will yield uniformly distributed numbers
even if the keys themselves are not evenly distributed.
Using sorting to resolve hash collisions has been sug-
gested before, most notably by Amble and Knuth [3].
The difference in the proposed algorithm is not using
the sorting given by the value of the key but the hash of
the key. This leads to a global order of the keys stored in
the hash table and therefore allows for efficient lookup
using interpolation search and binary search. Interpola-
tion search has the best average case and a binary search
provides the best worst case complexity for lookups in
a sorted array. This means that the lookup, success-
full or not, of a key will have a worst case time com-
plexity of O(log(n)), when done right, and an average
complexity of O(log(log((1 — a)~1))). These guaran-
tees are as good as for optimally ordered hash tables
[4ﬂ and stronger than the guarantees that most other
probing strategies can give for lookups [8]. And just
like for binary tree hashing, which approximates opti-
mal ordering, the faster lookups come at higher cost for
insertions of up to O(n) for a full table, but are constant
for tables that have a load factor less than 1. Note that
the probable worst case for advanced probing strategies
equally is O(log(n)) as it also approaches optimal or-
dering, and that robin hood hashing [2] with dynamic
resizing achieves the same worst case complexity with
exceedingly high probability, as the hash table can be
resized as soon as the maximum displacement is larger
than O(log(n)), but the iterative resizing is not guaran-
teed to terminate with O(n) space. Robin hood hashing
with dynamic resizing is sucessfully implemented in the
flat_hash_map and sherwood_map [9] of Malte
Skarupke for example.

2 The Algorithm

The key-value pairs are stored in an array of size m. A
binary mask of the same size is used to indicate whether
a bucket in the array is free or set.

The proposed algorithm requires a hashing function,
preferably bijective, an order on the keys to be stored
if the hashing function is not bijective and a mapping
function that compresses the range of the hash value
onto the range of the size of the array while preserving
the order of the hash.

The authors cauteously claim that the average complexity of suc-
cessfull lookups in an optimally ordered hash table are bounded by a
constant but give no proof or convincing simulations.

The hash function can be any function that maps the
keys onto positive integers less than some integer, but
as the resolution of collisions is essentially a variant of
linear probing it is crucial for good performance that the
hash values are evenly distributed. A hash function that
works well can be composed from a binary rotation and
two multiplications with uneven random integer con-
stants. The map function used is the multiplication of
the hash value with m and then dividing the result by
the maximum hash value plus one:

map(h) :=
return (hxm)
/(maximum hash value plus 1)

This can efficiently be computed for fixed width
integer types using long multiplication with two fixed
width integers of the same length or a simple multipli-
cation with a fixed width integer with double the size.
Note that the division for hash values that fill the full
range given by the digits is a simple shift of the digits
and does therefore not need to be computed explicitly,
this technique is known as fastrange [6].

Two types of comparisons need to be considered,
comparing keys with keys and keys with free bucket po-
sitions. When comparing two keys a key is considered
to be less if its hash value is less than the other or in case
the hash values are equal if the key itself is less than the
other key. When comparing a key to an empty position
it is considered to compare less if the application of the
map function to the result of the hash function of the
key is less than the position: position < map(hash(key))

As long as there have been no collisions the keys
stored in the hash table are already in the order given
by the hash value. The lookup depends on this order.
The operations for insertion and deletion should there-
fore be implemented in a way so they uphold this or-
der. This is achieved by finding the closest free bucket
starting from the position indicated by map(order(key)).
The key value pair is inserted into the free bucket and
then swapped with neighbouring entries until the order
of the hash table is restored. This procedure behaves
like linear probing in a complexity analysis and there-
fore needs the same number of probes, O(1+ (1 —a)~?)
The term i (ﬁ + a) has been found to describe
the required number of swaps wells. For a numerical
simulation see figure [3] Deletion works analogous to
insertion, but in reverse.

The procedure for inserting is conceptually identical
to the insertion step in Algorithm B in [S] with linear

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

Brehm

Hash Tables with Pseudorandom Global Order 3

probing, but instead of comparing the keys directly, the
hash value of the keys is being compared.

insert (key, value) :=
1. find the free position p

closest to map(hash(key))
2. mark p as set
3. insert the key value pair at p
4. while there is a key to the right
that is less
4.1 swap the keys
4.2 swap the values
4.3 p = p—1
5. while there is a key to the left
to which the key is less
5.1 swap the keys
5.2 swap the values
5.3 p = p+l
erase (key) :=
1. p := find(key)
2. while there is a key right of p

where map(hash(key))>position

2.1 move the key value pair left
2.2 advance p to the right
3. while there is a key left of p

where map(hash(key))<position
3.1 move the key value pair right
3.2 advance p to the left

4. mark p as free

Given a hash map where the keys are globally or-
dered an interpolation search can be employed to re-
trieve keys. Starting with the first and last element as
lower_limits and upper_limit respectively of
the array, the range is iteratively subdivided by linear
interpolation until the key at midpoint equals the key
that needs to be found or the range is empty or the
maximum number of iterations has been reached. If
the number of iterations exceeds O(log(n)) the search
switches to a binary search. Almost always the interpo-
lation search will terminate before that, but switching to
a binary search guarantees that the search will terminate
in O(log(n)).

For a table that has been filled completely the
average time complexity for key retrieval will be
O(log(log(n))) and the worst case time complexity will
be O(log(n)) as this case reduces to the search in a
sorted list of uniformly distributed integers. The algo-
rithm for inserting new keys behaves like linear probing

find_binary (key,
lower_limit ,
upper_limit) :=
1. midpoint :=
lower_limit
+(upper_limit—lower_limit+1)/2
2. if midpoint is set
and (key at midpoint =
then return midpoint
3. if (lower_limit = upper_limit)
then return not_found

key)

4. if key
is less than
midpoint
then upper_limit := midpoint
5. if midpoint
is less than
key to be found
then lower_limit := midpoint
6. goto 1
operation average worst case
insertion o1+ (1—a)7?) O(n)
deletion o1+ (1—a)7?) O(n)
lookup O(1 + log, (1 +logy (Z=2))) | Ology(n))

Table 1: Computational complexities for hash table operations in the
patchmap. a = % is the the load factor, m the number of buckets
and n the number of elements stored in the table.

in the way that primary clustering occurs. The com-
plexity for lookup with a linear search would therefore
be (1 + (1 — a)~1) for a successfull lookup and at
most one probe more for an unsuccessfull search, as
just like in [5] for algorithm B the search can be con-
cluded as soon as a key outside of the search range is
encountered.

However the proposed hash table is in a global or-
der, made up of small patches that are ordered inter-
nally and with respect to each other. This means probe
positions can be interpolated from the keys at the up-
per and lower limit starting from the beginning and end
of the table reducing the number of probes required for
lookups to 1 + logy (1 + logy (252)). The exact term
depends on implementation details like the way the po-
sition is interpolated. For a numerical simulation see
figure

Simulations seem to indicate that constructing a full
patchmap by successively inserting new keys scales
like O(n?2). But a full pat chmap can be trivially con-
structed by sorting the keys directly in hash order, en-
suring a complexity of O(n log(n)).

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

Brehm

Hash Tables with Pseudorandom Global Order 4

find_interpol (key) :=

1. lower_limit := 0

2. upper_limit := m — 1

3. midpoint := map(hash(key))
4. 1 :=0

5. if midpoint is set

if (key at midpoint =
then return midpoint
6. if (lower_limit = upper_limit)
then return not_found
7. if (key to be found)
is less than
(midpoint)
then upper_limit :=
8. if (midpoint)
is less than
(key to be found)

key)

midpoint

then lower_limit := midpoint
9. i := i+1;
10. if (i > 2 log2(n+1))

then return find_binary (

key ,
lower_limit ,
upper_limit)

11. interpolate midpoint linearly
12. goto 5

operation average Worst case

insertion o1+ (1—a) b O(n)

deletion | O(1+ (1 —)~ 1) O(n)

lookup o1+ (1—-—a)™H O(n)

Table 2: Computational complexities for hash tables using double

hashing. o = % is the load factor, m the number of buckets, n the

number of elements stored in the hash table.

3 Results

Using the proposed algorithm a hash table can be im-
plemented that has a good tradeoff between memory re-
quirement and time used for lookup, insertion and dele-
tion. The average time for inserting into, deleting from
and searching for a key that has 50% chance of being in
the table has been computed for up to 227 keys, for hash
tables mapping from 32 bit integers to 32 bit integers.
The tests were carried out on a 64 bit linux machine
with an Intel Core i5-3320M CPU @ 2.60GHz and a
CAS latency of 13.5ns.

The patchmap was compared to khash from at-
tractivechaos klib [1]], Malte Skarupke’s bytell [10]
and his flat_hash_map [l1] using robin hood
hashing, google: :sparsehash from the public
github release, sparsepp [7], a sparsehash fork and

Step 0, the patch before insertion:

key X |62 |5]7|19]3]6]x]x

hash | x | 1 |2 |3 (3[4 |5|6]|x]|x

mask (O [L |1 (1|1 |1]|1]1]0]|O
Step 1, inserting key 1 with hash 5 into a patch:

key X |62 |5]7|19]3]6]1]«x

hash | x [1 |2 |3 (3|4 |5]|6 X

mask (O [L |1 (1|1 |1|1]|1]1]0O
Step 2, restoring the order in the patch:

key x| 625|719 1]3]6

hash | x | 1 [2|33][4 |5|5|6]|x

mask [O [L |1 (1|1 |1]|1|1]1]0O

Figure 1: Three step scheme of inserting the key 1 with the hash value
5 into a patch in the pat chmap. The hash function is non bijective.
The map function in this example is the identity function. The key
1 is inserted at the position closest to map(hash(key))=5, which is
position 8, then it is swapped to the left until the order of the patch is
restored.

std: :unordered_map. All executables were com-
piled with the highest optimization level and using
clang version 7.0.1.

From figure 2]it can be seen that the patchmap sits
right at the apparent invisible barrier outlined by other
good hash map implementations like khash, bytell
and google: :sparsehash on a map of memory
usage and time efficiency. This broad comparison can-
not capture all aspects of hash table performance and
it is unfair in several regards. The comparison to the
std: :unordered_map is unfair, as it has to adhere
to the c++ standard requiring that references to ele-
ments stay constant for all hash table operations. The
hash tables sparsepp and google: : sparsemap
are designed to minimise the peak, not the average,
memory consumption instead. Deleting elements from
the table is done by marking elements as deleted in-
stead of actually removing them from the table in all
implementations except the patchmap, bytell and
std: :unordered_map. This saves time in the short
run, but having deleted elements still in the table can
lead to a degradation of performance if these elemets
are allowed to accumulate. Such behavior can be trig-
gered by repeatedly inserting and erasing many keys,
see table[3] but it is considered rare in real world appli-
cations.

4 Availability

An implementation of the patchmap as outlined in this
paper is available on github under an unmodified MIT
license:
https://github.com/lykos/ordered_patch_map

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

Brehm

Hash Tables with Pseudorandom Global Order 5

300 T T T T

250 | <& E
200 | .
150 | E

100 | ° |

time for lookup [ns]

0 0.2 0.4 0.6 0.8 1
memory efficiency

(@)

700 : : : :
600 | o) 1
500 |- < 1
400 | o 1
300 |- 1
200 | + 1
100 | o 1

0 L L L
0 0.2 0.4 0.6 0.8 1

memory efficiency

(b))

time for insertion [ns]

400 , , , ,
350 | :
300 | :
250 | o o .
200 | .
150 | °]
100 |

time for deletion [ns]

O I I I
0 0.2 0.4 0.6 0.8 1

memory efficiency

(0)

Figure 2: Selected hash table implementations and their perfor-
mance given in average memory efficiency on the horizontal axis
and average time for lookup, insertion and deletion of a random key
in nanoseconds on the vertical axis, computed for up to 227 keys.
Insertion contains the time needed for dynamic expansions.
patchmap: [B khash: X, bytell:
4+, google: :sparse_hash_map: O,
google::dense_hash _map ¢, flat_hash_map: A,
std: :unordered_map: <, sparsepp: O

There are two points for the pat chmap - one optimized for memory
efficiency and one for speed.

hash table slowdown | rehasing
patchmap no none
bytell no none
std: :unordered_map no none
flat_hash_map no none
sparsepp minor frequent
google: :sparse_hash_map | minor frequent
google: :dense_hash_map severe rare
khash severe occasional

Table 3: Performance degradation of hash table implementations
when keys from a fixed set are repeatedly chosen at random and then
alternatingly inserted or deleted from the hash table to show the effect
of many dead keys in the table.

number of operations
N
‘

3 L

2 -
insertion

1 lookup 1
1+}(a(1-0(%' +a)/4 ——

0 1+logy(logy(a/(2-2a))+1)+1) ------

0 0.2 0.4 0.6 0.8 1

load factor

Figure 3: Average cost for insertion and lookup in the hash map
as it is being filled up with 228 pseudorandom keys. Insertion
(in red) shows a strongly quadratic behavior and the function 1 +

% (ﬁ + a) is indicated with a solid black line. Lookup (in
blue) is almost linear in o and shows a steep increase only for load
factors close to 1. The theoretically derived complexity bound for
lookup 1 + log, (logQ(;_;;;) + 1) is indicated with dashed black

line.

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

Brehm

Hash Tables with Pseudorandom Global Order 6

5 Discussion

While chaining hash tables can achieve better or at least equal
bounds on the complexity of all hash table operations it comes
at the cost of a higher degree of indirection and an additional
overhead to storing the pointers to the secondary data struc-
ture containing the elements with the same hash value. This
is why in practice chaining usually performs worse in terms
of memory efficiency and speed. Of the hash tables using
open addressing the pat chmap offers the tightest worst case
bounds for lookup but double hashing and other advanced
probing strategies achieve better run time complexities for in-
sertion and deletion. Probing strategies that approximate an
optimal arrangement at a higher cost of insertion like Robin
hood hashing in conjunction with double hashing [2]] [3], bi-
nary tree hashing [4] and the algorithm presented here seem to
have the same average case complexity for lookups, equally
asymptotically approaching optimality. In practice however
the mask structure and the cache-friendly linear access pat-
tern of the patchmap allows to effectively lower the con-
stants associated with insertion and deletion and seems to be
a good compromise for medium high load factors of around
83%. The fact that the patchmap can perform lookups
quickly even when it is very full could make it suitable for
use cases where memory is constrained and the hash table
itself is virtually static. Other than that the performance char-
acteristics of the patchmap mean that there are some cases for
which it is the optimal choice in general. The quadratically
increasing costs for inserting and deleting elements when the
patchmap fills up limit its utility where memory is very con-
strained and insertion and deletion are frequent.

Sorting based on the hash is almost identical to robin hood
hashing with bidirectional linear probing. When deciding
which key to displace and which to keep at a given position,
the larger key will also be displaced more than the smaller key.
The key difference is that when ensuring an absolute order a
guarantee can be given for the worst time complexity because
a binary search can be employed.

6 Acknowledgements

This research was undertaken alongside my research activi-
ties in crystallographic data processing under Professor Henry
Chapman. While the requirement to generate very large his-
tograms promted the inception of this algorithm, I am very
grateful for the freedoms I am enjoying in the Coherent Imag-
ing research group and that I was able to pursue the develope-
ment of the algorithm as well.

References
[1] attractivechaos. klib, 2018.

[2] Celis, P. Robin Hood Hashing. PhD thesis, Waterloo,
Ont., Canada, Canada, 1986.

[3] Devroye, L., Morin, P., and Viola, A. On worst case
robin-hood hashing, 2004.

(4]

(3]

(6]

(7]
(8]

(9]
(10]

(11]

Gonnet, G. H. and Munro, J. I. Efficient ordering of
hash tables. SIAM Journal on Computing, 8(3):463—
478, 1979.

Knuth, D. E. and Amble, O. Ordered hash tables. The
Computer Journal, 17(2):135-142, 01 1974.

Lemire, D. Fast random integer generation in an inter-
val. CoRR, abs/1805.10941, 2018.

Popovitch, G. sparsepp, 2019.

Ramakrishna, M. An exact probability model for finite
hash tables. In Proceedings. Fourth International Con-
ference on Data Engineering, pages 362-368. IEEE,
1988.

Skarupke, M. I wrote the fastest hashtable, 2017.

Skarupke, M. A new fast hash table in response to
googleds new fast hash table, 2018.

Skarupke, M. flat_hash_map, 2018.

INFOCOMP, v. 18, no. 1, p. 20-25, June, 2019.

	Introduction
	The Algorithm
	Results
	Availability
	Discussion
	Acknowledgements

