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Abstract. Bad smells are symptoms that something may be wrong in the information system design
or source code. Although bad smells have been widely studied, we still lack an in-deep analysis about
how they appear more or less frequently in specific information systems domains. The frequency of
bad smells in a domain of information systems can be useful, for instance, to allow software developers
to focus on the more relevant bad smells of a certain domain. Moreover, developers of new bad smell
detection tools could take information about domains into consideration to improve the tool detection
rates. In this paper, we investigate code smells more likely to appear in six specific information systems
domains: accounting, e-commerce, health, games, dictionaries and restaurant. Our analysis relies on 88
information systems mined from GitHub. We identified bad smells with two detection tools, PMD and
Checkstyle. Our findings suggest that COMMENTS is a domain-independent bad smell since it uniformly
appears in all investigated domains. On the other hand, LARGE CLASS and LONG PARAMETER LIST can
be considered domain-sensitive bad smells since they appear more frequently in accounting and health
systems, respectively. Although less frequent in general, SWITCH STATEMENTS also appear more in
health systems than in other domains.
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1 Introduction

A bad smell is any symptom that may indicate a deeper
quality problem in the information system design or
source code [7]. Bad smells are considered expensive
because they represent poor solutions that hinder soft-
ware maintenance tasks [5]. Several factors may con-
tribute to the addition of bad smells in information sys-
tems. For instance, software developers can introduce
a bad smell due to their wrong understanding of the
system context, including misunderstanding of domain-
specific requirements. In fact, previous works suggest
that software quality and the presence of bad smells

may depend on the information system domain [3, 5].
However, code smell detection tools ignore information
related to the system domain [8].

Many studies have been published in the literature
on code smells and their detection strategies [1, 4, 18].
However, the relationships between bad smells and in-
formation systems domains have been little studied so
far. Most research that investigates bad smells in sys-
tems domains reports only on preliminary small-scale
studies [3, 5, 8]. In addition, they found conflicting
results. For instance, Fontana et al. [5] identified
that DUPLICATE CODE, DATA CLASS, LARGE CLASS,
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and LONG METHOD are in general most common, but
at the domain level, significant differences among bad
smells were not observable. On the other hand, Linares-
Vasquez [13] found that some bad smells are common
in all domains while others, such as BLOB (see in [15]),
are more common in certain domains (e.g., Science and
Education).

It is important to know how frequent a bad smell
is in a domain for several reasons. For instance, this
information could help developers of information sys-
tems to focus their attention on the smells that mostly
contribute to the deterioration of the source code qual-
ity. It can also help the development of new bad smell
detection tools with better detection rates since differ-
ent domains may require different detection strategies.
Therefore, if the frequency of bad smells significantly
varies by domains, then it is important to report such
variations and to understand why they occur.

This paper describes an empirical study on the
detection of bad smells, aiming at identifying the
most frequent smells in different domains of infor-
mation systems domains. We perform an analysis
on 88 object-oriented Java information systems mined
from GitHub of 6 different domains: accounting, e-
commerce, health, restaurant, games and dictionar-
ies. We rely on PMD [5] and Checkstyle1 to detect 6
types of bad smells in the target information systems.
The detected bad smells are LARGE CLASS, LONG
METHOD, LONG PARAMETER LIST, SWITCH STATE-
MENTS, COMMENTS, and DEAD CODE.

From our findings, we can classify the bad smells in
2 groups, namely: (i) domain-sensitive bad smells, that
appear more frequently in some domains than in others
and (ii) domain-independent bad smells, that appear in
all domains with no significant difference. For instance,
COMMENTS is a domain-independent bad smell since it
uniformly appears in all investigated domains. On the
other hand, LARGE CLASS can be considered domain-
sensitive bad smells since it appears more frequently in
accounting systems. In this study, we also observe that
LONG PARAMETER LIST and SWITCH STATEMENTS
have lower values of frequency when compared to the
other bad smells. Although less frequent, LONG PA-
RAMETER LIST and SWITCH STATEMENTS are more
common in health systems than in other ones.

This paper is an extension of a previous work [22],
where we performed a preliminary study in order to
identify the frequency of occurrence of different bad
smells in systems from different information system do-
mains.

The current work brings many additional contribu-

1http://checkstyle.sourceforge.net/

tions. Here, we analyze a larger number of systems,
previously we had 52 and now we have 88 systems.
In addition, we also included two new domains, games
and dictionaries. In this way, we perform our analy-
sis over 88 Java systems mined from GitHub. Also,
we now use two completely automated detection tools
(PMD and Checkstyle), instead of one, to identify bad
smells within the systems, what brings more reliability
to our results, since we have more than one source of
information regarding the detection of bad smells.

The remainder of this paper is organized as follow.
Section 2 presents a background to support the com-
prehension of our work. Section 3 presents the config-
urations of our study. Section 4 reports and discusses
the obtained results. Section 5 indicates the threats to
the study validity. Section 6 discusses related work. Fi-
nally, Section 7 concludes our study and discusses some
points for further work.

2 BACKGROUND

In this section we define the bad smells used in this
study and the strategies for detecting bad smells.

2.1 Bad Smells

Bad smells are symptoms that may indicate a deeper
quality problem in the information system design or
code [7]. A bad smell may have been caused by
poor design choices or by misunderstanding of domain-
specific requirements [7, 9, 19, 20]. Bad smells are
often associated with increasing in development and
maintenance costs since it is harder for software de-
velopers to modify and evolve an information system
that contains many bad smells [19]. Fowler [7] de-
fined a set of 22 bad smells and we selected 5 among
them, because previous studies have shown that they
are very common in information systems. We also in-
cluded DEAD CODE in this study since it is one of the
most studied and used bad smells [2]. Table 1 presents
a brief definition of each bad smell considered in this
study. The definitions are in accordance with Fowler
[7] and Lanza et al. [12].

During the process of choice of these bad smells we
also took in account that they can be automatically de-
tected by one of the tools we used: PMD and Check-
style. In total, our analysis relies on 6 types of bad
smells: LARGE CLASS, LONG METHOD, LONG PA-
RAMETER LIST, SWITCH STATEMENTS, COMMENTS,
and DEAD CODE.
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Table 1: Types of bad smells

Bad Smell Definition

LARGE CLASS It defines a class that tends to centralize the intelligence of the system, for instance,
with several methods and attributes. It usually has an excessive code size.

LONG METHOD It is a method too long in Lines of Code so it is difficult to be understood and
changed. In general, it tends to centralize the functionality of a class, similarly to
a LARGE CLASS.

COMMENTS It occurs when large blocks of comments, written to explain poorly implemented
code snippets

DEAD CODE Code that has been used in the past, but is not currently used
LONG PARAMETER LIST It occurs when the parameter list in a method is too long and thus difficult to un-

derstand.
SWITCH STATEMENTS Identified when the same switch statement (or “if. . . else”, statement) is scattered

in a program in many different places.

2.2 Detection Strategies and Tools

There are several techniques to identify bad smells
[1, 11, 16]. Bad smells can be detected in source code
by either using manual or automated analysis. Tools
support automated analysis relying usually on different
detection strategies, such as software metrics [12, 16]
and program slicing [10]. This variety of strategies al-
lows detection of different types of bad smells. How-
ever, it is important to highlight that, as far as we are
concerned, existing bad smell detection tools do not use
information related to domain of the information sys-
tems [5]. In this paper, we used 2 bad smell detection
tools: PMD and Checkstyle. Their characteristics can
be verified in Table 2 and are detailed as follows.

PMD is an open-source tool for Java and an
Eclipse plug-in. It searches for potential issues in the
source code, such as DEAD CODE, empty try/catch
blocks, LONG SWITCH STATEMENTS, UNUSED LO-
CAL VARIABLES, and OVER COMPLICATED EXPRES-
SIONS. Moreover, PMD allows the user to set parame-
ters to customize its detection strategies [6, 14, 17]. In
our study, however, we rely on the default configuration
of both tools.

Checkstyle is an open-source tool that automati-
cally identifies 4 bad smells [4]: LARGE CLASS, LONG
METHOD, LONG PARAMETER LIST and DUPLICATED
CODE. Similarly to PMD, Checkstyle uses software
metrics and thresholds to detect bad smells. PMD
and Checkstyle were selected because are available for
download and are free for use. Besides, both tools
have been actively developed and maintained [6]. Other
studies on bad smells have also used these tools [1, 4].
Table 2 presents information about the selected tools.

3 Study Settings

This section describes an empirical evaluation to
identify domain-sensitive bad smells. For this purpose,
we designed an exploratory study conducted based
on guidelines for empirical studies [23]. Section 3.1
presents the study goal and research questions designed
to guide our study. Section 3.2 describes the phases to
evaluate our study. Finally, Section 3.3 discusses the
steps for collecting the target information systems from
GitHub.

3.1 Goals and Research Questions

The main goal of this study is to analyze the occurrence
of bad smells in information systems from the follow-
ing domains: accounting, e-commerce, health, games,
dictionaries and restaurant. We are interested in assess-
ing the domain-sensitive bad smells and the domain-
independent ones. For this purpose, we conceived the
following research questions (RQs) to guide our study.

RQ1 What are the most frequent bad smells in each in-
formation system domain?

RQ2 What are the domain-independent bad smells?

Through RQ1, we are interested on investigating
the feasibility to identify and list the bad smells that
are more common within the selected domains. On
the other hand, with RQ2, we aim to identify and cat-
alog bad smells that uniformly appear regardless the
software domain, i.e., those bad smells that have high
chance to occur in many application domains with no
significant difference.
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Table 2: Bad smells Detection Tools

Features Checkstyle PMD
Type Eclipse plug-in and Standalone Eclipse plug-in and Standalone

Version 7.5 / 2016 5.5.4 / 2017

Supported Languages Java
C,C#,

C++, JAVA
PHP and 11 others

Bad Smells Detected
Large Class, Long Method,

Duplicated Code, and Long Parameter List

Dead Code, Comments, Large Class,
Long Method, Duplicated Code, and

Long Parameter List

3.2 Evaluation Phases

To answer the research questions presented in Section
3.1, we designed a study composed of four phases
presented in Figure 1. Each phase is discussed as
follows.

Figure 1: Study Phases

Phase 1) Data Set Mining - We searched for in-
formation systems sorted by stars in GitHub. Stars are
a meaningful measure for repository popularity among
the platform users, and they may be used to support the
selection of well evaluated projects. To retrieve the in-
formation systems, we used some keywords such as:
accounting, e-commerce, electronic commerce, hospi-
tal, infirmary, restaurant, game and dictionary. Section
3.3 presents the data set extraction in more details.

Phase 2) Bad Smell Selection - We selected 6 types
of bad smells: LARGE CLASS, LONG METHOD, LONG
PARAMETER LIST, SWITCH STATEMENTS, COM-
MENTS, and DEAD CODE. This selection was adopted
because previous studies have shown that they are very
common in information systems and the results ob-
tained by these studies are conflicting [5, 13]. There
is, also, a lack of an in-deep analysis of these smells
according to the system domains, trying to establish
a relationship between them. In addition, these bad
smells can be automatically detected by the tools we
used: PMD and Checkstyle.

Phase 3) Identification of bad smells - In order to
make the analysis of a large number of system feasible,
we automated the two detection tools. Therefore, we
only need to define the detection rules in a .xml file for
each tool, so that we can determine specifically which

bad smells the tools are able to identify. We then exe-
cute both tools passing the .xml file containing the rules
and the directory where the systems are located. The
tools’ output consists of a .csv file with the identified
bad smells.

Phase 4) Analysis - We cloned the information sys-
tems of the six domains from GitHub. We then run
the two tools and compute their output results. Each
bad smell from each domain was stored in spreadsheets
so that we could calculate the occurrences by domain,
with the aim of identifying the more frequent bad smells
(domain-sensitive) and the domain-independent ones.

3.3 Data Set Mining

To evaluate our study, we chose systems from the men-
tioned domains for several reasons. First, these infor-
mation systems, in general, are intuitive systems and
easy to evaluate. Second, there is a large number of
these systems available for download in GitHub. Third,
since the selected systems are within well-defined do-
mains, we believed that it would be easy to identify
domain-specific requirements that influence the num-
ber of bad smells. The systems that compose our data
set were retrieved from GitHub repositories in October
2016. We performed 5 steps to collect the information
systems from GitHub, as indicated in Figure 2 and de-
scribed as follows.

Figure 2: Steps for Collecting Systems from GitHub

In step (1), we performed a preliminary search to
evaluate the feasibility of collection of the selected in-
formation systems. In step (2), we define appropriate
search strings per domain since there is a diverse ter-
minology to represent the same software domain on
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GitHub. For instance, we may refer to the e-commerce
domain as ecommerce, without hyphenation. Thus, to
collect the information systems that compose our data
set we developed an algorithm to search automatically
within GitHub. Since the goal of our study is to detect
bad smells from different information systems, given
large system sets per domain, we defined the search
strings presented in Table 3.

Table 3: Search string per domain

Domain Search String
Accounting Accountancy OR Accounting
Restaurant Restaurant OR Eatery OR Restaurants

Health Hospital OR Infirmary OR Health
Games Game OR Games

Dictionaries Dictionary OR Dictionaries
E-Commerce E-Commerce OR Ecommerce OR

Electronic Commerce

In step (3), we run the algorithm, as mentioned in
the step (2) to clone the information systems to a lo-
cal storage. This step is necessary, because we know
that several systems are hosted in GitHub and a man-
ual cloning would be infeasible. From the previous
steps, it was possible to obtain 600 information sys-
tems, 100 for each domain sorted in descending order
by stars. Here, we complement the previous study [22],
where we obtained 400 systems. Therefore, in this
work we extended our dataset to 600 systems, down-
loading 200 additional systems. In step (4), aiming at
restricting our data set in order to obtain the most rele-
vant systems, we applied the following exclusion crite-
ria: First, non-Java information systems (remaining 480
systems), since GitHub does not verify automatically
the main programming languages of the systems and
the selected tools are specific to Java programming lan-
guages. Second, projects developed for Android plat-
form (remaining 230 systems), because Android sys-
tems tend to have a different architectural design and
code implementation when compared with traditional
Java systems. Third, systems with less than 1,000 lines
of code (remaining 88 systems). After applying the
filters presented in step (4), we obtained 88 systems.
Therefore, in step (5), our data set is finally composed
by 88 Java information systems to support the identifi-
cation of the bad smells. The number of systems from
each domain varies from 10 to 20.

To better characterize our data set, we computed the
metrics from Metrics2 plug-in. Table 4 presents the
following metrics computed per domain: lines of code
(LOC), number of classes (NOC), number of methods
(NOM) and number of attributes (NOA), respectively.
The presented values correspond to the sum of each

2http://metrics.sourceforge.net/

metric for the respective domain. As we can see, the
dictionaries domain is the biggest one in code size, hav-
ing more than 365 KLOC, while restaurant is the small-
est one, with less than 51 KLOC.

Table 4: Data Set Characterization

Software
Domains # Systems LOC NOC NOM NOA

Accounting 12 74,180 472 5,832 4,567
E-commerce 19 57,366 832 5,531 2,277

Health 14 237.738 1.506 14,596 6,227
Games 14 235,254 3.496 24,605 9.815

Dictionaries 14 365,455 3,685 38,333 15,306
Restaurant 15 50,105 531 4,525 2,307

4 Results

This section presents the results and analysis. We an-
alyzed 88 Java systems mined from GitHub from ac-
counting, e-commerce, health, games, dictionaries and
restaurant domains. Six bad smells were analyzed in
these systems with the PMD and Checkstyle detection
tools. We organize our discussion in four parts. Section
4.1 presents an overview of the detected bad smells in
our data set. Section 4.2 discusses the percentage of
systems with bad smells found in each domain. Sec-
tion 4.3 analyzes the percentage of occurrence of each
bad smell according to the entity which the smell is re-
lated to. For example, the percentage of LARGE CLASS
is related to the total number of classes within the do-
main, the percentage of LONG METHOD and LONG PA-
RAMETER LIST are evaluated according to the number
of methods in the domain since these bad smells are
related to methods, and so on. Finally, Section 4.4
presents a joint frequency analysis by systems and by
entities.

4.1 Overview

In order to understand how the bad smells are dis-
tributed over our dataset, we first investigated all sys-
tems from all domains together. Figure 3 shows the
percentage of systems with each bad smell in all do-
mains. Data in this figure show that four (out of six)
kinds of bad smells are very common in the selected
systems, being identified in more than 50% of the sys-
tems. In fact, we detected COMMENTS in all systems
of our data set, so this is the most common bad smell in
all the systems.

According to our data, the second most common
bad smell is DEAD CODE. This bad smell was detected
in approximately 78% of the systems in all domains.
LARGE CLASS and LONG METHOD are also very
common since they could be found in about 67% and
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64% of the systems, respectively. On the other hand,
LONG PARAMETER LIST and SWITCH STATEMENTS
are the least frequent bad smells, appearing, respec-
tively, in about 29% and almost 41% of the systems.

Figure 3: Percentage of Systems with Bad Smells

4.2 Frequency Analysis by Systems

With the aim of identifying which bad smells are more
common in each domain, we conducted a detailed study
on the frequency of each selected bad smell in sys-
tems of specific domains. Figure 4 presents the six
bad smells and their frequency in each domain. It is
important to note that we excluded COMMENTS from
this analysis because we observed that it is highly fre-
quent in all domains (Section 4.1). In fact, COMMENTS
was found in all systems of every domain, therefore its
frequency is 100% for all domains. Although highly
frequent, COMMENTS may not be considered a serious
problem because someone could argue that they do not
directly affect the system behavior. However, according
to Fowler [7], COMMENTS may be used to hide a pos-
sible bad design and that is why we decided to include
it in our analysis.

Apart from COMMENTS, LARGE CLASS and LONG
METHOD are the most frequent bad smells in account-
ing, games and health systems. In fact, LARGE CLASS
is present in 92% of accounting systems, in 86% of
games systems and in about 71% of health systems.
Similarly, LONG METHOD was identified in 92% of
accounting systems and 93% and 71% of games and
health systems, respectively. It is interesting to see,
however, that these two bad smells are not so common
in the other domains. That is, LARGE CLASS could
only be found in 47% of e-commerce and restaurant
domains and about 70% in dictionaries, while LONG
METHOD was found, respectively, in 47%, 40% and
about 55% for these domains. Therefore, it is clear that

both LARGE CLASS and LONG METHOD seem to be
domain-sensitive bad smells with the highest frequen-
cies in accounting, games and health domains, and low
frequencies in the other domains.

Figure 4 also shows interesting results for LONG
PARAMETER LIST. PMD and Checkstyle found this
bad smell in about 58% of systems in the health
domain. On the other hand, only 29% of games and
dictionaries systems have LONG PARAMETER LIST,
while the other domains have frequency even lower.
This large difference suggests that LONG PARAMETER
LIST is a domain-sensitive bad smell with the highest
frequency in health systems. Our data so far do not
allow us to say whether DEAD CODE and SWITCH
STATEMENTS are domain-independent or domain-
sensitive bad smells since they do not present such
large difference in frequency of occurrence among all
domains.

Figure 4: Frequency of Bad Smells in Software Domains

4.3 Frequency Analysis by Entity

The previous section presented the percentage of sys-
tems with a bad smell in each domain. However, a bad
smell may appear in most systems of a domain, but in
only a few parts of these systems. That is, it could be
rare in classes of a system, although some instances ex-
ist in most systems.

To address this point, this section analyzes the fre-
quency of occurrence of each bad smell with respect to
the entity with which the smell is related to. Since the
analyzed bad smells have different granularities (e.g.,
class-level and method-level), we have different enti-
ties. For instance, if we are analyzing the frequency
of LARGE CLASS, we have to divide the number of
smells by the number of classes. The information about
the frequency by entity and the frequency by systems
complement each other to support stronger conclusions
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about domain-sensitive bad smells.
The entity is defined according to each bad smell. In

this way, we have the frequency of LARGE CLASS eval-
uated in relation to the number of classes (NOC), which
is our first entity. Since the smells LONG METHOD and
LONG PARAMETER LIST are related to the method en-
tity, their frequency is calculated according to the num-
ber of methods (NOM) within the domain. Finally,
SWITCH STATEMENT and DEAD CODE have no re-
lation with a specific entity and then we obtain their
frequency of occurrence according to their distribution
within the code using KLOC.

In order to evaluate the frequency of LARGE CLASS
related to the class entity for each domain, we first count
the total number of LARGE CLASS in a domain and then
we divide this number by the total number of classes.
This procedure is done for every domain separately and
the results are presented in Figure 5.

Figure 5: Frequency of LARGE CLASS in Domains by Entity

Data in Figure 5 show that LARGE CLASS has
the highest frequency of occurrence in the accounting
domain, followed by the health one, in comparison to
other domains. In fact, it is present in approximately
0.14 (14%) of the classes of accounting and 0.13 (13%)
of the classes of health systems, i.e., 14% of the classes
of accounting and 13% of the classes in health domain
are LARGE CLASSES.Dictionaries and restaurant have
about 7% and 5%, respectively, of LARGE CLASSES,
while games and e-commerce present the lowest values
of frequency (about 3% and 2%, respectively). The sig-
nificant difference between accounting and health and
the other domains suggests that LARGE CLASS is a
domain-sensitive bad smell appearing more frequently
in the accounting and health domains.

We believe that the high frequency of LARGE
CLASS in those two domains is due the number of cal-
culations done in accounting systems and the diverse
features present in specific classes of health systems,
what makes the class to have an excessive code size. In

fact, by looking at the source code, we identified a high
number of calculations within a single class in the ac-
counting domain, for example, such as different kinds
of fees and charges.

As for LARGE CLASS, the same procedure was done
for LONG METHOD and LONG PARAMETER LIST.
However, we have the method as the entity now. In
Figure 6, we can observe that LONG METHODS oc-
cur more frequently in health domain being present in
about 2.1% of all methods. Next, we have account-
ing and restaurant domains, with frequencies of 1.6%
and 1.2%, respectively. For the other domains, we can
observe very low frequencies of occurrence, all below
than 0.8%. These numbers may indicate that LONG
METHOD is a domain-sensitive bad smell since it ap-
pears more frequently in health, accounting and restau-
rant systems than in others, what is in line with the fre-
quency analysis by systems presented in Section 4.2,
since LONG METHODS are highly frequent in some do-
mains and have low rates of occurrences in other do-
mains.

Figure 6: Frequency of LONG METHOD and LONG PARAMETER
LIST in Domains by Entity

LONG METHODS tend to be common in account-
ing systems since, as we have already seen, LARGE
CLASSES are also very common due to the great num-
ber of calculations. These calculations are done within
the methods, what makes them very large in code size
and also makes them to concentrate the behavior of the
class. The same is valid for health systems, since the
various features of the systems are located within the
methods, making them grow in code size and also in
complexity.

LONG PARAMETER LIST occurs more frequently
in health and e-commerce systems with a percentage
of 0.4% for both of them, followed by accounting with
only 0.1%. We can note that the other domains have
very low values of frequency, being the largest one the
restaurant with 0.08% of LONG METHODS. The diver-
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gence between the frequencies of occurrence within the
methods in different domains suggest that LONG PA-
RAMETER LIST is also a domain-sensitive bad smell
being more common in the health and e-commerce do-
mains.

Health systems usually take into account more vari-
ables than systems from other domains since they work
with data from patient, health history, diagnostics and
even finances within this environment. Therefore, it
is expected that methods from the health domain need
many parameters to work with. E-commerce also needs
a large number of parameter per method, such as infor-
mation about products, sales and stock status.

For the other two bad smells, namely DEAD CODE
and SWITCH STATEMENTS, we do not have an entity
associated to them. Therefore, we found suitable to an-
alyze how they are distributed among the domains per
KLOC, as we can observe in Figure 7. We can see
that about 9 DEAD CODE instances (e.g., unused vari-
able or method) can be found at every KLOC of ac-
counting systems, being this value the greatest among
all domains. Restaurant has about 3 smells per KLOC
while the other domains present lower number of DEAD
CODE per KLOC. This information analyzed by itself
may indicate that DEAD CODE is a domain-sensitive
smell being much more frequent in accounting systems.

Figure 7: Frequency of DEAD CODE and SWITCH STATEMENTS in
Domains by Entity

As we can observe, apart from accounting domain,
there is not a great difference of DEAD CODE occur-
rence among the other domains. This is expected since
bad smells related to code size such as LARGE CLASS
and LONG METHOD are very common in account-
ing systems and then we can have many parts of the
code that are no longer used, characterizing the DEAD
CODE.

By looking at SWITCH STATEMENTS, we see
smaller values than for DEAD CODE. In fact, dictionar-
ies domain has the highest value of frequency (almost
7 SWITCH STATEMENTS per KLOC), while the other

domains have much lower values, being almost zero for
accounting systems. Since the number of occurrence
of SWITCH STATEMENT is much higher for dictionar-
ies than for the other domains, this information by itself
may indicate that SWITCH STATEMENT is a domain-
sensitive bad smell. However, we can note that, apart
from dictionaries, the frequencies for all the other do-
mains are very similar, therefore we cannot surely infer
that this smell is domain-sensitive since accounting do-
main may represent a singular situation.

4.4 Joint Frequency by System and Frequency by
Entity Analysis

This section presents a broader analysis of the fre-
quency from the perspective of systems and entities
aiming at summarizing our answers to our research
questions (Section 3.1). Table 5 presents an overview
of frequency by system and by entity for each bad smell
in the six analyzed domains. We define three labels to
identify whether a bad smell is possibly sensitive or in-
dependent of the software domain. The label “y” means
that the bad smell is more common in a domain than in
others. Similarly, the label “(y)” indicates that the bad
smell seems to be more common in a domain (but this
relationship is not as strong as that indicated by “y").
We use the label “n” to indicate that we could not find
any evidence to conclude whether the bad smell is sen-
sitive or independent of the software domain. Columns
of Table 5 identifies the six bad smells: LARGE
CLASS (LC), LONG METHOD (LM), LONG PARAM-
ETER LIST (LPL), SWITCH STATEMENTS (SS), DEAD
CODE (DC), and COMMENTS (C).

Table 5: Bad Smell Classification per Domain

Frequency by
Systems LC LM LPL SS DC C

Accounting Y Y n n n n
E-commerce n (Y) n n (Y) n

Health (Y) (Y) (Y) (Y) (Y) n
Games Y Y n Y (Y) n

Dictionaries (Y) n n (Y) n n
Restaurant n n n n n n

Frequency by
Entity LC LM LPL SS DC C

Accounting Y (Y) n n y n
E-commerce n n (Y) n (Y) n

Health (Y) Y (Y) (Y) n n
Games n n n (Y) n n

Dictionaries n n n Y n n
Restaurant n (Y) n n (y) n

RQ1 What are the most frequent bad smells in each soft-
ware domain?
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In order to answer Research Question 1, we used
bold text in Table 5 to identify similar results with re-
spect to the frequency by system and the frequency by
entity analyses. For instance, both the frequency by sys-
tem and by entity analyses suggest that LARGE CLASS
is more common in accounting and health systems than
in other domains. Therefore, we use bold text in the re-
spective cells. Taking data in Table 5 into account, we
summarize our answer to RQ1 as follows.

Answering RQ1. The most frequent bad smell
in the account domain is LARGE CLASS. The
most frequent bad smell in the e-commerce do-
main seems to be DEAD CODE. The most frequent
bad smells in health systems seems to be LARGE
CLASS, LONG PARAMETER LIST and SWITCH
STATEMENTS. We could not conclude on the most
frequent bad smells in the restaurant, games and
dictionaries domains.

RQ2 What are the domain-independent bad smells?

Table 5 also supports the identification of domain
independent bad smells. Once we have identified the
domain-sensitive bad smells, the others are considered
domain independent. In other words, the bad smells that
are more common in a domain are the domain-sensitive
ones. Considering only the cases of agreement be-
tween both frequency by system and by entity, we con-
clude that LARGE CLASS, LONG PARAMETER LIST,
SWITCH STATEMENTS and DEAD CODE are domain-
sensitive bad smells. Therefore, a brief answer to RQ2
can be presented as follows.

Answering RQ2. According to our analysis,
the domain-independent bad smells are LONG
METHOD and COMMENTS since they are uni-
formly distributed within the systems from all an-
alyzed domains.

5 Threats to Validity

The focus on this work was to detect and analyze the
most common bad smells in specific domains of infor-
mation systems. In the planning and conduction of this
study, some threats may have affected the validity of
our research findings. The main issues that threaten the
validity of this work are presented and discussed below.

Internal Validity. We identified the following
threats to the internal validity: selected domains and
key word search strings. We argue that the selected
domains are representative, given that they are well-
defined in terms of a diversity of recurrent requirements

(e.g., user and product management). Therefore, we be-
lieve that differences in implementation might reflect in
valid varying frequency of bad smells among systems
of distinctive domains. Another threat is the reliance
on the key word search strings for selecting the initial
set of systems in each domain. We cannot ensure that
the GitHub search facilities return all relevant systems
of each domain. However, we could observe that the
search process was able to return systems that we con-
sider relevant to our research questions.

Construction and Conclusion Validity. Threats to
the validity also reside on how we have collected and
interpreted the results. To avoid problem in data collec-
tion, we rely on the PMD and Checkstyle to automati-
cally detect bad smells. From the perspective of conclu-
sion validity, different interpretations of the results may
also represent a threat to the study validity.

External Validity. The major risk here is related to
the limitation on the selected systems. First, it is not
possible to ensure that they reflect the best samples of
the recurrent practice. To reduce this risk, we proceed
by selecting systems from GitHub based on the ranking
of starred systems. Stars are a meaningful measure for
repository popularity, and they may support the selec-
tion of relevant and high-quality systems for study. We
also excluded systems with less than 1000 lines of code
(LOC) because we considered them simple toy exam-
ples. Besides, the sample size might be itself another
threat to the external validity of the study. We have se-
lected 88 systems from different domains. However,
this decision allowed us to obtain more consistent re-
sults that could be interpreted in this specific context.
Nevertheless, additional replications are necessary to
determine if our findings can be generalized to other
domains and systems.

6 Related Work

Studies have investigated bad smells in specific do-
mains [4, 8, 19]. For instance, Fontana and colleagues
[5] perform an analysis on the impact of bad smells in
different domains. Their goal is to identify the most
frequent smells in information system domains and to
characterize domains with more smells. The authors an-
alyzed 16 bad smells in 68 systems from Qualitas Cor-
pus [21]. They also tried to establish a correlation be-
tween bad smells and software quality metrics. Similar
to our results, Fontana and colleagues [5] observed that
LARGE CLASS and LONG METHOD are some of the
most common bad smells in general. On the other hand,
with respect to bad smells and the domains, they have
not observed significant differences among bad smells.

Another related paper, Reis et al. [3] conducted an
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empirical study with 118 Java systems from 6 informa-
tion system domains and 7 bad smells. Their goal is
to investigate if the domain has a significant impact on
the occurrence of bad smells. They observed that most
bad smells do not depend on the software domain, with
the exception of Duplicated Code. For this bad smell,
they showed that its incidence in Home & Education
domain was superior to the other domains. Our study
differs from Reis research [3] in several ways. First,
we rely on PMD and Checkstyle tools while Reis used
JDeodorant and CodePro AnalytiX. The target systems
and domains analyzed in both studies are also different.
Therefore, our findings complement the results of Reis
and colleagues [3].

Guo et al. [8] also investigated the relations of bad
smells and information system domains. However, their
focus is on detection rules for bad smells based on soft-
ware metrics. In other words, they aim to make code
smell definitions more accurate and actionable for soft-
ware developers by tailoring the bad smell definitions
to include domain-specific information. Guo and col-
leagues [8] then enhance a detection tool (CodeVizard)
with refinements in the bad smell detections aiming at
including domain-specific factors.

In summary, our work follows up previous studies
in the investigation of bad smells in information system
domains. However our study has several differences
form the previous ones. We use different domains in
comparison to past works and different bad smells. We
also perform an in-deep analysis of the occurrence of
bad smells within the domains, since we do an analysis
of frequency by entity, such as classes and methods. Fi-
nally, we categorize the domain-sensitive and domain-
independent bad smells in six information system do-
mains.

7 Conclusion and Future Work

In this paper, we proposed the identification of domain-
sensitive and domain-independent bad smells using
PMD and Checkstyle detection tools to analyze the fre-
quency by systems and by entities in the following in-
formation system domains: accounting, e-commerce,
health, games, dictionaries and restaurant. Our find-
ings may bring more awareness for developers of the
mentioned software domains and may provide insights
to develop more efficient bad smells detection tools tak-
ing into account the software domain information.

In order to reach our goals, we mined 88 sys-
tems from GitHub and analyzed the occurrence of
the following bad smells: LARGE CLASS, LONG
METHOD, LONG PARAMETER LIST, SWITCH STATE-
MENTS, COMMENTS, and DEAD CODE. We used PMD

and Checkstyle as bad smell detection tools to find the
bad smells. Then, we calculated the total percentage of
occurrence considering all systems together and the per-
centage of each bad smell in relation to the total number
of systems within each software domain. Furthermore,
we evaluated the bad smell frequency according to the
entity with which the smell is related to (class, method
or KLOC), what provided us with valuable information
about the most and least frequent bad smells.

This study allowed us to identify domain-
independent bad smells whose frequency of occurrence
is uniformly distributed among all domain such as
COMMENTS and LONG METHOD. We also identi-
fied domain-sensitive bad smells that appear more
frequently in certain domains when compared to
others, like LARGE CLASS, LONG PARAMETER LIST,
SWITCH STATEMENTS and DEAD CODE. Finally, as
a suggestion for future work in this context, we intend
to analyze the agreement between the detection tools,
providing their precision e recall. There is also the
possibility to expand the amount of systems in each
domain as well as to include other domains. This
path can be done since the analysis of bad smells are
already automated and may bring more chance of
generalization of the results and the possibility to do
a statistical analysis on the collected data to make the
study more reliable.
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