YOLO-based Traffic Monitoring on Avenida Arequipa using IoT and Geospatial Data

Main Article Content

JIMMY ROBERT CCAMA CCAÑA
Demostenes Zegarra Rodriguez

Abstract

This paper presents the design and evaluation of an intelligent traffic monitoring system
deployed on Avenida Arequipa, one of the main urban corridors in Lima, Peru. The system combines
Internet of Things (IoT) infrastructure, georeferenced video capture, and a YOLO-based deep learning
model to detect and classify road users in real time. Our approach focuses on low-cost cameras integrated
with embedded devices that perform local preprocessing and send metadata to a central server for storage,
analytics, and visualization. The geospatial configuration of Avenida Arequipa—its lane structure,
intersections, and bus-only segments—is explicitly modeled to support the estimation of vehicle density,
flow, and occupancy at different points of the avenue. A dataset of annotated images was built from
video streams recorded at multiple time periods, considering diverse lighting and traffic conditions. The
YOLO detector was trained to identify cars, buses, motorcycles, bicycles, pedestrians, and traffic lights.
Experimental results show that the proposed system achieves accurate detection performance, with a
mean Average Precision (mAP) above 0.90 for the most frequent classes, while maintaining an inference
time compatible with near real-time monitoring on commodity hardware. The study demonstrates
that combining YOLO with IoT and geospatial mapping in a real urban corridor is a feasible strategy to
support future smart city applications such as adaptive traffic control, public transport prioritization, and
safety incident analysis.

Article Details

How to Cite
CCAMA CCAÑA, J. R., & Zegarra Rodriguez, D. (2025). YOLO-based Traffic Monitoring on Avenida Arequipa using IoT and Geospatial Data. INFOCOMP Journal of Computer Science, 24(2). Retrieved from https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/5360
Section
Computer Graphics, Image Processing, Visualization and Virtual Reality

References

[1] Adasme, P., Viveros, A., Ayub, M. S., Soto, I., Firoozabadi, A. D., and Rodríguez, D. Z. A multiple linear regression approach to optimize the worst user capacity and power allocation in a wireless network. In 2023 South American Conference On Visible Light Communications (SACVLC), pages 6–11. IEEE, 2023.

[2] Adasme, P., Viveros, A., Soto, I., Firoozabadi, A. D., and Rodríguez, D. Z. Exploring worst arc flow minimization: A comparative study of a provided wireless network and its derivation via spanning tree topology. In International Conference on Mobile Web and Intelligent Information Systems, pages 55–66. Springer, 2024.

[3] Awotunde, J. B., Sur, S. N., Imoize, A. L., Rodríguez, D. Z., and Akanji, B. An enhanced keylogger detection systems using recurrent neural networks enabled with feature selection model. In International Conference on Communication, Devices and Networking, pages 525–539. Springer, 2024.

[4] Ayub, M. S., Adasme, P., Melgarejo, D. C., Rosa, R. L., and Rodríguez, D. Z. Intelligent hello dissemination model for fanet routing protocols. IEEE Access, 10:46513–46525, 2022.

[5] Ayub, M. S., Adasme, P., Rodriguez, D. Z., Saadi, M., Shongwe, T., and Kanadilovna, A. Z. Expanding horizon: The role of reconfigurable intelligent surfaces in enabling massive connectivity. 2024 Horizons of Information Technology and Engineering (HITE), pages 1–6, 2024.

[6] Ayub, M. S., Adasme, P., Shongwe, T., Rodriguez, D. Z., Rosa, R. L., Iqbal, M., and Pan, J.-Y. Fusing reconfigurable intelligent surfaces with 6g non-terrestrial networks. In 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2024.

[7] Barbosa, R., Ogobuchi, O. D., Joy, O. O., Saadi, M., Rosa, R. L., Al Otaibi, S., and Rodríguez, D. Z. Iot based real-time traffic monitoring system using images sensors by sparse deep learning algorithm. Computer Communications, 210:321–330, 2023.

[8] Batista, A. P., Ayub, M. S., Adasme, P., Begazo, D. C., Shad, M. R., Saadi, M., Rosa, R. L., and Rodríguez, D. Z. A methodology for estimating radiofrequency signal attenuation from rainfall and atmospheric gases in 5g-and-beyond networks. IET Networks, 14(1):e70000, 2025.

[9] Carrillo, D., Kalalas, C., Raussi, P., Michalopoulos, D. S., Rodríguez, D. Z., Kokkoniemi-Tarkkanen, H., Ahola, K., Nardelli, P. H., Fraidenraich, G., and Popovski, P. Boosting 5g on smart grid communication: A smart ran slicing approach. IEEE Wireless Communications, 30(5):170–178, 2022.

[10] Carrillo, D., Kalalas, C., Raussi, P., Michalopoulos, D. S., Rodríguez, D. Z., Kokkoniemi-Tarkkanen, H., Ahola, K., Nardelli, P. H., Fraidenraich, G., and Popovski, P. Boosting 5g on smart grid communication: A smart ran slicing approach. IEEE Wireless Communications, 30(5):170–178, 2022.

[11] Carvalho Barbosa, R., Shoaib Ayub, M., Lopes Rosa, R., Zegarra Rodríguez, D., and Wuttisittikulkij, L. Lightweight pvidnet: A priority vehicles detection network model based on deep learning for intelligent traffic lights. Sensors, 20(21):6218, 2020.

[12] Chaudhary, S., Wuttisittikulkij, L., Saadi, M., Sharma, A., Al Otaibi, S., Nebhen, J., Rodriguez, D. Z., Kumar, S., Sharma, V., Phanomchoeng, G., et al. Coherent detection-based photonic radar for autonomous vehicles under diverse weather conditions. PLoS one, 16(11):e0259438, 2021.

[13] Cordero, S., Adasme, P., Dehghan Firoozabadi, A., Rosa, R. L., and Rodríguez, D. Z. Mathematical models for coverage with star tree backbone topology for 5g millimeter waves networks. Symmetry, 17(1):141, 2025.

[14] Da Silva, S. E. I., Rodriguez, D. Z., Rosa, R. L., Adasme, P., and Saadi, M. Ai/ml-enhanced security monitoring for 5g-enabled big data sensor networks. In 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2024.

[15] de Sousa, A. L., OKey, O. D., Rosa, R. L., Saadi, M., and Rodriguez, D. Z. A novel resource allocation in software-defined networks for iot application. In 2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–5. IEEE, 2023.

[16] de Sousa, A. L., OKey, O. D., Rosa, R. L., Saadi, M., and Rodriguez, D. Z. Unified approach to video-based ai inference tasks in augmented reality systems assisted by mobile edge computing. pages 1–5, 2023.

[17] dos Santos, M. R., Batista, A. P., Rosa, R. L., Saadi, M., Melgarejo, D. C., and Rodríguez, D. Z. Asqm: Audio streaming quality metric based on network impairments and user preferences. IEEE Transactions on Consumer Electronics, 69(3):408–420, 2023.

[18] Dos Santos, M. R., Rodriguez, D. Z., and Rosa, R. L. A novel qoe indicator for mobile networks based on twitter opinion ranking. In 2023 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2023.

[19] Gonçalves, J. G., Ayub, M. S., Zhumadillayeva, A., Dyussekeyev, K., Ayimbay, S., Saadi, M., Lopes Rosa, R., and Rodríguez, D. Z. Decentralized machine learning framework for the internet of things: Enhancing security, privacy, and efficiency in cloud-integrated environments. Electronics, 13(21):4185, 2024.

[20] Klein, L. A. Roadside sensors for traffic management. IEEE Intelligent Transportation Systems Magazine, 16(4):21–44, 2024.

[21] Lah, O., Alveano, S., Arioli, M., Chesterton, V., and Sdoukopoulos, L. Sustainable urban mobility solutions for asia, latin america and the mediterranean region. In Sustainable Urban Mobility Pathways, pages 23–63. Elsevier, 2019.

[22] Latif, N., Saadi, M., and Rodriguez, D. Z. Semantic segmentation: Techniques, challenges, and applications in intelligent transportation systems. Optical and Wireless Communications, pages 153–179.

[23] Mathew, U. O., Rodriguez, D. Z., Rosa, R. L., Ayub, M. S., and Adasme, P. Advancing healthcare 5.0 through federated learning: Opportunity for security enforcement using blockchain. In 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2024.

[24] Matthew, U. O., Rosa, R. L., Kazaure, J. S., Adesina, O. J., Oluwatimilehin, O. A., Oforgu, C. M., Asuni, O., Okafor, N. U., and Rodriguez, D. Z. Software-defined networks in iot ecosystems for renewable energy resource management. pages 1–5, 2024.

[25] Matthew, U. O., Rosa, R. L., Kazaure, J. S., Adesina, O. J., Oluwatimilehin, O. A., Oforgu, C. M., Asuni, O., Okafor, N. U., and Rodriguez, D. Z. Software-defined networks in iot ecosystems for renewable energy resource management. In 2024 IEEE 5th International Conference on Electro-Computing Technologies for Humanity (NIGERCON), pages 1–5. IEEE, 2024.

[26] Matthew, U. O., Rosa, R. L., Saadi, M., and Rodríguez, D. Z. Interpretable ai framework for secure and reliable medical image analysis in iomt systems. IEEE Journal of Biomedical and Health Informatics, 2025.

[27] Mendonca, R. V., Silva, J. C., Rosa, R. L., Saadi, M., Rodriguez, D. Z., and Farouk, A. A lightweight intelligent intrusion detection system for industrial internet of things using deep learning algorithms. Expert Systems, 39(5):e12917, 2022.

[28] Ogobuchi, O. D., Vieira, S. T., Saadi, M., Rosa, R. L., and Rodríguez, D. Z. Intelligent network planning tool for location optimization of unmanned aerial vehicle base stations using geographical images. Journal of Electronic Imaging, 31(6):061822–061822, 2022.

[29] Okey, D. O., Dadkhah, S., Molyneaux, H., Rodríguez, D. Z., and Kleinschmidt, J. H. ipaseciot: An intelligent pipeline for automatic and adaptive feature extraction for secure iot device identification and intrusion detection. Internet of Things, page 101802, 2025.

[30] Okey, O. D., Maidin, S. S., Adasme, P., Lopes Rosa, R., Saadi, M., Carrillo Melgarejo, D., and Zegarra Rodríguez, D. Boostedenml: Efficient technique for detecting cyberattacks in iot systems using boosted ensemble machine learning. Sensors, 22(19):7409, 2022.

[31] Okey, O. D., Melgarejo, D. C., Saadi, M., Rosa, R. L., Kleinschmidt, J. H., and Rodriguez, D. Z. Transfer learning approach to ids on cloud iot devices using optimized cnn. IEEE Access, 11:1023–1038, 2023.

[32] Oriakhi, V. N., Nwaiku, M., Odubola, O. A., Muojekwu, E. E., Matthew, U. O., Rosa, R. L., and Rodriguez, D. Z. Clinical automation in the age of robotics: Hospital disinfection using 5g iot biomedical robots. In Smart Technologies for Sustainable Development Goals, pages 337–362. CRC Press, 2025.

[33] OYEDEMI, O., Rodriguez, D. Z., Rosa, R. L., and Ugochukwu, O. M. Containerization approach for secure internet of medical things (iomt) communication protocols. INFOCOMP Journal of Computer Science, 23(2), 2024.

[34] Oyedemi, O. A., Rosa, R. L., Matthew, U. O., Ogundele, L. A., Ogunwale, Y. E., and Rodríguez, D. Z. Privacy-preserving federated data governance framework for secure parameter exchange in distance education. In 2025 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2025.

[35] Oyekunle, D., Ugochukwu, O. M., Rosa, R. L., Rodriguez, D. Z., and Fatai, L. O. Novel approaches in clinical simulation: Immersive educational technology to enhance nursing education. INFOCOMP Journal of Computer Science, 23(1), 2024.

[36] Paiva, H. W. A., Golçalves, J. G., Rodrígues, D. Z., and Rosa, R. L. A comprehensive analysis of virtual reality applications in healthcare. INFOCOMP Journal of Computer Science, 23(1), 2024.

[37] Rafael Câmara Araújo, A., Lopes Rosa, R., Zegarra Rodríguez, D., Sarah Maidin, S., Bamidele Awotunde, J., and Saadi, M. Lightbioptimum: An intrusion detection system based on bio-inspired algorithm for vanet. Transactions on Emerging Telecommunications Technologies, 36(10):e70254, 2025.

[38] Ribeiro, D., Tavares, D., Tiradentes, E., Santos, F., and Rodriguez, D. Performance evaluation of yolov11 and yolov12 deep learning architectures for automated detection and classification of immature macauba (acrocomia aculeata) fruits. Agriculture, 15(15):1571, 2025.

[39] Ribeiro, D. A., Melgarejo, D. C., Saadi, M., Rosa, R. L., and Rodríguez, D. Z. A novel deep deterministic policy gradient model applied to intelligent transportation system security problems in 5g and 6g network scenarios. Physical Communication, 56:101938, 2023.

[40] Ribeiro, D. A., Silva, J. C., Lopes Rosa, R., Saadi, M., Mumtaz, S., Wuttisittikulkij, L., Zegarra Rodriguez, D., and Al Otaibi, S. Light field image quality enhancement by a lightweight deformable deep learning framework for intelligent transportation systems. Electronics, 10(10):1136, 2021.

[41] Rodriguez, D. Z. and AMARAL, F. C. S. Review on the analysis of qoe applied in serious virtual reality games. INFOCOMP Journal of Computer Science, 22(2), 2023.

[42] Rosa, R. L., Saadi, M., Rodríguez, D. Z., Gew, L. T., Nordin, R., Ali, R. A. R., and Long, C. M. Integer linear programming for optimizing drone-based delivery routes. Engineering Journal, 29(11):23–38, 2025.

[43] Saadi, M., Bajpai, A., and Rodríguez, D. Z. Traditional and modern techniques for visible light positioning systems. In Applications of 5G and Beyond in Smart Cities, pages 169–198. CRC Press, 2023.

[44] Saadi, M., Bajpai, A., Rodriguez, D. Z., and Wuttisittikulkij, L. Investigating the role of channel state information for mimo based visible light communication system. In 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pages 1–4. IEEE, 2022.

[45] Salgado, J. V. T., Vinicius, D. Z. R., Dias, V. D. S., and Rosa, R. L. Automated validation of spatial data. In 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2024.

[46] Silva, D. H., Maziero, E. G., Saadi, M., Rosa, R. L., Silva, J. C., Rodriguez, D. Z., and Igorevich, K. K. Big data analytics for critical information classification in online social networks using classifier chains. Peer-to-Peer Networking and Applications, 15(1):626–641, 2022.

[47] Teodoro, A. A., Gomes, O. S., Saadi, M., Silva, B. A., Rosa, R. L., and Rodríguez, D. Z. An fpga-based performance evaluation of artificial neural network architecture algorithm for iot. Wireless Personal Communications, 127(2):1085–1116, 2022.

[48] Terra Vieira, S., Lopes Rosa, R., Zegarra Rodriguez, D., Arjona Ramírez, M., Saadi, M., and Wuttisittikulkij, L. Q-meter: Quality monitoring system for telecommunication services based on sentiment analysis using deep learning. Sensors, 21(5):1880, 2021.

[49] Torres, A., Rosa, R. L., Rodríguez, D. Z., and Saadi, M. Advancing neural speech codecs: Integrating psychoacoustic models for enhanced speech quality. In 2024 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pages 1–6. IEEE, 2024.

[50] Ugochukwu, O. M., Rosa, R. L., Adenike, O. O., and Rodriguez, D. Z. Advancing cybersecurity use of sensitive data in electronic healthcare system: A review of privacy and regulations. INFOCOMP Journal of Computer Science, 23(2), 2024.

[51] Zeballos-Velarde, C. A methodological framework for the conservation and planning of urban spaces in historical centers around riverfronts. the case of arequipa, peru. In Conservation of Architectural Heritage, pages 153–162. Springer, 2022.

[52] Zegarra Rodriguez, D., Daniel Okey, O., Maidin, S. S., Umoren Udo, E., and Kleinschmidt, J. H. Attentive transformer deep learning algorithm for intrusion detection on iot systems using automatic xplainable feature selection. Plos one, 18(10):e0286652, 2023.