Synthetic Data Generation and Comparative Evaluation of Machine Learning Models for Predicting the Biomechanical Behavior of the Human Cornea

Main Article Content

Luiz Carlos Brandão Junior
Ricardo Rodrigues Magalhães

Abstract

The analysis of the biomechanical behavior of the human cornea is crucial for various clinical applications, such as planning refractive surgeries and diagnosing diseases like keratoconus. Numerical simulations, like the Finite Element Method (FEM), are powerful tools for these analyses but can be computationally expensive, limiting extensive parameter explorations or real-time optimizations. Surrogate models based on Machine Learning (ML) emerge as a promising alternative but require representative datasets for training. This study details a methodology for generating synthetic data (N=10,000) to replicate the functional relationships and variability observed in a previous FEM simulation study of corneal mechanical behavior under different mesh configurations and loading conditions \cite{Almeida2017}. The performance of 19 ML regression algorithms was comparatively evaluated in predicting three key variables: the Simulated Corneal Displacement, the simulation Processing Time, and the Simulation Percentage Error (SSE). Predictor variables included applied pressure, (simulated) patient age, and FEM mesh characteristics (number of nodes and elements). The results demonstrated that models based on tree ensembles (Extra Trees, Random Forest, LightGBM, XGBoost) and KNeighbors Regressor achieved exceptional performance in predicting the simulated displacement ($R^2 > 0.999, RMSE < 0.001 mm$), validating their potential as accurate surrogate models. For the time and error variables, inherently linked to the discrete scenario configuration in the synthetic data, several models reached $R^2 \approx$ 1.0. The research validates the approach of generating simulation-informed synthetic data as an effective method to enable the robust training and selection of ML models for complex problems in computational biomechanics.

Article Details

How to Cite
Brandão Junior, L. C., & Rodrigues Magalhães, R. (2025). Synthetic Data Generation and Comparative Evaluation of Machine Learning Models for Predicting the Biomechanical Behavior of the Human Cornea. INFOCOMP Journal of Computer Science, 24(2). Retrieved from https://infocomp.dcc.ufla.br/index.php/infocomp/article/view/5221
Section
Machine Learning and Computational Intelligence
Author Biography

Ricardo Rodrigues Magalhães, UFLA

Possui graduação em Engenharia Industrial Mecânica pelo Centro Federal de Educação Tecnológica de Minas Gerais (2000), mestrado em Mecatrônica pela Universidade Federal da Bahia (2008) e doutorado em Engenharia Industrial pela Universidade Federal da Bahia (2011). Atualmente é professor associado da Universidade Federal de Lavras e coordenador de programa de pós-graduação da Universidade Federal de Lavras. Tem experiência na área de Engenharia de Produção, com ênfase em Desenvolvimento de Produto, atuando principalmente nos seguintes temas: finite element method, tensoes residuais, extensometria, cargas e numerical analysis. (Texto informado pelo autor)

References

section*{Additional References}

begin{thebibliography}{00}

% New reference added

bibitem{Dias2016}

G.~L. Dias, R.~R. Magalh~aes, F.~A. Vitoriano, and D.~D. Ferreira,

``The use of a robotic arm for displacement measurements in a cantilever beam,''

emph{Int. J. Manuf. Mater. Mech. Eng.}, vol.~6, no.~4, pp.~45--57, 2016,

doi:~href{https://doi.org/10.4018/ijmmme.2016100104}{10.4018/ijmmme.2016100104}.

% Cornea References

bibitem{Almeida2017}

P.~R. de Almeida and R.~R. Magalh~aes,

``Study of processing time for mechanical behavior analysis of corneas via numerical simulations,''

textit{Rev. Bras. Comput. Apl.}, vol.~9, no.~4, pp.~32--42, Dec.~2017.

doi:~href{https://doi.org/10.5335/rbca.v9i4.7025}{10.5335/rbca.v9i4.7025}.

bibitem{Boote2005}

C.~Boote et al.,

``Lamellar orientation in human cornea in relation to mechanical properties,''

textit{J. Struct. Biol.}, vol.~149, no.~1, pp.~1--6, Jan.~2005.

doi:~href{https://doi.org/10.1016/j.jsb.2004.08.009}{10.1016/j.jsb.2004.08.009}.

% Additional Biomechanics References

bibitem{Han2013}

Z.~Han et al.,

``Biomechanical and refractive behaviors of keratoconic cornea based on three-dimensional anisotropic hyperelastic models,''

textit{J. Refract. Surg.}, vol.~29, no.~4, pp.~282--290, Apr.~2013.

doi:~href{https://doi.org/10.3928/1081597X-20130318-08}{10.3928/1081597X-20130318-08}.

bibitem{Hamilton2008}

K.~E. Hamilton and D.~C. Pye,

``Young's modulus in normal corneas and the effect on applanation tonometry,''

textit{Optom. Vis. Sci.}, vol.~85, no.~6, pp.~445--450, Jun.~2008.

doi:~href{https://doi.org/10.1097/OPX.0b013e3181783a70}{10.1097/OPX.0b013e3181783a70}.

% Computational Methods

bibitem{ArizaGracia2017}

M.~Á. Ariza-Gracia et al.,

``A predictive tool for determining patient-specific mechanical properties of human corneal tissue,''

textit{Comput. Methods Appl. Mech. Eng.}, vol.~317, pp.~226--247, Apr.~2017.

doi:~href{https://doi.org/10.1016/j.cma.2016.12.013}{10.1016/j.cma.2016.12.013}.

% Machine Learning References

bibitem{Liakos2018}

K.~G. Liakos et al.,

``Machine learning in agriculture: A review,''

textit{Sensors}, vol.~18, no.~8, p.~2674, Aug.~2018.

doi:~href{https://doi.org/10.3390/s18082674}{10.3390/s18082674}.

bibitem{Nikolenko2021}

S.~I. Nikolenko,

textit{Synthetic Data for Deep Learning}.

Cham, Switzerland: Springer, 2021.

doi:~href{https://doi.org/10.1007/978-3-030-75178-4}{10.1007/978-3-030-75178-4}.

% Python Libraries

bibitem{Pedregosa2011}

F.~Pedregosa et al.,

``Scikit-learn: Machine Learning in Python,''

textit{J. Mach. Learn. Res.}, vol.~12, pp.~2825--2830, Oct.~2011.

[Online]. Available: url{http://jmlr.org/papers/v12/pedregosa11a.html}

end{thebibliography}