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Abstract. The evolution of mobile communication systems, marked by the exponential growth of users
and the demand for efficient network management, underscores the importance of optimization to miti-
gate congestion, increase transmission rates, and reduce packet loss. In this context, the Kalman-Takens
Filter (KTF) stands out for its analytical capability in prediction and optimization, offering a dynamic
approach to spectrum allocation in mobile networks. This study, grounded in a comprehensive literature
review and time series analysis, investigates the application of the KTF, with its effectiveness quantified
by the root mean square error (RMSE). Computational simulations have shown significant improvements
in network performance, demonstrating that the KTF can operate efficiently in real-time, optimizing re-
source allocation. This approach aims to enhance user experience in high-data-demand environments,
contributing to the development of advanced management strategies in 5G networks. The meticulous
analysis of the RMS error, aiming at its minimization, proved effective, providing crucial insights for
resource management, essential to addressing the increasing traffic volume and complexity in future
mobile communications networks.
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1 Introduction

The evolution of mobile communication systems from
the 1970s to the present day is marked by technolog-
ical innovations and advancements in telecommunica-
tions services. The first generation (1G) initiated mo-
bile voice communication with the Advanced Mobile
Phone System (AMPS) technology, operating on Fre-
quency Division Multiple Access (FDMA) in the Ul-
tra High Frequency (UHF) band, though limited in ca-
pacity and quality. In the 1990s, the second genera-
tion (2G) transitioned to digital technology. Technolo-
gies such as Time Division Multiple Access (TDMA),
Code Division Multiple Access (CDMA), and Global
System for Mobile Communications (GSM) evolved
into Enhanced Data Rates for GSM Evolution (EDGE),

improving connectivity and transmission rates. In the
2000s, the third generation (3G) facilitated voice calls,
emails, Internet browsing, and video calls. The Univer-
sal Mobile Telecommunications System (UMTS) tech-
nology evolved into High-Speed Packet Access (HSPA)
and Evolved High-Speed Packet Access (HSPA+), en-
hancing data transmission speeds [15].

The fourth generation (4G) in the 2010s transformed
mobile devices into multifunctional tools, capable of
high-quality video calls, high-definition streaming, on-
line gaming, and support for cloud-based applications.
Standards such as Worldwide Interoperability for Mi-
crowave Access (WiMAX) and Long-Term Evolution
(LTE), enhanced to LTE Advanced-Pro (LTE-A), made
4G essential for industrial automation, the Internet of
Things (IoT), and emerging fields of Artificial Intelli-
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gence (AI) and Machine Learning (ML). The fifth gen-
eration (5G), currently being deployed, uses the NR
standard to provide unprecedented Internet speeds, re-
duced latency, and expanded connectivity. 5G promotes
advancements in IoT, AI, ML, cloud computing, Aug-
mented Reality (AR), Virtual Reality (VR), enhanced
security, and robotics, marking a leap in digital transfor-
mation [15]. The sixth generation (6G) is in the concep-
tual phase, with a launch expected around 2030, aiming
to further extend wireless network capabilities, focus-
ing on integrating Extended Reality (XR) and advanced
ML services [8].

The motivation for this work arises from the urgent
need for innovative spectrum management solutions in
5G networks, driven by the growing global demand for
mobile network resources. In various countries, there
are distinct efforts to allocate spectrum and expand 5G
coverage, notably in the United States, which forecasts
a 1400 MHz deficit by 2032 [21], and in Brazil, where
the regulating agency recently allocated 120 MHz in the
4.9 GHz band [42]. China leads global implementation
with over 3.38 million base stations and the pioneer-
ing allocation of spectrum in the 6 GHz band for 5G
and 6G [43]. This study applies the Kalman-Takens
Filter (KTF) in time series analysis to enhance spec-
trum use efficiency, aiming to improve user experience
with higher transmission rates, lower packet loss, and
reduced latency, while operating in real-time and con-
serving system resources.

Predictive resource allocation in mobile communi-
cation systems has been extensively studied. [11] clas-
sified predictive schemes into geographic, link, social,
and traffic categories, highlighting methods based on
user trajectories, channel quality, application prefer-
ences, and measurements from higher layers of the OSI
model. Ref. [39] proposed using the Kalman Filter
(KF) to estimate future transmission rates, enhancing
throughput and reducing packet loss with micro predic-
tions in 10-millisecond windows. In 2021, Ref. [38] ex-
tended this work by applying a black-box model based
on the KTF to predict the signal-to-noise ratio over in-
tervals of 10 and 100 seconds, utilizing traffic and link
information to optimize modulation and resource allo-
cation. These studies demonstrated the effectiveness
of the KF and KTF in improving network performance
based on predictive data [29, 40, 41].

Other relevant studies include [19], [20], who ap-
plied the KTF to systems such as Lorenz-96 and pop-
ulation dynamics, and [24] in hydrology. Ref. [34]
used the Fourier transform to predict traffic in Shang-
hai, while [9] applied the KF for resource allocation
with predictions up to 60 seconds. Ref. [25] compared

schemes based on KF, neural networks, and Markov
chains to predict the number of users in WLANs. Re-
cent applications of the KF in mobile networks have
been published in [14], [33], and [7]. Ref. [30] explored
the use of ML in 5G networks, highlighting challenges
related to latency and computational costs for real-time
applications.

The contributions of this work include the analysis
and validation of a predictive model applying the KTF
to optimize spectrum allocation in 5G mobile commu-
nication systems, improving network performance and
user experience through efficient and real-time spec-
trum management. The contributions are as follows:

• Conceptualize the current challenges of spectrum
allocation in 5G networks;

• Apply the KTF predictive model in 5G time series
analysis;

• Analyze the model’s performance in optimizing
spectrum use and improving user experience.

The remainder of this article is organized as follows:
Section 2 presents the fundamentals of the 5G mobile
communication system; Section 3 contains the concepts
of dynamic systems and time series; Section 4 discusses
Kalman Filters; Section 5 reviews related works in the
study area; Section 6 focuses on the case study with
the description of the materials and methods used in the
experiments; Section 7 provides an analysis of the ex-
perimental results; Section 8 concludes the work by dis-
cussing implications and suggesting future work.

2 5G Mobile Communications Systems

The architecture of the New Radio (NR) system is
essential for 5G mobile communications, addressing
requirements such as enhanced Mobile Broadband
(eMBB), Ultra-Reliable and Low-Latency Communica-
tions (URLLC), and massive Machine Type Communi-
cations (mMTC). It supports sub-1 GHz and millimeter-
Wave (mmWave) frequencies, utilizing massive Multi-
ple Input Multiple Output (MIMO) and beamforming
to enhance efficiency. NR adopts a scalable Orthog-
onal Frequency-Division Multiplexing (OFDM) nu-
merology, allows dual connectivity with 4G LTE and
5G, and supports network slicing to create virtualized
logical networks. Divided into Access Network (NG-
RAN) and Core Network (5GC), the 5GC architecture
adopts a Service-Based Architecture (SBA), separating
the control plane from the user plane to manage connec-
tion, sessions, routing, policies, and user data, aiming
for flexibility and efficiency [5, 1].
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The 5G access network protocols ensure fast, reli-
able, and efficient communication between user devices
and the network, following a layered structure. The
physical layer (PHY) handles the transmission of bits
through the radio channel, using advanced modulation
schemes and massive MIMO to increase data rates and
signal quality. The Media Access Control (MAC) layer
controls data transfer, implements Hybrid Automatic
Repeat Request (HARQ) for reliability, and facilitates
dynamic resource allocation. The Radio Link Con-
trol (RLC) layer ensures reliable data transfer, while
the Packet Data Convergence Protocol (PDCP) handles
header compression and data encryption. The Radio
Resource Control (RRC) layer manages control plane
signaling, mobility management, and session establish-
ment. These protocols are divided between the Control
Plane, managed by the RRC, and the User Plane, man-
aged by PDCP and RLC, supporting high data rates,
low latency, and massive connectivity, ensuring effi-
cient use of radio spectrum and network resources [4].

The 5G air interface is the physical medium for
wireless communications between User Equipment
(UE) and next-generation Node B (gNBs), designed
to meet the demands of eMBB, URLLC, and mMTC.
It uses advanced modulation (256QAM) to increase
data rates and spectral efficiency, massive MIMO to
serve multiple users simultaneously, and beamforming
to improve signal quality. Dynamic Spectrum Shar-
ing (DSS) allows the coexistence of 5G NR and 4G
LTE in the same frequency band, while Carrier Aggre-
gation (CA) combines multiple bands for higher data
rates. 5G supports URLLC with reduced transmis-
sion times and lower latency, operating in frequency
bands from below 1 GHz to above 24 GHz for differ-
ent coverage and capacity requirements. The flexible
frame structure includes short Transmission Time In-
tervals (TTI) and supports Frequency Division Duplex-
ing (FDD) and Time Division Duplexing (TDD), en-
suring efficient spectrum use [3], [2]. This design bal-
ances innovative technologies and practical adaptations
to provide high speed, massive connectivity, and ultra-
reliable low-latency communications.

In 5G, the basic unit of resource allocation is the
Resource Block (RB), essential for efficient spectral re-
source management. An RB is the smallest allocable
unit in the frequency domain, consisting of a number
of subcarriers and a specific duration in the time do-
main. According to specification [6], the 5G frame
structure consists of frames, subframes, slots, and mini-
slots, with RBs dynamically allocated to users based
on demand and channel conditions. An RB typically
encompasses 12 subcarriers, with subcarrier spacings

varying from 15 kHz to 240 kHz. The duration of a slot
varies with subcarrier spacing. Flexible RB allocation
allows support for diverse services, such as eMBB and
URLLC, reflecting 5G’s goal of providing a versatile,
high-performance network [24].

Resource allocation in 5G is crucial to ensure ef-
ficient use of spectrum and network resources, meet-
ing the diverse needs of users and applications. Ac-
cording to specification [3], allocation types include:
in the frequency domain, where resources are allocated
in terms of RBs across the spectrum, potentially using
Carrier Aggregation (CA) to combine multiple bands;
in the time domain, involving data scheduling in slots
or mini-slots; and in the spatial domain, using mas-
sive MIMO and beamforming to serve multiple users
simultaneously. The Signal-to-Interference-and-Noise
Ratio (SINR) metric assesses the quality of the wireless
communication link, essential for managing Quality of
Service (QoS) and ensuring that high-priority services
receive the necessary resources. 5G also supports net-
work slicing, creating virtual networks with dedicated
resources for specific service types. This dynamic pro-
cess balances frequency, time, and space to optimize
network performance and efficiency [3].

Schedulers in 5G networks use various metrics to
efficiently allocate resources and meet user and applica-
tion requirements. According to specification [3], met-
rics such as Channel Quality Indicator (CQI) help se-
lect the optimal modulation and coding scheme, while
Buffer Status Reports (BSR) prioritize users with more
data in the queue. QoS requirements, such as band-
width and latency, guide resource allocation for dif-
ferent services (eMBB, URLLC, mMTC). Measures of
signal strength and quality (Reference Signal Received
Power - RSRP and Reference Signal Received Quality
- RSRQ) influence allocation and handover decisions,
and traffic load helps balance the network. Latency
requirements are critical for low-latency services like
URLLC, and resource utilization efficiency ensures ef-
fective network use. User mobility and historical data
are also considered for predictive scheduling, optimiz-
ing resource allocation. These metrics balance CQI op-
timization, allocation history, and QoS requirements,
continuously monitored for effective resource manage-
ment [12].

3 Dynamical Systems and Time Series

Attractors and fractal dimensions are concepts from dy-
namical systems theory and chaos theory, applicable to
the analysis of complex systems such as 5G telecom-
munications networks. An attractor is a set of values
toward which a system tends to evolve, regardless of
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initial conditions. In phase space, attractors represent
stable states or repetitive cycles, as seen in dissipative
and periodic systems [31]. Strange attractors, charac-
teristic of chaotic systems, exhibit sensitivity to initial
conditions, where small differences can lead to diver-
gent trajectories and unpredictable behaviors. Classic
examples include the Lorenz-63 model and the Tinker-
bell map, systems that generate complex patterns de-
pendent on initial conditions [18].

Attractors have fractal dimensions (DF), which are
often non-integer, reflecting the self-similar and com-
plex nature of the generated patterns. This attribute in-
dicates the presence of detailed patterns that repeat at
all scales within the system [27]. To determine the frac-
tal dimension, the attractor’s point set is overlaid with
a grid of hypercubes, and the cubes containing at least
one point are counted. The fractal dimension DF is cal-
culated as the ratio of the logarithm of the number of
cubes to the logarithm of the inverse of the cube’s side
length [28, 17]:

DF = lim
ε→0

log[N(ε)]

log(1/ε)
. (1)

Embedding dimensions and the method of time de-
lays are techniques used in the analysis of dynamical
systems and time series to reconstruct the state space of
a system from observable data. Embedding dimensions
refer to the number of dimensions necessary to fully
represent a system’s dynamics without overlaps. The
method of time delays involves creating a multidimen-
sional phase space using time-delayed copies of a time
series, allowing the reconstruction of the original phase
space of the dynamical system. Whitney’s embedding
theorem ensures that a curve in a D-dimensional space
can be uniquely mapped into a 2D + 1 dimensional
space, guaranteeing a non-intersecting representation
[46, 35]. Floris Takens, in 1981, demonstrated how to
reconstruct a dynamical system from a single time se-
ries using time delay coordinates, creating a space topo-
logically equivalent to the original phase space [37]. In
Ref. [36] this approach was expanded for attractors
with fractal dimensions, determining that the embed-
ding dimension (d) must be greater than twice the frac-
tal dimension of the attractor (d > 2×DF ).

The False Nearest Neighbours (FNN) method is
used to determine the appropriate embedding dimen-
sion for reconstructing the state space of a dynamical
system. This technique identifies whether the proxim-
ity between points in a reconstructed state space is real
or results from projecting a higher-dimensional space
into a lower-dimensional one. FNN analyzes how the
relative distances between points change as the embed-

ding dimension increases. If nearby points in a lower-
dimensional space move significantly apart when the
dimensionality is increased, they are considered false
neighbours. The correct embedding dimension is found
when the ratio of false neighbours becomes zero, en-
suring an accurate and non-intersecting representation
in the phase space [31, 10],√

R2
m+1(n)−R2

m(n)

R2
m(n)

> Lcritical , (2)

whereRm is the distance between a point and its nearest
neighbour and m is the embedding dimension.

4 Kalman Filters

Developed in 1960 by Rudolf Emil Kalman, the KF is a
set of mathematical equations that estimate the state of a
linear dynamic system from incomplete and noisy mea-
surements. This algorithm has become a fundamental
tool in signal processing, control systems, and naviga-
tion, allowing precise real-time prediction and correc-
tion of system states. The KF provides estimates and
predictions divided into two phases: prediction and up-
date. In the prediction phase, state variables are esti-
mated based on the system dynamics, while the update
phase refines these estimates by incorporating new ob-
servational data. The state estimate is sequential, where
the state at time k, denoted as xk, is predicted from the
previous state xk−1 using the system’s state transition
matrix A and the process noise wk−1 with covariance
given by the matrix Q. The observational data are rep-
resented by the measurement equation, where H maps
the true state space to the observed space, and vk de-
notes the measurement noise [23]

xk = A xk−1 + ωk−1 , (3)
zk = H xk + vk . (4)

The update phase begins with the previous state
k − 1, providing initial estimates for x̂k−1 and Pk−1.
The a priori estimates x̂k and the a posteriori esti-
mates x̂k, after the measurement update, are recalcu-
lated along with the error covariance Pk and Pk, re-
spectively. The Kalman gain K is derived during the
correction step to minimize the estimation error, lead-
ing to the updated state estimate and the adjusted error
covariance [23]:

x̂k = A x̂k−1 ,

Pk = A Pk−1 A
T + Q , (5)

Kk = Pk H
T (H Pk H

T )−1

x̂k = x̂k + Kk (zk −H x̂k)

Pk = (I − KkH) Pk . (6)
INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.
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The Extended-Kalman Filter (EKF) adapts
Kalman’s original theory for nonlinear systems by
using Taylor series approximations to linearize mod-
els around the current estimate. This linearization
allows the EKF to apply the iterative prediction and
correction process of the KF to nonlinear systems.
In the prediction phase, the nonlinear state dynamics
and measurement models are approximated using
the first-order Taylor series expansion, resulting in
linearized models that approximate the system’s
behavior near the current state estimate. The state
transition and measurement equations are rewritten for
nonlinear processes, with noise components following
normal distributions with zero mean and covariances
Q and R. While effective for systems that can be
well-approximated by linearization, the EKF may
exhibit inaccuracies in highly nonlinear systems and
requires numerical methods to compute the Jacobian
matrices [44].

The Unscented-Kalman Filter (UKF) was devel-
oped to overcome the limitations of the EKF in nonlin-
ear systems by avoiding the complexities of lineariza-
tion through the Unscented Transformation (UT). The
UKF uses strategically chosen sigma points to capture
the mean and covariance of the probability distribution
more accurately, offering a more reliable estimate of the
system’s statistical characteristics [22, 45].

The KTF is a hybrid method based on the UKF, re-
placing model equations with a local model constructed
using time-delay vectors. It appeared originally in Ref.
[19] to denoise a set of Lorentz-96 equations [26]. This
model relates the observations zk to the states xk at time
k, incorporating the noise ν, calculating the value of
xK+1 using a function f̃(xk, tk) as follows:

xk+1 = f̃(xk, tk) + wk ,

zk = h(xk, tk) + vk . (7)

The function f̃(xk, tk) is built using the past in-
formation of the system via its time-series. Using an
embedding dimension d, the time-delay vector is con-
structed with a step of 1 for the observed times

ξk(T ) = [ zk, zk−1, · · · , zk−(d−1) ] . (8)

For non-parametric prediction, a sequence of data
collected over the interval [1, 2, · · · , T t] is used to
form a training sequence and predict [T + 1, T +
2, ..., Tf ], where Tf is the number of observations to

be predicted, i.e.,

ξk(T
′) = [ zk(T

′), zk−1(T
′), · · · , zk−(d−1)(T ′) ]

ξk(T
′′) = [ zk(T

′′), zk−1(T
′′), · · · , zk−(d−1)(T ′′) ]

.

. (9)

.

ξk(T
k) = [ zk(T

k), zk−1(T
k), · · · , zk−(d−1)(T k) ]

Once the vectors are obtained, they are advanced in
time z(T ) → z(T + i) for each calculated neighbor.
The average of the time-advanced vectors gives the non-
parametric model for the system’s evolution

f̃(ξk + i) = w′ξk(T
′ + i) + w′′ξk(T

′′ + i)

+ · · · + wkξk(T
k + i) , (10)

where the time-delay vector’s weight, or the average of
the distances is given by

w(i) =
e−d

(i)/σ∑k
j=1 e

−d(i)/σ
. (11)

Therefore. the KTF does not rely in a determined
function or a transition matrix to estimate the xk+1.
Therefore, it is a “model free” predictor built using
techniques from chaos and dynamic systems.

5 Case Study
5.1 Data

The numerical data used in this work were collected
from a mobile network operator in South Korea, using
a Samsung Galaxy A90 5G smartphone equipped with
a Qualcomm Snapdragon X50 5G modem. For packet
capture, the PCAPdroid application was used, allow-
ing direct data collection from mobile terminals with-
out specialized equipment. Data collection was con-
ducted sequentially for each application on fixed termi-
nals, with no background traffic, ensuring data accuracy
[13].

The dataset covers various types of traffic in 5G net-
works, with a special focus on intensive video traffic,
which is crucial for network planning and management
due to its high bandwidth consumption. Video traffic
constitutes about 73% of mobile data traffic in 2023 and
is projected to grow with the expansion of 5G networks
[16]. The data, collected from May to October 2022, to-
tals 328 hours and is in CSV format, including records
mapped by timestamp with details such as source and
destination addresses [13].

Specific subsets were selected for analysis:
AfreecaTV for live streaming traffic, MS Teams for
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video conferencing, and YouTube for video streaming.
These subsets are relevant for daily activities and traffic
behavior analysis. The initial data processing involved
filtering and cleaning to ensure analytical accuracy,
including the elimination of incomplete records and
error correction. The analysis focused on the time
and length columns of the collected data, providing a
detailed view of bandwidth usage and traffic dynamics
in the 5G network. These insights are essential for
applying the KTF to analyze traffic dynamics [16].

5.2 Applying KTF to data

The KTF was applied to the time series data to model
and predict network traffic fluctuations, identifying pat-
terns, trends, and irregularities. Before applying the
KTF, the CSV files underwent preprocessing to ensure
temporal uniformity, adjusting the time series to regu-
lar intervals. Specific retime intervals were applied: 5
seconds for AfreecaTV, 0.5 seconds for MS Teams, and
10 seconds for YouTube, due to the variability of the
collected data.

The KTF was parameterized for 5G data analysis,
including the definition of variables, state and observa-
tion parameters, and fine-tuning the filter parameters to
optimize temporal analysis accuracy. The application
of the KTF used the Root Mean Square (RMS) Error
(RMSE) as the performance metric. RMSE is a stan-
dard statistical measure used to assess the accuracy of
model predictions, quantifying the difference between
predicted values and actual observed values. RMSE is
calculated as the square root of the mean of the squared
differences between predicted and observed values, pe-
nalizing larger errors more severely

RMSE =

√√√√ 1

N

N∑
i=1

(zoi − zpi)2 , (12)

where N is the number of observations, zo is the actual
observed value and zp is the predicted value [32].

The Normalized Root Mean Square Error
(nRMSE),

nRMSE =
RMSE

|max(zo)−min(zo)|
, (13)

where the denominator is the range of the observed
data [32], assesses model prediction accuracy, normal-
ized by the range or standard deviation of the observed
data, facilitating performance comparison across differ-
ent datasets or scales.

The KTF parameters, such as k-Nearest Neighbors
(kNN), Transient Filter, Delay, Number of State Vari-

ables (N ), Filter-Row-From, and Filter-Row-To, im-
pact predictive accuracy. Each parameter in the KTF
configuration affects the RMSE differently. The Tran-
sient Filter controls the number of initial data points ig-
nored in the RMSE calculation, excluding initial fluc-
tuations or noise. The delay is the time interval used
in Takens’ embedding to reconstruct the phase space
from a single time series, influencing the state estimate
accuracy. The kNN determines how many neighbors
are used in the prediction, balancing bias and variance
in the predictions. N represents the state dimensional-
ity, and an appropriate N captures all relevant variables
without redundancy. Filter-Row-From and Filter-Row-
To are also parameters that define the segment of data
used in the analysis, focusing on the most relevant parts
of the time series. Correctly adjusting these parameters
can minimize RMSE and optimize KTF performance
for a specific dataset, ensuring accurate analysis of traf-
fic behavior in the 5G network. In the next section we
show how we used the KTF to predict the packet sizes.

6 Numerical Results

The initial evaluation of the KTF involved a meticulous
analysis of parameters to assess the predictive efficiency
of the filter in the dynamics of 5G network traffic. A
MATLAB script was developed to automate the execu-
tion of the KTF under various parameter configurations,
aiming to minimize the RMSE and enhance model ac-
curacy. This script explored different settings for the
Transient Filter, Delay, kNN, N, Filter-Row-From, and
Filter-Row-To parameters, ensuring a thorough evalua-
tion of their influence on the predictive accuracy of the
KTF.

The data analysis identified parameter configura-
tions that resulted in the lowest RMSE, providing
deeper insights into the model’s effectiveness. Param-
eters such as a higher Transient Filter value, lower De-
lay values, and a moderate kNN number were found
to be most suitable for the analyzed data. The rela-
tionships between parameters and RMSE were high-
lighted: higher Transient Filter values were associated
with RMSE reduction, indicating that ignoring initial
observations can improve prediction accuracy. Delay
values showed no clear linear pattern, suggesting that
optimal values should be empirically determined; the
impact of kNN did not follow a uniform linear pattern,
indicating the need to balance capturing relevant details
and managing data variability.

These results demonstrate that the ideal set of pa-
rameters is specific to the data context and dependent
on the system dynamics being studied. Therefore, care-
ful calibration of the Transient Filter, Delay, and kNN
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parameters is crucial to optimize KTF accuracy. Exper-
imenting with a range of parameter values and subse-
quently evaluating their impact on RMSE proved to be
an effective strategy for determining the most efficient
KTF configuration.

In the following subsections we show the perfor-
mance of the KTF. We compare the observations, i.e.,
measurements with the predictions obtained using the
KTF.

6.1 AfreecaTV Series

The analysis of KTF predictions applied to the
AfreecaTV dataset, shown in Fig. 1, focused on the
model’s effectiveness in capturing the dynamics of 5G
network traffic. Various parameter configurations were
explored to minimize the RMS error and maximize pre-
diction accuracy. It was observed that increases in the
Transient Filter value generally reduce the RMS error,
indicating that eliminating initial observations can dis-
card noise and stabilize predictions, especially when
kNN is set between 10 and 50. A Delay configuration
of 2 resulted in a substantially lower average RMS er-
ror compared to Delays of 5 and 10, suggesting that a
smaller Delay is preferable for this dataset.

Figure 1: Packet size vs transmission time in the case of the
AfreecaTV time series. Observations in red and Kalman-Takens fil-
tering in blue.

The variation in RMSE with different kNN config-
urations revealed a non-linear behavior, where an in-
termediate kNN, specifically 10, was ideal for mini-
mizing RMSE. Additionally, RMSE was significantly
higher when the analysis started at the first line com-
pared to starting at line zero, suggesting that including
initial data can be beneficial. Changes in Filter-Row-
To from 100 to 1000 did not result in significant RMSE
changes, indicating that extending the analysis to more
lines does not drastically affect accuracy.

The optimal configuration identified, with a Tran-
sient Filter of 1000, Delay of 2, kNN of 1, N of 1, Filter-
Row-From of 1, and Filter-Row-To of 1000, resulted
in a significantly low RMSE of approximately 0.061,
demonstrating its effectiveness in predictive modeling
for live streaming traffic on AfreecaTV in a 5G net-
work. This configuration showed that a high Transient
Filter eliminates distorting initial data, a reduced Delay
ensures predictions influenced by recent observations,
and a single kNN highlights the importance of precise
historical analysis.

6.2 MS Teams Series

The analysis of MS Teams videoconference data, dis-
played in Fig. 2, highlights significant parameter influ-
ences on RMSE, demonstrating how appropriate con-
figuration can enhance predictive modeling. RMSE
consistently decreases as the Transient Filter increases
from 1 to 1000, indicating the effectiveness of ex-
cluding initial observations to improve prediction ac-
curacy. However, exceeding a Transient Filter of 1000
does not result in significant additional RMSE improve-
ment, suggesting a saturation point. The kNN parame-
ter shows a non-linear relationship with RMSE, with a
kNN of 10 being ideal, achieving an RMSE of 39.50,
while extremes in the number of neighbors are counter-
productive.

Figure 2: Packet size vs transmission time in the case of the MS
Teams time series. Observations in red and Kalman-Takens filtering
in blue.

The influence of Delay is evidenced by the signif-
icant RMSE reduction, reaching the lowest value of
40.29 with a Delay of 2. Larger Delays, such as 5
and 10, increase RMSE to 59.48 and 67.39, respec-
tively, demonstrating that smaller Delays are preferable
as they capture essential temporal dependencies with-
out redundancy. The Filter-Row-From and Filter-Row-
To configuration shows an impact, where starting the
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analysis from zero and extending up to 1000 lines im-
proves RMSE. Analysis starting from zero presents a
lower RMSE of 32.38, compared to starting from one
with 87.71.

For the MS Teams series, the best configuration
achieved was with a Transient Filter of 1000, Delay of
2, kNN of 10, N of 1, Filter-Row-From of 1, and Filter-
Row-To of 1000, reaching an RMSE of 0.128, the low-
est observed. Implementing a Transient Filter of 1000
removes initial observations that may distort modeling,
promoting a more stable and representative model. A
reduced Delay ensures predictions are based on recent
observations, and a kNN of 10 proves to be most effec-
tive, balancing noise excess and information scarcity.
The careful selection of the data interval for analysis,
ensuring the inclusion of the most representative data,
is essential to optimize prediction accuracy in 5G net-
work traffic.

6.3 YouTube Series

The analysis of YouTube data reveals that RMSE de-
creases with the increment of the Transient Filter as
shown in Fig. 3, suggesting that increasing the filter
value helps improve model accuracy by removing ini-
tial observations. It was observed that the kNN value
has a non-linear relationship with RMSE, with kNN of
10 resulting in lower RMSE, unlike kNN of 1 and 100,
which showed higher RMSE. The Delay parameter also
significantly affects RMSE, with a Delay of 2 resulting
in a lower average RMSE, while Delays of 5 and 10
increase RMSE.

The Filter-Row-From and Filter-Row-To parame-
ters influence RMSE, where starting the analysis from
point 0 results in a lower RMSE compared to starting
from point 1, suggesting that including initial data can
be beneficial. The prediction error gradation and the
RMS error histogram displays the variability and distri-
bution of RMSE results, reflecting the extensive experi-
mentation necessary to capture the nuances of YouTube
traffic.

The configuration with a Transient Filter of 1000,
Delay of 2, kNN of 1, N of 1, Filter-Row-From of 1, and
Filter-Row-To of 1000 resulted in the lowest observed
RMSE, standing out as the most efficient for minimiz-
ing the RMS error. A Transient Filter of 1000, a Delay
of 2, and a kNN of 1 shows that an immediate approxi-
mation of temporal data and using the most similar pre-
vious state as a reference are essential to achieving max-
imum prediction accuracy. Starting the analysis from
line 1 to line 1000 allowed for considering the most rel-
evant data, optimizing prediction accuracy and indicat-
ing that careful parameter adjustments can significantly

improve data traffic modeling in 5G networks.

Figure 3: Packet size vs transmission time in the case of the YouTube
time series. Observations in red and Kalman-Takens filtering in blue.

7 Conclusions

The aim of this work was to analyze and validate a pre-
dictive model by applying the KTF to optimize spec-
trum allocation in 5G mobile communication systems,
in order to improve network performance and user ex-
perience. The literature set the basis for the application
of the KTF in modeling and forecasting 5G time series
data. Related works indicated the relevance of predic-
tive resource allocation and the application of the KF to
estimate future transmission rates for scheduler use.

The developed methods enabled the application of
the KTF in modeling and forecasting traffic variations,
using metrics such as the RMSE to evaluate the model’s
accuracy. The results demonstrated the effectiveness of
the KTF in capturing network traffic dynamics, high-
lighting the importance of careful parameter calibration
to achieve highly accurate predictions. The analysis re-
vealed that parameters such as Transient Filter, Delay,
and kNN directly influence RMSE, evidencing the need
for specific adjustments for each dataset.

In conclusion, this work showed that fine-tuning the
KTF involves a large number of variables, requiring
a detailed understanding of their collective dynamics.
The optimal parameter configuration achieved the low-
est RMS error, underscoring the importance of a holis-
tic approach to predictive modeling. This knowledge
is crucial for creating accurate and reliable predictive
models, essential for an efficient distribution of network
resources amid increasing data consumption.
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