
Applying Principle of Locality
to a Knowledge Base of Schema Mapping

BOUBAKER KAHLOULA1

KARIM BOUAMRANE2

Université d’Oran
Département Informatique

IGMO 31000 - Oran - Algeria
1bkahloula@gmail.com

2bouamrane.karim@univ-oran.dz

Abstract. Large amounts of information are posted on the web every day by thousands of enterprises,
organizations and individuals. There is a daily exchange of data between companies, who also proceed
to an extraction of data from web databases and documents in order to integrate them into databases.
Since XML has become as the de facto standard in this area, the data contained in XML files are loaded
into the database, usually relational, to be processed or analysed. In order to enable different systems
to communicate with each other, it is necessary to match the data and create a mapping between the
source schema and the target schema. Yet, in many companies, this mapping is manually built. Loading
XML data, that were previously submitted to a manually constructed mapping, in databases, is subject
to a prior itself automated schema matching. We propose in this paper a solution for loading (semi-
)automatically XML data into relational databases. The solution we propose is to use previous mappings.
These mappings are stored in what we call a Mapping Knowledge Base. We study the evolution of the
volume of the Mapping Knowledge Base and we propose a strategy to use.

Keywords: Databases, Data Integration, Semi-structured Data, Schema Matching, Similarity Coeffi-
cients.

(Received October 29th, 2014 / Accepted September 7th, 2015)

1 Introduction

Because systems that exchange data have been devel-
oped in different environments, from different people
and in different times and places, the structure of
the data sources is often heterogeneous. To enable
different systems to communicate with each other, it
is necessary to match the data and create a mapping
between the source schema and the target schema. Yet,
in many companies, this mapping is manually built.
Loading XML data, that were previously submitted to a
manually constructed mapping, in databases, is subject
to a prior itself automated schema matching.

The concept of “mapping” is closely related to

the one of “matching” [26, 31]. A definition of these
two concepts is given in [7]: “To cope with the het-
erogeneity and achieve interoperability, a fundamental
requirement is the ability to match and map data across
different formats. These two tasks are found in the
literature under the names matching and mapping,
respectively. A match is an association between indi-
vidual structures in different data sources. Matches are
the required components for every mapping task. The
mappings are the products of the latter. A mapping, in
particular, is an expression that describes how the data
of some specific format is related to data of another.
The relationship forms the basis for translating the data
in the first format into data in the second”.

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

bkahloula@gmail.com
bouamrane.karim@univ-oran.dz

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 14

We begin this article by introducing the state of
the art in the area of schema matching and mapping.
Their fields of application, the different approaches
taken to date, as well as the tools and prototypes
developed around this technique, will be presented in
the first part.

The second part is about the solution that we pro-
pose for loading (semi-)automatically XML data into
a relational database. The solution we propose is to
use mappings established during previous handling.
To load the data contained in XML files in the target
database, we make a matching of XML elements.
This allows us to achieve a mapping between the
XML elements [6]. The mappings established during
previous handling are stored in what we call a Mapping
Knowledge Base (MKB). We study the evolution of the
volume of the MKB and propose a strategy to use.

2 State of the art

The schema matching and mapping is applied in
several areas: Data Integration [21], Data exchange
[16], Messages exchange [8, 18], Schema Evolution
[22] and Schema integration [4].

The cost of a manual matching can be very high,
because it may require great efforts and time. Manual
matching can also be a source of errors. The prob-
lems that appear in a manual schema matching have
various causes. Many of these problems, that require
a manual handling from the user, can be resolved if
the matching process is automated. There are different
approaches of the automatic schema matching. A
taxonomy of these approaches was already developed
by Rahm and Bernstein in 2001 [31]. The scale and
complexity of the work generated by the schema
matching, soon suggested the idea of developing a
tool in order to assist the user in this task. Several
prototypes, then called “mapping tools”, have been
developed so far: S-Match [17], Cupid [23], Clio [16],
Coma++ [15, 3], etc. Some of these prototypes are
generic; others are specific to a given branch (e.g.
biomedical). An example of prototype evolved to
a marketed product is Altova MapForce [2]. Some
of these tools or prototypes make a Graphical User
Interface (GUI) available to the user [3, 2], allow him
to use an advanced mapping language [9], and offer
the choice between advanced algorithms [29, 1]. Some
of these tools and prototypes are specific to a definite
type matching (e.g. XML-XML, XML-Relational
Ontology-Ontology). Major software vendors are also

engaged in the development of mapping tools: This is
the case of IBM, with IBM InfoSphere Data Architect
[19], Microsoft with Microsoft BizTalk Mapper [25],
integrated into Microsoft Visual Studio, and BEA, with
BEA AquaLogic [11].

Concerning us, we make a matching be-
tween XPaths. An example of XPath is:
/Orders/Customers/Address/City. The
matcher we use is a hybrid matcher [31], since XPath
contains two pieces of information:

1. The node name

2. The path from the root to the node. The path to the
node is an important feature of the node.

3 Proposed Architecture

3.1 Mapping Knowledge Base

What we call a Mapping Knowledge Base (MKB) is
a table containing the history of the mappings previ-
ously inputted or validated by the user. It combines
XPaths with column names of a table: XPath →
column_name. The minimal structure of the MKB
implies the existence of two columns: a first column
containing XPaths, and a second column containing
column names from a target table. Before loading the
data contained in the XML into the table, we begin by
searching in the MKB identical or similar XPaths to
the XPaths extracted from the XML file. If we consider
the XPaths as strings, there are several methods to
estimate the similarity. The most popular indicators
for the similarity, called indices, are: Jaccard, Cosine,
Jaro-Winkler, and Dice-Sørensen. The column asso-
ciated with each XPath in the MKB is given then to
the user if the search is successful. The user can then
validate the mapping. The mapping is stored in turn in
the MKB. An unsuccessful search for an identical or
similar XPath in the MKB requires the user to manually
associate a column name to the XPath extracted from
the XML file. The manually set mapping is also added
to the MKB.

When using the MKB, a transitive operation is
performed. Suppose that S1 is the set of XPaths
contained in the XML file and the MKB contains a
mapping S2 → S3, S2 is a set of XPaths and S3 is a
set of column names. A matching between S1 and S2

occurs first and then the mapping S2→ S3 is used. The
result is a mapping S1 → S3. This mapping is added
in turn to the MKB after validation by the user (Figure
1). The volume of the MKB will progressively increase

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 15

XML-File

S1
/Orders/Customers/City

Mapping Knowledge Base

S2 → S3
/Orders/Custom/City → City

Resul!ng Mapping

S1 → S3
/Orders/Customers/City → City

Add to the Mapping Knowledge Base

Validation

/Orders/Customers/City and /Orders/Custom/City are similar !

Figure 1: Using a Mapping Knowledge Base

as XML files are loaded into the target database. The
number of XPaths increases, improving by this the
probability of finding in it identical or similar XPaths
as those extracted from an XML file. In order to
illustrate this, let’s consider an example where we have
to load XML files, from which is extracted a constant
number of XPaths equal 100. Let’s suppose further
that the percentage of identical XPaths found in the
MKB is also constant and equal to 1. The result of a
simulation based on these hypotheses is given in Figure
2. We note firstly that the number of XPaths contained
in the MKB stabilizes after a period of filling, while
the number of the manually set mappings decreases
linearly. Since we use the XPaths contained in the
MKB as historical information, the greater the volume
of the MKB, the smaller the volume of the work done
manually. We assumed that the percentage of XPaths

Figure 2: Evolution of the Mapping Knowledge Base

found in MKB is 1. XML Files can be very homoge-
neous if they belong to the same area but they are less
homogeneous if they belong to various domains. The
“filling period” of the MKB varies depending on the

degree of homogeneity, but the volume of the MKB
stabilizes always. The variation of the homogeneity is
equivalent to the variation of the Precision. Precision
(or positive predictive value) is a criterion used in the
Information Retrieval (IR) that measures performance.
This will be discussed in more details in 3.2.

3.2 Similarity between two strings

The Matcher contained in the prototype we devel-
oped [20] uses what is called in the literature “Name
Matching” [31, 10]. The Name Matching is based on a
comparison between the element’s names. We estimate
the similarity between each of the XPaths extracted
from the XML file with each of the XPaths contained
in the MKB. We determine by this comparison the
value of the similarity index of the XPaths considered
as strings. There are several indicators to estimate
the similarity between two strings: Jaccard, Cosine,
Jaro-Winkler, Dice-Sørensen, usw. The value of a
similarity index is in general between 0 and 1, the
value of 1 indicates that the strings are exactly the
same. If we consider, for example, the two strings
C1="orderitem" and C2="order", the union of
these two chains {d,e,i,m,o,r,t} has the length
7 and their intersection {d,e,o,r} has the length
4. The Jaccard index is calculated as following: SJ=
|A∩B|/|A∪B| The Jaccard index for C1 and C2 is
therefore: SJ= 4

7=0,57

The efficiency and effectiveness of Jaro-Winkler
index make it an indicator used in number of proto-
types. Although we have considered in the prototype
that we developed within the context of our research all
the indicators mentioned above, it is the Jaro-Winkler
index, which we use as default in matching operations.
It gave, in terms of efficiency, the best results in the
tests we made (Figure 5). Both Cohen [12] (”good
distance metric is a fast heuristic scheme, proposed by
Jaro and later extended by Winkler”) and Da Silva [13]
(”we performed experiments to assess the quality of
eight similarity functions according to the discernibility
function. The results show that, for the data set consid-
ered, the best function was Jaro-Winkler”) confirm that
Jaro-Winkler similarity is a good metric.

3.3 Sequential search

After calculating the similarity index, the resulting
mapping from the matching that produced the highest
value of the similarity index is proposed to the user for
validation. The search in the MKB for identical or sim-
ilar XPaths as those extracted from XML files is done

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 16

according to the pseudo-code below. As we can see the
search in the MKB takes place sequentially.

// FP[i] are the XPaths extracted from the
// XML-file
// MP[j] are the XPaths contained in the MKB
// MCol[j] are the columns of the transient
// table mapped to the MP[j]
// We search for the FCol[i], the columns of the
// transient table to map to FP[i]
//
// Loop on the XPaths extracted from the
// XML-file
for(i=0; i<n; i++) {

FCol[i] = null;
maxSimCoef = 0.00;
// Loop on the XPaths contained in the MKB
for(j=0; j<m; j++) {

simCoef[i]= calcSim(FP[i],MP[j]);
if (simCoef[i] > maxSimCoef) {

maxSimCoef = simCoef[i];
FCol[i] = MCol[j];
if (simCoef[i]== 1.00) break;

}
}

}

The matching, that is to say, the determination of the
value of the similarity index of each XPath extracted
from the XML file with each XPath contained in the
MKB, is interrupted if the similarity index is equal to 1.
This means that the XPath extracted from the XML file
is exactly identical to the one found in the MKB. If we
consider the algorithm that we have just given, we see
that the calculation of the similarity index takes place
inside two nested loops. In the worst case, that is to
say, in case it is not found XPaths in the MKB exactly
equal (similarity index = 1) to the XPaths extracted
from the XML file, and therefore the inner loop has
not been interrupted, the calculation of the similarity
index must be calculated n*m times if n is the number
of XPaths contained in the XML file to load and m the
number of XPaths contained in the MKB.

As we have already said, the volume of the MKB
will increase along with the XML files loading into
the target database. Although stabilizing over time,
the number of XPaths contained in the MKB can be
several thousands. Regardless of the used similarity
index, the matching scheme can be time consuming.
We can distinguish by observing Figure 2 that shows
the evolution of the volume of the MKB, two periods:

- A first period PR, we say that it is the “filling period”

- A second period PS during which the MKB is “suffi-
ciently filled”. Its volume is stable.

PR + PS is the lifetime of the MKB.

3.4 Exact search

If it is allowed to go sequentially through the the MKB
during PR, because the MKB is not sufficiently filled
and the probability ξ of finding an XPath inside it, that
is exactly identical to the XPath extracted from the
XML file, is small, this approach is certainly “over-
sized” for the PS period. We can, in fact, during the
second period make an exact search, since the probabil-
ity ξ is high. The exact search is described in the fol-
lowing pseudo-code. The function seek here means
an exact search through the use of a Database Index.

// Loop on the Xpaths extracted from the
// XML-file
for(i=0; i<n; i++) {

FCol[i] = null;
// Exact Search for FP[i] in the MKB
seek FP[i];
if found {

// MP[j] = FP[i] found and its
// corresponding MCol[j]
FCol[i] = MCol[j];

}
}

Our strategy is therefore, to go sequentially through the
MKB during the filling period PR, and then proceed
to exact searches from the moment the MKB is suffi-
ciently full.

3.5 Efficiency and effectiveness

The efficiency and the effectiveness of an algorithm or a
strategy of schema matching are two important factors,
particularly in the presence of large volumes. Effective-
ness is the ability to correctly identify the mappings.
Efficiency, for its part, is the ability to use the least pos-
sible resources. Indeed, the processing time may take
several hours or even days [32, 30].

3.5.1 Efficiency

As in [14], in order to estimate the efficiency of our
strategy, we take the measurement tools of the Infor-
mation Retrieval (IR) area, in particular the so-called
F-Measure, which is a combination of the two called
Recall and Precision. In Figure 3:

- Part A, which is the “false negative”, represents the
XPaths of the XML file that are not included in the
MKB.

- Part B, the “true positive”, is that of the XPaths con-
tained in the XML file existing in the MKB. The map-
ping is established in this case automatically.

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 17

A B C

Mapping Knowledge Base XML File

D

A: False Negatives
B: True Positives
C: False Positives

D: True Nagatives

Figure 3: Efficiency measures

- Part C, the “false positive”, is the set of the XPaths,
although they exist in the MKB, they are not useful
for the processing of the XML file, since they are not
contained in it.

- Part D, the “true negatives”, is of no interest, since it
is the part of the XPaths that are included neither in
the XML file to load nor in the MKB.

Precision reflects the degree of homogeneity of the
XML files. It is the part of real mappings among all
those found in the MKB. The set of all the found map-
pings is the set of all the XPaths contained in the MKB.
Precision is calculated as following:

Precision = |B|/|B|+|C|

Recall, on the other hand, is the part of the real map-
pings among all those sought. The set of all mappings
being sought is the set of all the XPaths contained in the
XML file. Recall is calculated as following:

Recall = |B|/|A|+|B|

Both Precision and Recall, will give only a relative idea
of the quality [14]. A third measure, which is the har-
monic mean of the two, is used: F-measure. The latter
is given by the following formula:

F-Measure = 2*(Precision*Recall)/(Precision+Recall)

Although we have no information about the volume
of the XML files that we have to load into the target
database, i.e. about the number of XPaths they contain,
and we cannot influence this volume, we have in our
simulation (Figure 2) considered the hypothesis that the
volume is constant (equal to 100 XPaths). We have fur-
ther assumed that the percentage of the XPaths found
in the MKB is equal to 1. These assumptions are re-
flected in Figure 4 by a constant Precision. But we see

in the same figure that Recall and F-Measure “accom-
pany” the evolution of the volume of the MKB. Both
measures increase up to a certain value and then stabi-
lize. This means, concerning these two measures, that
they reach their maximum in the point where the vol-
ume of the MKB has stabilized. It is precisely this point
that we determine in 3.4, that is the point at which the
user can switch to an exact search.

Figure 4: Precision, Recall and F-Measure

3.5.2 Effectiveness

To test the effectiveness of our concept, we gener-
ated XML files with increasing volumes. The created
XML files belong to the same domain, which is the e-
Commerce domain (Orders, Shipping, etc.). The test-
ing took place with XML files, whose XPaths num-
ber varies from 250 to 450. The volume of the files
which contain instances also varies from 0.3 to 12MB.
The MKB contains 450 XPaths. The tests were done
on a Windows XP machine with 1.98 GB of RAM
and 2x86 processors 3GHz and a repository created
in a database Oracle Database 10g Enterprise Edition,
that was installed on the same machine. Looking at
the graph of the test results (Figure 5), we note that
the exact search is the most effective. This result is
expected since the access to the MKB is not sequen-
tial in this case but occurs through an index. The
evaluation of the similarity index between each of the
XPaths contained in the XML file and each of those
contained in the MKB does not occur in the case of an
exact search. The creation of the MKB as a table of
the repository, containing three columns mkb_path,
table_name and column_name, and thus repre-
senting a mapping mkb_path → (table_name,
column_name), is followed by the creation of an in-

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 18

Figure 5: Efficacity test results

dex on the table_name and mkb_path columns.
Access as in the following example:

SELECT column_name
FROM mkb
WHERE table_name = ”orders” AND mkb_path =
”/Orders/Customers/Address/City”;

necessarily use the index on the table_name and
mkb_path columns. The primary role of an index is
to accelerate access by reducing disk I/O [28]; this is
valid for any DBMS. The good performance of the ex-
act search is justified by the use of an index. We also
note that the difference between the exact search and the
similarity index calculation, regardless of the method of
calculation, widens increasingly with time. Therefore,
the more the volume of the MKB is big, the more the
exact search that uses an index is effective.

3.5.3 Applying the principle of locality

We saw earlier that the period of filling the MKB varies
according to the degree of homogeneity of XML files
to be loaded into the target database. This period may
take some time if the files belong to several completely
different areas, but the efficiency and effectiveness can
also be improved during this period. Both operating
systems [24] as DBMS [27] use strategies to manage
caches or buffers. These strategies are generally
based on the principle of spatial or temporal locality.
They use in order to optimize the time of response,
instructions or data located in the memory areas near
to those occupied by recently accessed instructions or
data (spatial locality) or reuse data or instructions used
in the recent past (temporal locality).

We use in order to optimize the access time to
the MKB during the filling period, that is to say
before we switch to an exact search, strategies that
are similar to LRU and LFU caching strategies [24].
Least Recently Used (LRU), the first of these two
strategies, assumes that the most recently used data and
instructions are those likely to be used again in the near
future. The second strategy, Least Frequently Used
(LFU), prioritizes the most often referenced data and
instructions, considering that they are likely to be used
again in the future.

The application of one or the other of these strategies
implies an extension of the table structure of the MKB.
LRU requires adding a last_used column that
contains a time-stamp indicating the date at which the
last access to each XPaths took place.

LFU requires an additional number_uses col-
umn containing the total number of access of each
XPaths. The last_used and number_uses
columns are updated at each new reading from the
MKB or at the moment of inserting in the MKB.
The application of LRU and/or LFU also requires
a descending sort of the MKB according to the
last_used and number_uses columns. The
access to the MKB during its sequential filling to find a
“recently added” or “often used” identical XPath to an
XPath extracted from the XML file is faster if the MKB
is sorted according to the one or the two columns:

- last_used for LRU

- number_uses for LFU

- last_used, number_uses for LRU and LFU

- number_uses, last_used for LFU and LRU

This results in the creation of indexes. For instance,
concerning the Oracle DBMS, a so called hint tells
the DBMS that an index must be used even if it is a
sequential access.

Although index maintenance presents CPU and
I/O resource demand in write-operations, LRU/LFU
can speed up the finding/matching process, precisely
because read-operations are over time more and more
while write-operations are less (Figure 2).

3.5.4 Switch to an exact search

Figure 6 shows the MKB volume’s evolution (number
of XPaths contained in the MKB) according to the num-
ber of files processed. The number of XPaths contained

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 19

in the MKB is considered by the user as constant if it
didn’t change for a while more than a value δ (since a
number of files have been processed). We seek, accord-
ing to δ, the point of the x-axis µ, from which the user
can opt for an exact search. This is given by:

µ = min(xi), (max(yi)- yi)≤ δ

Figure 6: Switch to an exact search

This means that after µ processed files, the user can
opt for an exact search and switch to automatic load-
ing of XML files in the database. The developed proto-
type within the context of our research has a module of
statistics that enables to determine the switching point
according to a δ value entered by the user. The pro-
duced statistics allow defining from when the volume
of MKB can be considered stable.

3.5.5 From (semi-)automatic to fully automated
processing

As we can see in Figure 7, the processing of an
XML file with the prototype we developed starts after
extracting data from web, databases or documents and
storing them in an XML file. It takes place according
to the following steps:
(1) The first module, called Matcher, starts by reading
the XML file.

(2a) it performs the extraction of the XPaths
from the XML file and stores them in a table
which we call Mapping Table. An XPath is the
way to go along the tree to reach each of the
instances contained in the file. This should not
be confused with the language XPath. Example:
/Article/JournalIssue/pubDate/Year.
The Mapping Table contains two columns.
It represents the relationship between the

XPaths contained in the XML file and the col-
umn names of a transient table. Example:
/Article/JournalIssue/pubDate/Year
→ Year.
Transient tables are called that way because they are
used as a “transit” for the records that shall be loaded
into the target relational database. Their structures are
static and defined by the user, who is in this case a
database administrator or as named in the literature
related to the field of data warehousing [5], the ETL-
or ELT-team. Transient tables are called in this same
literature by “staging area”.

(2b) the second column is filled if the Matcher
has found in the MKB a similar or an identical XPath.
The MKB is a table that has a similar structure of
the Mapping Table. The MKB contains the entire
history of the mappings inputted or validated by
the user in the previous processing. An identical
XPath as in the example given above would be
/Article/JournalIssue/pubDate/Year
while a similar XPath could be, for example,
/Article/Journal/Date/Year.

(2c) as well the instances as the XPaths contained
in the XML file are stored for technical reasons in
a temporary table. This allows indexing and sorting
operations. Unlike the transient tables, the temporary
table is a table in the repository. It is an integral part of
the prototype.

(3a) the mapping, that is to say the correspon-
dence between the XPaths and column names of the
transition table is inputted or validated by the user. A
graphical interface is available for this purpose.

(3b) the mapping, inputted or validated by the
user, is stored in the MKB.

(4a) a second module, called Loader, reads the
data contained in the temporary table.

(4b) it loads them in the transient tables.

(5a) a third module, named Rules Engine, ac-
cesses Rules. The Rules, which are SQL commands,
are stored as text in a table of the repository.

(5b) the Rules Engine reads the records contained
in the transient table.

(5c) based on the Rules, the Rules Engine dispatches

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 20

MATCHER LOADER RULES ENGINE

MAPPING

KNOWLEDGE BASE

(MKB)

MAPPING

TABLE

RULES

(2b)

(4a)

TRANSIENT

TABLE(S)

(5a)

T
A

R
G

E
T

D
A

T
A

B
A

S
E

(5c)

(2a) (2c)

XML FILE(S)
XML FILE(S)

XML FILE(S)
(1)

Programs

Legend

Files

Tables

TEMPORARY

TABLES

(4b) (5b)

(3a)

INPUT/

CHECK

MAPPING

INPUT

RULES

(3b)

Figure 7: Process sequences

the records contained in the transient tables over the
different tables of the target relational database. The
prototype is configurable (Figure 8). Amongst others
the following parameters can be specified:

- The similarity index to be used: Jaccard, Cosine,
Jaro-Winkler, Dice-Sørensen or exact search

- The threshold value for the similarity index, produced
by the automatic schema matching

- The LFU/LRU or LRU/LFU strategy that may be ap-
plied to access to the MKB

- The potential thesaurus to use to look for synonyms

Among these parameters, the threshold value of the
similarity index is these involved in the automation of
the entire process of loading XML files into the target
database. Indeed, an XML file can be loaded fully au-
tomatically if the automatic matching, “inspired” from
the mappings contained in the MKB, resulted in a map-
ping of all columns of the transition table without ex-
ception, and if the similarity index calculated for each
column was always less than or equal to the threshold
value. The user must complete and/or validate the map-
ping established automatically if the condition is not
met.

4 Conclusion

The proposed architecture for a (semi-)automatic load-
ing of XML data into a relational database is based on

Figure 8: Customizing the prototype

the use of mappings established during previous pro-
cessing. The table, which we called Mapping Knowl-
edge Base, containing these mappings becomes over
time increasingly voluminous, which slows the process-
ing. The effectiveness of the architecture increases with
the volume of the MKB. Unfortunately efficiency de-
clines.
We propose in order to accelerate the processing, the
use of an exact search starting from the moment the
MKB’s volume stops rising. This volume is, however,
reached only after a certain period, which varies accord-
ing to the heterogeneity of the XML files to be loaded,
that is to say depending on the number of the differ-
ent fields to which belong the XML files. We recom-
mend using to access the MKB during these period the

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 21

LRU/LFU strategies.

References

[1] Alexe, B., Chiticariu, L., Miller, R. J., and Tan,
W.-C. Muse: Mapping Understanding and deSign
by Example. In IEEE 24th International Confer-
ence on Data Engineering, pages 10–19, Wash-
ington, DC, USA, April 2008. IEEE Computer
Society.

[2] Altova. Altova. http://www.altova.com. Online;
accessed 29-October-2014.

[3] Aumüller, D., Do, H. H., Massmann, S., and
Rahm, E. Schema and ontology matching with
coma++. In SIGMOD Conference, pages 906–
908, 2005.

[4] Batini, C., Lenzerini, M., and Navathe, S. B.
A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

[5] Bauer, A. H. and Günzel, H. H. Data-Warehouse-
Systeme. dpunkt, Heidelberg, 2009.

[6] Bellahsène, Z., Bonifati, A., and Rahm, E., edi-
tors. Schema Matching and Mapping. Springer,
2011.

[7] Bellahsène, Z. and Duchateau, F. Tuning for
schema matching. In Bellahsène, Z., Bonifati,
A., and Rahm, E., editors, Schema Matching and
Mapping, pages 293–316. Springer, 2011.

[8] Bernstein, P. A., Giunchiglia, F., Kementsietsidis,
A., Mylopoulos, J., Serafini, L., and Zaihrayeu, I.
Data management for peer-to-peer computing : A
vision. In WebDB, pages 89–94, 2002.

[9] Bernstein, P. A. and Melnik, S. Model manage-
ment 2.0: manipulating richer mappings. In Chan,
C. Y., Ooi, B. C., and Zhou, A., editors, Pro-
ceedings of the 2007 ACM SIGMOD International
Conference on Management of Data, pages 1–12,
Beijing, China, 2007. ACM.

[10] Bilenko, M., Mooney, R., Cohen, W., Raviku-
mar, P., and Fienberg, S. Adaptive name match-
ing in information integration. Intelligent Systems,
18(5):16–23, 2003.

[11] Carey, M. J. Data delivery in a service-oriented
world: the bea aqualogic data services platform.
In Chaudhuri, S., Hristidis, V., and Polyzotis,

N., editors, SIGMOD Conference, pages 695–705.
ACM, 2006.

[12] Cohen, W. W., Ravikumar, P., and Fienberg, S. E.
A comparison of string distance metrics for name-
matching tasks. In Proceedings of IJCAI-03 Work-
shop on Information Integration, pages 73–78,
August 2003.

[13] da Silva, R., Stasiu, R. K., Orengo, V. M., and
Heuser, C. A. Measuring quality of similarity
functions in approximate data matching. J. Infor-
metrics, 1(1):35–46, 2007.

[14] Do, H. H., Melnik, S., and Rahm, E. Compari-
son of schema matching evaluations. In Revised
Papers from the NODe 2002 Web and Database-
Related Workshops on Web, Web-Services, and
Database Systems, pages 221–237. Springer-
Verlag, 2003.

[15] Do, H. H. and Rahm, E. Coma - a system for flex-
ible combination of schema matching approaches.
In VLDB, pages 610–621, 2002.

[16] Fagin, R., Haas, L. M., Hernández, M. A., Miller,
R. J., Popa, L., and Velegrakis, Y. Clio: Schema
mapping creation and data exchange. In Borgida,
A., Chaudhri, V. K., Giorgini, P., and Yu, E.
S. K., editors, Conceptual Modeling: Foundations
and Applications, volume 5600 of Lecture Notes
in Computer Science, pages 198–236. Springer,
2009.

[17] Giunchiglia, F., Shvaiko, P., and Yatskevich, M.
S-match: an algorithm and an implementation of
semantic matching. In Bussler, C., Davies, J.,
Fensel, D., and Studer, R., editors, The Semantic
Web: Research and Applications, volume 3053 of
Lecture Notes in Computer Science, pages 61–75.
Springer, Berlin / Heidelberg, 2004.

[18] Halevy, A. Y., Ives, Z. G., Suciu, D., and Tatari-
nov, I. Schema mediation in peer data manage-
ment systems. In Dayal, U., Ramamritham, K.,
and Vijayaraman, T. M., editors, ICDE, pages
505–516. IEEE Computer Society, 2003.

[19] IBM. IBM InfoSphere
Data Architect. http://www-
03.ibm.com/software/products/en/ibminfodataarc
h. Online; accessed 29-October-2014.

[20] Kahloula, B. and Bouamrane, K. Using a mapping
knowledge base in a system for (semi-)automatic

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

Kahloula and Bouamrane Applying Principle of Locality to a Knowledge Base of Schema Mapping 22

loading of xml data into relational databases. Pro-
ceedings World Congress on Computer and In-
formation Technology (WCCIT), 2013, pages 1–7,
June 2013.

[21] Lenzerini, M. Data integration: A theoret-
ical perspective. In Proc. of the 21st ACM
SIGMOD-SIGART Symposium on Principles of
Databaseystems (PODS), 2002.

[22] Lerner, B. S. A model for compound type changes
encountered in schema evolution. ACM Trans.
Database Syst., 25(1):83–127, 2000.

[23] Madhavan, J., Bernstein, P. A., and Rahm, E.
Generic schema matching with cupid. In VLDB,
pages 49–58, 2001.

[24] Maffeis, S. Cache management algorithms for
flexible filesystems. ACM SIGMETRICS Perfor-
mance Evaluation Review, 21:1–3, 1993.

[25] Microsoft. Microsoft Using BizTalk
Mapper. http://msdn.microsoft.com/en-
us/library/aa547076.aspx. Online; accessed
29-October-2014.

[26] Miller, R. J., Haas, L. M., and Hernández, M. A.
Schema mapping as query discovery. In VLDB
2000, Proceedings of 26th International Confer-
ence on Very Large Data Bases, September 10-14,
2000, Cairo, Egypt, pages 77–88, 2000.

[27] Oracle. Oracle Introduc-
ing Oracle Database Cache.
http://docs.oracle.com/cd/A97336_01/cache.102
/a88706/ic_intro.htm#1001429. Online; accessed
29-October-2014.

[28] Oracle. Oracle Schema Objects.
http://docs.oracle.com/cd/B10500_01/server.920
/a96524/c11schem.htm. Online; accessed 29-
October-2014.

[29] Popa, L., Velegrakis, Y., Miller, R. J., Hernández,
M. A., and Fagin, R. Translating web data. In
VLDB, pages 598–609. Morgan Kaufmann, 2002.

[30] Rahm, E. Towards Large-Scale Schema and On-
tology Matching. In Bellahsene, Z., Bonifati,
A., and Rahm, E., editors, Schema Matching
and Mapping, Data-Centric Systems and Appli-
cations, chapter 1, pages 3–28. Springer, Berlin,
Heidelberg, 2011.

[31] Rahm, E. and Bernstein, P. A. A survey of ap-
proaches to automatic schema matching. VLDB
J., 10(4):334–350, 2001.

[32] Shvaiko, P., Euzenat, J., Giunchiglia, F., Stucken-
schmidt, H., Noy, N. F., and Rosenthal, A., edi-
tors. Proceedings of the 4th International Work-
shop on Ontology Matching (OM-2009) collo-
cated with the 8th International Semantic Web
Conference (ISWC-2009) Chantilly, USA, Octo-
ber 25, 2009, volume 551 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009.

INFOCOMP, v. 14, no. 2, p. 13-22, December 2015.

	Introduction
	State of the art
	Proposed Architecture
	Mapping Knowledge Base
	Similarity between two strings
	Sequential search
	Exact search
	Efficiency and effectiveness
	Efficiency
	Effectiveness
	Applying the principle of locality
	Switch to an exact search
	From (semi-)automatic to fully automated processing

	Conclusion

