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Abstract. Numerical simulation of complex engineering systems, such as those modeled using the Fi-
nite Element Method (FEM) or the Discrete Element Method (DEM), is often computationally intensive,
limiting extensive parametric studies or optimization efforts. Surrogate models offer a promising alter-
native by enabling accelerated predictions. This work presents the development and rigorous validation
of a machine learning (ML)-based methodology for creating surrogate models capable of predicting full
structural deformation curves, point-by-point. To isolate and validate the ML approach, the classic case
of a cantilever beam under a concentrated load at its free end was employed, for which the analytical
solution, based on Euler-Bernoulli theory (including self-weight effects), is well established. A synthetic
dataset was programmatically generated by calculating the analytical deflection at 51 equally spaced
points along the beam length (from x = 0 to x = L = 2.0 m) for 13 distinct materials (varying Youngâs
modulus, density, Poissonâs ratio, and yield strength), resulting in 663 records for a fixed beam geometry.
A Random Forest regression model, trained on 80% of the dataset (530 points), was developed to map
material properties and spatial position x to local deflection y. Evaluation on the test set (133 points)
demonstrated high predictive accuracy, achieving a coefficient of determination (R2) of 0.9991, a mean
absolute error (MAE) of 0.2105 mm, and a root mean squared error (RMSE) of 0.4605 mm. An Out-of-
Bag (OOB) R2 score of 0.9983 further corroborated the model’s generalization capability. The impor-
tance of this validation step, prior to applying the methodology to complex simulations where responses
are obtained at discrete points, is discussed. The results demonstrate that the proposed methodology
is robust and promising for developing fast and accurate surrogates for discretized structural response
prediction.
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1 Introduction

The analysis of mechanical behavior in structures and
particulate systems is fundamental across various fields,
including civil, mechanical, and materials engineering.
Numerical methods such as the Finite Element Method
(FEM) [8] and the Discrete Element Method (DEM) [9]

enable high-fidelity simulation of complex scenarios,
capturing geometric and material nonlinearities. How-
ever, the associated computational costs—particularly
for three-dimensional or transient analyses—can be
prohibitive. This limitation restricts extensive paramet-
ric studies, sensitivity analyses, design optimizations,
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and, crucially, the calibration of model parameters [10].
For instance, parameter calibration in DEM is particu-
larly challenging due to the complex relationships be-
tween microscopic model parameters and the observed
macroscopic response [11].

In this context, surrogate models emerge as an ef-
fective means to mitigate computational demands [12].
Built using statistical or ML techniques, surrogate mod-
els learn to map system inputs (e.g., design parameters,
material properties, boundary conditions) to outputs
(e.g., structural responses, stress/strain fields) based on
a limited set of simulations or experimental data. Once
trained, surrogate models provide near-instantaneous
predictions, enabling analyses that would otherwise be
computationally infeasible. The application of ML
techniques to create surrogate models has proven es-
pecially promising across various domains of computa-
tional engineering, including the acceleration of DEM
parameter calibration [11, 13, 14].

Despite the clear potential of ML-based surrogate
models, a critical challenge remains: ensuring their ac-
curacy and generalization capability. It is imperative
to validate that the ML model captures the underlying
physical relationships rather than merely memorizing
the training data, particularly before applying it to com-
plex problems where the ground truth is difficult or ex-
pensive to obtain. Establishing confidence in the ML
methodology thus necessitates rigorous validation us-
ing scenarios with known analytical solutions.

This work addresses this need by developing and
rigorously validating an ML-based pipeline for predict-
ing structural response curves, point-by-point. The can-
tilever beam under a concentrated tip load serves as the
benchmark case, offering a well-established analytical
solution via Euler-Bernoulli beam theory. We demon-
strate how a Random Forest model [15], trained on
synthetically generated data (incorporating self-weight
effects), can accurately learn the relationship between
material properties and spatial position along the beam
to predict local deflection.

The primary objective of this study is to present a
validated methodology for constructing ML-based sur-
rogate models to predict deformation curves. The rigor-
ous validation in this fundamental case provides a proof
of concept, demonstrating ML’s capability to capture
physical phenomena with both efficiency and precision.
This paves the way for the methodology’s application
to more complex and computationally demanding sim-
ulations.

The main contributions of this study are: (i) the
explicit demonstration that a Random Forest model
can accurately learn the functional response (deflec-

tion curve) of a classic structural problem from tabu-
lar data; (ii) the rigorous validation of the methodol-
ogy in a canonical case with a known analytical solu-
tion, establishing a benchmark for future applications;
and (iii) the presentation of a complete and reproducible
pipeline (data generation→ training→ evaluation) that
can be adapted to create surrogate models for complex
numerical simulations.

The remainder of this paper is organized as follows.
Section 2 details the methodology, including the analyt-
ical case, data generation, and the ML model. Section 3
describes the implementation and case study. Section 4
presents and discusses the results. Finally, Section 5
concludes the paper and suggests directions for future
work.

1.1 Related Work

The use of machine learning to create surrogate models
in engineering is a rapidly growing field. This section
reviews other approaches for predicting beam deflec-
tion and discusses their context relative to our work.

Traditional ML models, such as Artificial Neural
Networks (ANNs), Support Vector Machines (SVM),
and the Random Forest (RF) algorithm used in this
study, have been widely applied to regression and clas-
sification tasks in engineering [5]. For instance, RF
and other tree-based models are often favored for their
robustness on tabular data, their ability to handle non-
linear relationships without extensive data preprocess-
ing, and their inherent mechanism for estimating fea-
ture importance [15].

More recently, deep learning techniques have been
explored for structural analysis. Zhang et al. [3] used
Convolutional Neural Networks (CNNs) to predict dy-
namic properties of beams directly from raw cross-
section images. Their approach learns relevant geomet-
ric features automatically, bypassing the need for man-
ual feature engineering like calculating the moment of
inertia. This image-based method presents an alterna-
tive to our tabular, feature-based approach and is par-
ticularly powerful for design optimization where geom-
etry is a variable. However, its main strength lies in
complex geometries, and it may represent an unneces-
sary level of complexity for problems with fixed, simple
cross-sections.

Another advanced technique gaining traction is
Physics-Informed Neural Networks (PINNs). PINNs
integrate the governing physical equations (as differ-
ential equations) into the neural network’s loss func-
tion, ensuring the model’s predictions adhere to phys-
ical laws. Sahin et al. [4] demonstrated the use of
PINNs as a surrogate model of a reinforced concrete
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beam, showcasing a path toward creating hybrid digital
twins. The strength of PINNs is their ability to produce
physically consistent results even with sparse data, but
their implementation is more complex and requires the
governing equations to be known and expressible in a
differential form.

**Our work addresses a critical gap identified in
this landscape.** While advanced models like CNNs
and PINNs are powerful, they are often directly applied
to complex problems where the ground truth is com-
putationally expensive to obtain. A crucial step is of-
ten missed: **the rigorous validation of the entire ML
pipeline on a canonical problem with a known analyti-
cal solution.** Our approach, using a well-established
Random Forest model on the classic cantilever beam
problem, is not intended to introduce a novel ML archi-
tecture. Instead, its primary contribution is to **estab-
lish a clear, verifiable, and robust validation pipeline.**
By demonstrating high fidelity in this fundamental case,
we build the necessary confidence to apply this method-
ology to more complex scenarios where analytical solu-
tions are unavailable (like FEM/DEM calibration [11])
and where the computational savings of a fast and reli-
able surrogate model are most critical [2].

2 Material and Methods

The methodology adopted in this work combines the
generation of high-fidelity synthetic data, based on
known analytical solutions, with the training and val-
idation of a Machine Learning model to act as a fast
and accurate surrogate.

2.1 The Validation Case: Cantilever Beam

To rigorously validate the ML’s ability to learn the
structural response, the classic problem of the cantilever
beam was selected. A prismatic beam of constant length
L = 2.0m was considered, with a rectangular cross-
section of base b = 0.05m and height h = 0.10m.
The beam is fixed at the end x = 0 and free at the
end x = L. A constant vertical concentrated load
F = 500N is applied at the free end (x = 2.0m). The
coordinate system is defined with the x-axis along the
beam’s length (from the fixed end) and the y-axis rep-
resenting the vertical deflection (positive downwards).
The configuration is shown in Figure 1.

2.2 Reference Analytical Solution

Assuming linear elastic behavior and small deflections,
the Euler-Bernoulli beam theory provides the analytical
solution for the deflection y(x) [16]. The Moment of

Figure 1: Schematic of the cantilever beam fixed at x = 0, with
load F = 500N applied at x = L = 2.0m. (Note: Figure shows
deflection curves for all materials used in the study).

Inertia of the constant rectangular cross-section is I =
(bh3)/12 = (0.05m×(0.10m)3)/12 ≈ 4.167e− 6m4.

The deflection yF (x) due to the concentrated load
F at the tip is given by:

yF (x) =
Fx2

6EI
(3L− x) (1)

where E is the Young’s Modulus of the material.
Additionally, the deflection yw(x) caused by the

beam’s self-weight, uniformly distributed, was consid-
ered. The weight per unit length is w = ρgA, where
ρ is the material density, g = 9.81 m/s2 is the accel-
eration due to gravity, and A = bh = 0.005 m2 is the
cross-sectional area. The deflection due to self-weight
is:

yw(x) =
wx2

24EI
(6L2 − 4Lx+ x2) (2)

The total deflection y(x) at any point x along the
beam is the linear superposition of these two effects,
serving as the "ground truth" for this study:

y(x) = yF (x) + yw(x) (3)

2.3 Synthetic Database Generation

A synthetic database was programmatically generated
using Python, with the NumPy and Pandas libraries, to
provide training and testing data for the ML model. The
process followed these steps:

1. Fixed Parameters: The values of L, b, h, F , and
g were set as constants, as specified in Section 2.1.
The values of I and A were pre-calculated.

2. Material Selection: A list of 13 diverse materi-
als (detailed in Table 1) was compiled, covering
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ferrous and non-ferrous metals, woods, polymers,
and composites. For each material, nominal values
for its intrinsic properties were assigned: Young’s
Modulus (E), Density (ρ), Poisson’s Ratio (ν), and
Yield Strength (gmay).

3. Spatial Discretization: To capture the deforma-
tion curve, the beam length (L = 2.0m) was dis-
cretized into Nx = 51 equally spaced points, xi,
ranging from x0 = 0 to x50 = L. This was im-
plemented using the function np.linspace(0,
L_const, num_x_points).

4. Deflection Calculation: For each of the 13 mate-
rials, the weight per unit length w was calculated.
Then, for each of the 51 points xi, the total deflec-
tion y(xi) was calculated using (3).

5. Data Structuring: Each calculation produced a
record containing the material name, its four prop-
erties (E, ρ, ν, gmay), the position xi, and the
corresponding deflection y(xi) (converted to mil-
limeters). All records were organized into a Pan-
das DataFrame, totaling 13 × 51 = 663 sam-
ples. The complete dataset, along with examples
and source code, is publicly available on GitHub
at: https://github.com/zolpy/Fixed_
Beam. are presented in Table 2.

2.4 Machine Learning Model

To model the relationship between material proper-
ties, spatial coordinates, and the resulting beam de-
flection, the RandomForestRegressor algorithm
[15], as implemented in the Scikit-learn library [17],
was adopted. This algorithm was selected due to a
combination of desirable characteristics: (i) robustness
against overfitting, afforded by its ensemble nature and
inherent bootstrapping; (ii) strong and consistent per-
formance across a wide range of regression problems
involving tabular data; (iii) the capacity to capture com-
plex, non-linear relationships between input variables
without requiring explicit feature transformations; and
(iv) its ability to provide interpretable measures of fea-
ture importance, which are especially valuable in sci-
entific and engineering contexts where model trans-
parency is critical.

While other machine learning algorithmsâsuch as
Support Vector Regression (SVR), Gradient Boost-
ing Machines (GBM), or Deep Neural Networks
(DNN)âcan potentially offer comparable or superior ac-
curacy under certain conditions, Random Forests offer
a compelling balance between accuracy, interpretabil-
ity, and computational efficiency. These attributes make

it particularly suitable for this initial validation study,
where the goal is not only to achieve high predictive
performance, but also to understand the behavior and
limitations of the surrogate model when approximating
a well-defined physical system.

The model development followed a structured
pipeline, comprising the following stages:

• Features (Input X): The model was
trained using five predictors: [’E_Pa’,
’Density_kg_m3’, ’Poisson_ratio’,
’Yield_Strength_Pa’, ’x_m’], which
represent the materialâs elastic modulus (E), den-
sity (ρ), Poissonâs ratio (ν), yield strength (σy),
and spatial coordinate along the beam (x). All
variables were expressed in SI base units to ensure
dimensional consistency. Importantly, while ν
and σy do not directly influence the analytical
elastic deflection equations ((1), (2)), they were
intentionally included to evaluate the model’s
ability to perform implicit feature selection. This
is a relevant capability in data-driven modeling,
particularly when working with high-dimensional
data where domain knowledge alone may not
suffice to determine feature relevance a priori.

• Target (Output y): The modelâs output was the
analytically computed total beam deflection at a
given position x, measured in millimeters and
recorded as ’y_deflection_mm’.

• Data Pre-processing: Minimal data preparation
was required. No normalization or scaling of input
features was applied, as Random Forests are in-
variant to the scale and monotonic transformations
of input variables. Moreover, since the input fea-
tures were already numeric and derived from the
synthetic data generation process, no handling of
missing values or categorical encoding was neces-
sary. This simplicity highlights a practical advan-
tage of tree-based methods in engineering applica-
tions.

• Train/Test Split: The final dataset, consist-
ing of 663 samples, was randomly divided into
a training set (80%, 530 samples) and a test
set (20%, 133 samples). To ensure repro-
ducibility and comparability, a fixed random seed
(random_state=42) was used during the split-
ting process.

• Model Training: The
RandomForestRegressor model was
instantiated with n_estimators=100 (number
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Table 1: Nominal Properties of Materials Used in the Study.

Material Young’s Mod. (GPa) Density (kg/m3) Poisson’s Ratio Yield Str. (MPa)

Ferrous Metals
Carbon Steel 200 7850 0.30 250
Stainless Steel 304 193 7900 0.29 215
Cast Iron 170 7200 0.26 130

Non-Ferrous Metals
Aluminum 6061 69 2700 0.33 240
Titanium Ti6Al4V 114 4430 0.34 830
Copper 117 8960 0.34 70
Brass 100 8500 0.35 120
Magnesium AZ31B 45 1770 0.35 150

Woods
Pine Wood 10 500 0.37 30
Oak Wood 12 750 0.35 40

Polymers / Composites
Nylon 66 3 1140 0.40 50
Uni. Carbon Fiber 150 1600 0.30 1500
Concrete 30 2400 0.20 3

Table 2: Example of the Structure and Values of the Synthetic Database (First and Last 5 Rows).

Material E (Pa) Density (kg/m3) Poisson Yield Str. (Pa) x (m) y Defl. (mm)

Carbon Steel 200e9 7850 0.30 250e6 0.00 0.0000
Carbon Steel 200e9 7850 0.30 250e6 0.04 0.0017
Carbon Steel 200e9 7850 0.30 250e6 0.08 0.0067
Carbon Steel 200e9 7850 0.30 250e6 0.12 0.0149
Carbon Steel 200e9 7850 0.30 250e6 0.16 0.0262

...
...

...
...

...
...

...

Concrete 30e9 2400 0.20 3e6 1.84 11.0720
Concrete 30e9 2400 0.20 3e6 1.88 11.4407
Concrete 30e9 2400 0.20 3e6 1.92 11.8101
Concrete 30e9 2400 0.20 3e6 1.96 12.1800
Concrete 30e9 2400 0.20 3e6 2.00 12.5502

of trees), random_state=42 (for consistent re-
sults), n_jobs=-1 (to parallelize training across
all available cores), and oob_score=True (to
compute the Out-of-Bag error as an internal cross-
validation metric). The model was then fitted to
the training data using the fit() method.

This pipeline was designed to be both effective and
interpretable, ensuring traceability of results and lay-
ing the groundwork for future extensions to more com-
plex physical systems. The full process of training the
model, evaluating its predictions on a per-material ba-
sis, and visualizing the results is described in detail in
Algorithm 3. The subsequent assessment of input vari-
able relevance, based on feature importance scores ex-
tracted from the trained model, is formalized in Algo-

rithm 4.

2.5 Evaluation Metrics

The performance of the trained model was quantita-
tively evaluated on the test set using standard metrics
for regression problems.

The Mean Absolute Error (MAE) measures the av-
erage magnitude of the errors between predicted and ac-
tual values:

MAE =
1

n

n∑
i=1

|yi − ŷi| (4)

The Mean Squared Error (MSE) calculates the aver-
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Algorithm 1 Synthetic Database Generation Algorithm

1: procedure GENERATEBEAMDEFLECTIONDATA
2: . 1. Fixed Parameters Definition
3: F ← 500.0 . Applied force (N)
4: L← 2.0 . Beam length (m)
5: b← 0.05 . Section width (m)
6: h← 0.10 . Section height (m)
7: g ← 9.81 . Gravity acceleration (m/s2)
8: I ← (b · h3)/12 . Moment of inertia
9: A← b · h . Cross-sectional area

10: . 2. Materials and Spatial Discretization
11: MaterialsList ← list of dictionaries with

properties (Name, E, ρ, ν, σy)
12: x_points← 51 evenly spaced points from 0

to L . Similar to np.linspace
13: . 3. Data Generation
14: DataRecords← empty list
15: for each material in MaterialsList do
16: Extract E, ρ, ν, σy from material
17: w ← ρ · g ·A . Distributed load (N/m)
18: if E > 0 and I > 0 then
19: for each x in x_points do

20: yF ←
F · x2 · (3L− x)

6 · E · I
21: yw ←

w · x2 · (x2 + 6L2 − 4Lx)

24 · E · I
22: ytotal_m ← yF + yw . Total

deflection (m)
23: ytotal_mm ← ytotal_m · 1000 .

Converted to mm
24: record← {Name, E, ρ, ν, σy , x,

ytotal_mm}
25: Append record to

DataRecords
26: end for
27: end if
28: end for
29: . 4. Data Structuring and Saving
30: DataFrame ← create data table from

DataRecords
31: Save DataFrame to CSV file
32: end procedure

Algorithm 2 Algorithm for Plotting Comparative De-
flection Curves

1: procedure PLOTALLDEFLECTION-
CURVES(DataTable)

2: . Input: Data table with columns [Material,
x_m, y_deflection_mm]

3: . 1. Initialize the plotting environment
4: Create a new plot figure
5: . 2. Identify unique materials
6: UniqueMaterials ← list of unique mate-

rial names from DataTable
7: . 3. Plot deflection curve for each material
8: for each material_name in
UniqueMaterials do

9: MaterialData ← filter DataTable
for rows with material_name

10: x_positions ← extract x_m column
from MaterialData

11: y_deflections ← extract
y_deflection_mm column from
MaterialData

12: Plot y_deflections vs
x_positions with label material_name

13: end for
14: . 4. Configure plot appearance
15: Invert Y-axis direction
16: Set plot title: "Beam Deflection

Comparison by Material"
17: Set X-axis label: "Position along the

beam (m)"
18: Set Y-axis label: "Deflection (mm)"
19: Add grid lines
20: Show plot legend
21: . 5. Save the plot
22: Save plot as high-resolution image (e.g., PNG)
23: end procedure
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Algorithm 3 Algorithm for Model Training and Per-
Material Performance Visualization

1: procedure TRAINANDVISUALIZE-
MODEL(dataFile_path)

2: . 1. Load and preprocess the dataset
3: DataTable ← load CSV data from
dataFile_path

4: Translate material names in DataTable to
English

5: . 2. Define features and target variable
6: Features_X ← columns {E_Pa, Density,

Poisson_ratio, Yield_Strength, x_m}
7: Target_y← column y_deflection_mm
8: . 3. Split data into training and testing sets
9: Split (Features_X, Target_y) into

(X_train, y_train) and (X_test, y_test)
10: . 4. Initialize and train the machine learning

model
11: ML_Model ← RandomForestRegressor

(n_estimators=100, oob_score=True)
12: Train ML_Model on X_train, y_train
13: . 5. Evaluate overall model performance
14: y_pred_test ← predict using ML_Model

on X_test
15: Compute overall MAE, R2, and OOB score
16: Display overall metrics
17: . 6. Generate per-material performance plots
18: UniqueMaterials ← unique material

names in DataTable
19: for each material_name in

UniqueMaterials do
20: MaterialData ← filter DataTable

for material_name
21: X_material ← extract features from

MaterialData
22: y_actual ← extract target from

MaterialData
23: y_predicted ← predict using

ML_Model on X_material
24: Initialize a new plot figure
25: Plot y_actual vs. x-position (solid blue

line with circle markers)
26: Plot y_predicted vs. x-position (dashed

red line with ’x’ markers)
27: Compute R2 score for this material
28: Annotate plot with material-specific R2

value
29: Set title, axis labels, grid, and invert Y-axis
30: Save or display the plot
31: end for
32: end procedure

Algorithm 4 Algorithm for Feature Importance Analy-
sis and Visualization

1: procedure ANALYZEANDPLOTFEATUREIMPOR-
TANCE(dataFile_path)

2: . 1. Load and prepare data
3: DataTable ← load CSV data from
dataFile_path

4: Features_X← select input feature columns
from DataTable

5: Target_y ← select target column from
DataTable

6: Split (Features_X, Target_y) into
(X_train, y_train) and (X_test, y_test)

7: . 2. Train model and extract feature
importances

8: ML_Model← RandomForestRegressor()
9: Train ML_Model on X_train, y_train

10: ImportanceScores ← extract feature im-
portances from ML_Model

11: FeatureNames ← get feature names corre-
sponding to ImportanceScores

12: . 3. Prepare data for plotting
13: ImportanceTable ← map each feature

name to its importance score
14: Sort ImportanceTable in descending order

by importance score
15: . 4. Generate bar plot
16: Create horizontal bar plot using

ImportanceTable
17: (features on Y-axis, importance scores on X-

axis)
18: for each bar in the plot do
19: Add numerical label showing importance

score next to the bar
20: end for
21: . 5. Configure and save the plot
22: Invert Y-axis to show most important feature at

the top
23: Set plot title: "Feature Importance

Analysis"
24: Set X-axis label: "Relative Importance

(Normalized)"
25: Set Y-axis label: "Input Feature"
26: Add X-axis grid lines
27: Save plot as high-resolution image file
28: end procedure
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age of the squares of the errors:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (5)

The Root Mean Squared Error (RMSE) is the square
root of the MSE, providing an error metric in the same
units as the target variable:

RMSE =
√

MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (6)

The Coefficient of Determination (R2) represents
the proportion of the variance in the dependent variable
that is predictable from the independent variables:

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(7)

In these equations, yi are the actual values (from the
test set), ŷi are the values predicted by the model, ȳ is
the mean of the actual values, and n is the number of
samples in the test set.

Additionally, the Out-of-Bag (OOB) R2 score, cal-
culated internally during the Random Forest train-
ing using data not seen by each individual tree, was
recorded as an estimate of the model’s generalization
capability.

3 Implementation and Case Study

The described methodology was implemented using the
Python programming language (version 3.13 used in
original study, check compatibility if using different
version). Database generation and manipulation were
performed with the NumPy [18] library for numerical
operations and Pandas [19] for DataFrame manipula-
tion. Machine Learning model training and evaluation
were conducted using the Scikit-learn library (version
1.6.1 used in original study) [17]. Visualization of re-
sults was done using the Plotly library [20].

The case study considered a cantilever beam with
the fixed geometric and loading parameters defined in
Section 2.1: L = 2.0 m, b = 0.05 m, h = 0.10 m,
and F = 500 N. The acceleration due to gravity was
g = 9.81 m/s2.

Thirteen distinct material types were included in the
database, with their nominal properties listed in Ta-
ble 1. For each material, the deflection was calculated
atNx = 51 points along the beam, resulting in 663 total
data points.

The Random Forest Regressor model was con-
figured with 100 trees (n_estimators=100)

and other parameters as specified in Sec-
tion 2.4 (random_state=42, n_jobs=-1,
oob_score=True). Training was performed on the
set of 530 samples, and final evaluation on the test set
of 133 samples.

4 Results and discussion
4.1 Performance Metrics and Numerical Validation

The quantitative evaluation of the trained Random For-
est model was performed on the test set (n=133), com-
paring the ML-predicted deflections (ŷi) with the an-
alytically calculated values (yi). The resulting perfor-
mance metrics are summarized in Table 3.

The results demonstrate exceptional performance of
the surrogate model. The Coefficient of Determination
(R2) of 0.9991 indicates that the model can explain over
99.9% of the variance present in the test set deflection
data, suggesting an almost perfect fit. The average er-
rors are extremely low, with an MAE of 0.2105mmand
an RMSE of 0.460mm, confirming the high accuracy
of the point-by-point predictions relative to the analyt-
ical reference solution. Additionally, the Out-of-Bag
(OOB) R2 score, estimated during training on data not
seen by each individual tree, was 0.9983. The close-
ness between the test R2 and the OOB R2 reinforces
the model’s excellent generalization capability and in-
dicates the absence of significant overfitting.

4.2 Visual Analysis of Predicted Curves

To complement the quantitative analysis, the model’s
ability to reproduce the spatial shape of the deflection
curve was visually assessed. Figures 2 to 14 present
the graphical comparison between the analytically cal-
culated deflection curves (considered the ground truth
in this study) and the curves predicted by the Random
Forest model for each of the 13 materials.

An almost perfect visual agreement is observed in
Figures 2 to 14 between the ML model’s predictions
and the analytical results for all materials and across
the entire beam length (0 ≤ x ≤ L). The model accu-
rately captures both the magnitude and the characteris-
tic shape of the cantilever beam deflection curve, even
for materials with orders of magnitude differences in
their properties and resulting deflections. This demon-
strates that the model not only predicts point values with
low error but has also learned the functional representa-
tion of deflection along the spatial coordinate x.

4.3 Feature Importance Analysis

The Random Forest algorithm allows estimating the rel-
ative importance of each input feature in making predic-
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Table 3: Performance Metrics of the Random Forest Model on the Test Set (n=133).

Metric Acronym Value

Mean Absolute Error MAE 0.2105 mm
Mean Squared Error MSE 0.2121 mm2

Root Mean Squared Error RMSE 0.4605 mm
Coefficient of Determination R2 0.9991
Out-of-Bag R2 Score (Estimated) OOB R2 0.9983

Figure 2: Comparison of analytical vs. predicted (ML) deflection for
Carbon Steel.

Figure 3: Comparison of analytical vs. predicted (ML) deflection for
Stainless Steel 304.

Figure 4: Comparison of analytical vs. predicted (ML) deflection for
Cast Iron.

Figure 5: Comparison of analytical vs. predicted (ML) deflection for
Aluminum 6061.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



Brandao et al.A Machine Learning Model for Beam Deflection Curve Prediction: A Random Forest Approach with Multi-Material Validation 10

Figure 6: Comparison of analytical vs. predicted (ML) deflection for
Titanium Ti6Al4V.

Figure 7: Comparison of analytical vs. predicted (ML) deflection for
Copper.

Figure 8: Comparison of analytical vs. predicted (ML) deflection for
Brass.

Figure 9: Comparison of analytical vs. predicted (ML) deflection for
Magnesium AZ31B.

Figure 10: Comparison of analytical vs. predicted (ML) deflection
for Pine Wood.

Figure 11: Comparison of analytical vs. predicted (ML) deflection
for Oak Wood.
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Figure 12: Comparison of analytical vs. predicted (ML) deflection
for Nylon 66.

Figure 13: Comparison of analytical vs. predicted (ML) deflection
for Unidirectional Carbon Fiber.

Figure 14: Comparison of analytical vs. predicted (ML) deflection
for Concrete.

tions. This metric quantifies the contribution of each
variable to reducing impurity (or variance, in regres-
sion) at the nodes of the trees composing the forest. Fig-
ure 15 presents the calculated importance (normalized,
where the total sum is 1.0) for the five features used in
this study.

The analysis of Figure 15 reveals that the position
along the beam (’x_m’) was identified by the model as
the most influential feature, with a relative importance
of approximately 0.49. This is in complete agreement
with the physics of the problem, as the deflection in
a cantilever beam exhibits strong spatial dependence,
varying from zero at the fixed end to its maximum value
at the free end, as described by the polynomial compo-
nents in x in (1) and (2).

Poisson’s ratio (’Poisson_ratio’) emerged as the sec-
ond most important feature (approximately 0.33), fol-
lowed by Young’s Modulus (’E_Pa’) with about 0.15
importance. Although Young’s Modulus is fundamental
in Euler-Bernoulli theory (appearing in the denomina-
tor of the deflection equations), the high importance at-
tributed to Poisson’s ratio by the specific model trained
in this study is an unexpected result, since ν does not
explicitly appear in the simplified equations used to
generate the training data. This finding might indicate
that the Random Forest model utilized ν, which varies
among materials, in conjunction with other features to
make splits at the tree nodes efficiently for this specific
dataset, or it might reflect the sensitivity of feature im-
portance calculation to correlations in the input data.

Figure 15: Relative importance of input features calculated by the
Random Forest model for predicting beam deflection.

Density showed a lower relative importance (ap-
proximately 0.02), despite directly influencing the self-
weight w and, therefore, the yw(x) component of the
deflection. This suggests that, for the studied load and
geometry configuration, the deflection due to the con-
centrated load F was dominant over the deflection due
to self-weight, reducing the relative impact of density
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on the prediction of total deflection.
Finally, as expected, the Yield Strength

(’Yield_Strength_Pa’) demonstrated almost negli-
gible importance (approximately 0.003). This result is
consistent with the fact that the analysis and generated
data were based on linear elasticity theory, where
deflection is not influenced by the material’s yield
limit.

Although the importance ranking between Poisson’s
ratio and Young’s Modulus was unexpected, the model
correctly attributed the highest relevance to position x
and Young’s Modulus E, and correctly identified the
low influence of Yield Strength for predicting elastic
deflection, demonstrating a general alignment with the
fundamental physical understanding of the problem.

4.4 General Discussion and Contextualization

The rigorous validation of the ML model against the
known analytical solution, evidenced by the excellent
quantitative metrics (Table 3) and the visual agreement
of the deflection curves (Figures 2-14), demonstrates
the capability of the proposed pipeline to create a high-
fidelity surrogate model for this structural problem.

A crucial point is the computational efficiency of
the approach. While generating the 663 data points
via analytical calculation and training the Random For-
est model took seconds, the prediction phase with the
trained model is practically instantaneous (milliseconds
for a complete curve). This speed starkly contrasts with
the time required by complex numerical simulations
(FEM/DEM) [11], making surrogate models extremely
valuable tools for analyses requiring multiple evalua-
tions, such as optimization, parametric studies, or un-
certainty quantification.

It is relevant to contextualize this computational ap-
proach with experimental methods for measuring beam
deflection. Works like those by Dias et al. [1] (robotic
arm), Picoy et al. [6] (DIC), and Braga Jr et al. [7]
(PIV/Speckle) demonstrate sophisticated techniques for
obtaining experimental data. These studies often report
good agreement with simulations or theory but also ob-
serve deviations (e.g., ≈ 0.3mm in [6]) attributable to
experimental uncertainties and idealizations in the com-
parison models. This ML model, by replicating the
analytical solution with MAE ≈ 0.21mm, shows con-
sistency with idealized theory but does not replace ex-
perimental validation. It acts, rather, as a complemen-
tary predictive tool, whose high speed and theoretical
consistency can aid in planning and interpreting exper-
iments or rapidly exploring virtual scenarios. Future
cross-validation, comparing predictions from ML mod-
els trained on FEM simulations calibrated with experi-

mental data like those cited, would be an important step.
Finally, the confidence established in the methodol-

ogy through this validation in a canonical case paves the
way for its application to more complex problems. The
same ML pipeline can be adapted by replacing the ana-
lytical data source with results from FEM/DEM sim-
ulations (which also often provide results at discrete
points, like mesh nodes). It is expected that a similar
ML model can learn to map complex input parameters
(DEM calibration parameters [11, 14], geometric de-
tails, non-linear boundary conditions) to the observed
response curves (stress-strain curves, velocity profiles,
etc.), significantly accelerating the analysis and design
cycle in computational engineering.

5 Conclusion

This work presented the design, implementation, and
validation of a machine learning-based methodology
for predicting the deflection behavior of a cantilever
beam subjected to a concentrated tip load and self-
weight. A Random Forest Regressor was employed to
construct a surrogate model capable of accurately re-
producing the complete deflection curves based solely
on input features such as material properties and beam
position. The main goal was to rigorously assess the
modelâs ability to capture a well-established physical
phenomenonâgoverned by analytical expressionsâbe-
fore extending this approach to more complex scenarios
typically analyzed using Finite Element Method (FEM)
or Discrete Element Method (DEM) simulations [11].

The trained model demonstrated exceptional predic-
tive performance on the test dataset, achieving a co-
efficient of determination (R2) above 0.999 and mean
errors (MAE and RMSE) on the order of tenths of a
millimeter. Beyond quantitative metrics, the graphi-
cal comparison between predicted and analytical curves
showed that the model accurately replicated both the
magnitude and spatial profile of the beam’s deformation
for all tested materials. These results underscore the
model’s ability not only to interpolate between known
cases, but also to generalize its predictions across vary-
ing material behaviors.

The analysis of feature importance further sup-
ported the physical plausibility of the surrogate model.
Although the relative rankings of some variablesâ-
such as Poisson’s ratio and Young’s modulusâdiffered
slightly from expectations, the model correctly identi-
fied position along the beam and Youngâs modulus as
dominant predictors of deflection. Yield strength, a pa-
rameter not involved in elastic deformation, was appro-
priately ranked as minimally influential. These find-
ings reinforce the interpretability of Random Forest and
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its capacity to reflect underlying physics when properly
trained.

A notable advantage of the proposed approach is
its computational efficiency. Once trained, the surro-
gate model generates full deflection curves within mil-
liseconds, offering significant acceleration compared to
traditional simulation-based workflows. This is partic-
ularly relevant for applications involving iterative de-
sign, optimization, or real-time control systems, where
repeated evaluations are computationally costly.

The contributions of this study can be summarized
as follows:

(i) A clear demonstration that a Random Forest model
can learn and generalize the functional response
(deflection curve) of a canonical structural prob-
lem from tabular input data;

(ii) A fully validated modeling pipeline, tested against
analytical ground truth, which establishes a base-
line for future applications to more complex and
nonlinear engineering systems;

(iii) A structured and replicable frameworkâfrom syn-
thetic data generation to model training, evalua-
tion, and predictionâthat is adaptable to surrogate
modeling of numerical simulations in engineering.

Nevertheless, the scope of this work was intention-
ally restricted to a linear-elastic, single-load, and geo-
metrically simple system. As such, several limitations
are acknowledged. First, the modelâs performance is
intrinsically linked to the diversity and representative-
ness of the training dataset. Generalization to geome-
tries or loading conditions not present in the training
data is not guaranteed. Second, while Random Forest
was effective here, no systematic comparison was con-
ducted against alternative machine learning algorithms,
leaving room for further performance benchmarking.

Future research will extend this methodology to
more realistic and computationally intensive problems.
These include systems involving geometric and mate-
rial nonlinearities, multiple concurrent loads, and more
intricate boundary conditions. Data for such cases will
be generated using high-fidelity FEM and DEM sim-
ulations. In parallel, benchmarking against other re-
gression algorithmsâsuch as Support Vector Regres-
sion, Gradient Boosting, and neural networksâwill be
performed to assess relative strengths and weaknesses.
Additionally, the integration of uncertainty quantifica-
tion techniques and the exploration of data-driven ap-
proaches tailored to sequential or spatially correlated
outputs will be pursued.

In summary, this study establishes a robust and
validated foundation for using machine learning tech-
niques to accelerate the modeling and prediction of
structural behavior in engineering. By demonstrating
that data-driven models can capture the essence of a
well-understood physical system, this work paves the
way for applying such techniques to complex, high-
dimensional, and computationally demanding problems
in structural mechanics and beyond.
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