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Abstract. The purpose of this research is to incorporate Generative Adversarial Networks(GAN) into
the speaker diarization process by refining embeddings along with the overlapping speech and noise
problems. In this case, better speaker embeddings are produced by GANs through adversarial learn-
ing, which makes them more separable and more powerful than traditional embedding techniques. The
practical assessment of the system used the AMI Meeting Corpus as well as the VoxConverse data sets
and performance was evaluated across different acoustic conditions. The results support very substantial
performance advantages with improvements of 25% in the Error Rate of Dialysis (DER) in comparison
to baseline models. Such models included x vector-based clustering and end-to-end neural diarization
systems. In support of this, T-SNE again stunningly verified that the cluster separability of embeddings
refined by a GAN improved. Furthermore, the system is flexible for real-world scenarios as it exhibits
robust performance even under noisy overlapping speech conditions. This evidence testifies that using
GAN for embedding refinement is a very effective method to address the issue of speaker diarization.
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Introduction

In this work, we employ Generative Adversarial Net-
works (GANs) for speaker diarization and augment
speaker embeddings to solve the complex tasks of over-
lapping speech and noise or distortion[7]. Speaker
diarization is essential to any conversational Al and
automatic transcription system because it proficiently
asks and solves the problem: "Who spoke when?"
While embedding-based approaches to the phenom-
ena at hand, such as x-vectors or end-to-end neural
systems[6], have been developed, they do not perform
well in complex acoustics. Especially when there are
multiple speakers, it becomes worse[/1]].

In this case, the GANs are used to improve noise-
embedded speaker embedding by subjecting them to
adversarial learning, increasing noise separability. The
purpose of the generator in this GAN approach is to
improve the quality of embeddings[7]]. In contrast, the
discriminator is responsible for keeping the quality of
embeddings while separating them from the speaker’s
identity. This results in greater discrimination power
of the embedding set and increases their suitability for
clustering-based speaker segmentation.

The performance of the diarization system was
markedly improved with enhanced GAN models, ac-
companied by a relative decrease of 25% in the Diariza-
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tion Error Rate (DER). These improvements were made
on top of the systems already proposed x-vector-based
clustering and end-to-end neural systems|[13]. Even fur-
ther proof of the system’s effectiveness was provided
through improved cluster separation of GAN-refined
embeddings. t-SNE visualizations confirmed this clus-
ter separation and, thus, the system’s effectiveness[14].

The practicality of the system remains sound, as it
continues to function adequately even under less-than-
ideal conditions, being able to deal with leakage and
noise readily present in real-life situations. These re-
sults demonstrate the potential to remove gaps in the
speaker diarization methods used today. This would
revolutionize speaker diarization using GAN-based en-
hancements because it provides a way of building scal-
able and efficient systems that work in various environ-
mental settings.

2 Feature Extraction
2.1 Speaker Embeddings

X-vectors, d-vectors and other speaker embeddings are
popular for identifying speaker-related details from an
audio signal. These are produced using deep neu-
ral networks which are trained over labeled datasets.
In ideal environments, these techniques are great but
in less ideal conditions like cacophonous or overlap-
ping speech, they lack robustness, and thus perform
poorly[l13][12]].

In regard to these hurdles, scientists have tried to de-
velop methods which enhance embeddings in separabil-
ity and noise interference. Adversarial learning meth-
ods have been studied for creating better discriminative
and real-world scenarios operational embeddings[3].

MFCCs and X-Vector feature extracted for rep-
resent the speaker specific characteristics. Let X €
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Figure 1: Process of Speaker Embedding.

2.2 \Voice Activity Detection

VAD is applied to filter out non-speech segments. The
energy-based VAD decision is made using:

1, if E(t) >0,

0, otherwise,

VAD(t) = {
(2)

where E/(t) is the energy of frame ¢, and J is a prede-
fined threshold.

3 Generative adversarial networks

Generative adversarial networks, commonly referred to
as GANGs[7]], are generative models made up of two
components: a generator and a discriminator. The dis-
criminatoras role is to create data that does not look any
different from real data, while the generator is taught to
spot the real data from the generated fake data. Such
adversarial systems pose a new paradigm for machine
learning systems, and GANS, in particular, learn distri-
butions over data in a much more effective way, which
proves advantageous for the task of refining the speaker
embeddings|7].

The generator G aims to transform the noisy embed-
dings E into cleaner and more separable embeddings
Ea2[10). T hisprocessisgivenas follows : where©g
corresponds to the parameters of the generator network.
Fully connected layers with non-linear activations (such

RT*Findicatetheinputaudio features forT f Tamesandpflﬁﬁé%@ﬁ%g?/@fﬁé{%ﬁgc%@mwm ¢

The process of speaker embedding can be repre-
sented as:

E=f(X;0)
(N

Where E e R4 is the d-

By differentiating between created embeddings E

a2andrealembeddingsE?, thediscriminator Dassessesthequalityo f

wherelindicatesrealandOindicates fakeembeddings.

3.1 Uses of GANs in Audiovisual Processing

Numerous audio tasks, such as speech expansion,
speech synthesis, and audio neutralization, have lever-
aged GANs. The SEGAN model was put forward
by Pascual et al. (2019) for the purpose of speech

dimensionalspeakerembedding, andOindicatetheparnkiacsmetitpblhbaddi thpye tiemanstrated how GANs
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can work on the bare minimum of audio waveform data.
There has been much inspiration drawn from those who
have tried incorporating GANs for the task of polish-
ing up speaker embeddings in order to achieve effective
speaking in very noisy environments [LL1][2].

of GANS.png

Overlapping

Speech Generator

Enhancing

Embeddings Discriminator

Audiovisual
Processing

Figure 2: Component of GANs.

3.2 Enhancing Embeddings Using GANs

The overlapping speakers and noise tolerant features
of speaker embeddings were shown by [3]] to be en-
hanced due to adversarial training. The restricted la-
beled data issue leading to lesser diarization accuracy
gets solved through the generation of synthetic embed-
dings, augmentation of training datasets, and the use of
GANGs|[16].

4 Overlapping Speech

The presence of both speech and accompanying back-
ground noise is a major hurdle in achieving the speaker
diarization task. Some systems such as self attention
based neural end-to-end diarization have shown some
promise [6] depicting some improvement in the over-
lapping speech instance problem. Nevertheless, the
bulk of these systems need significantly proportioned
labeled data which is often not readily available[4].

Generating augmented datasets and refining embed-
dings for superior cluster separability is possible with
the use of GANSs. In regard to experimental findings, it
was discovered that the GAN based systems hold an ad-
vantage over conventional systems in overlapping and
noisier settings, thus exhibiting notable reductions in
Diarization Error Rate (DER)[S]].

5 Evaluation Set

The AMI Meeting Corpus and VoxConverse collec-
tions are widely used corpora for evaluating speaker di-

arization performance[15]. These corpora comprise of
distinct acoustic surroundings, including meetings and
multiple speakers talking at once. With the help of these
datasets, it was possible to test how GAN enhanced em-
beddings behave in real life situations, improving DER
and cluster separability significantly[[L7][9].

6 Techniques for Visualization

The utilization of sophisticated data is made possible
through the combination of t-SNE and speaker em-
beddings. According to Van der Maaten and Hinton
(2008), the combination has much utility in making
structures embedded into high dimensional data easier
to work with. Furthermore, using t-SNE, it was illus-
trated through several studies that cluster separability
has improved due to the GAN refined embeddings.

7 Experimental Setup

There is also a description of methods and datasets em-
ployed in evaluating the performance of the selected
Gan framework for speaker diarization within the sci-
entific framework. For the sake of reproducibility and
increasing the validity of results, this section discusses
the experimental design, data collection and processing,
and the hardware and software configurations.

7.1 GAN

The system under consideration has the following com-
ponents: Feature Extraction: The following vari-
ables serve as feature inputs: pre-recorded audio pieces
MFCCs and x-vectors. Embedding Refinement:
Overlapping speech and noise - MHID and GANs em-
ployed in modeling to make speaker embeddings more
robust. Clustering: Enhanced embeddings are clus-
tered by using Agglomerative Hierarchical Clustering
methods (AHC). Evaluation: The Diarization Error
Rate (DER) and other critical parameters are evaluated
to understand the performance of the system.

7.2 Training and Testing

Training Phase: Embeddings from the training
datasets are fed into the GANs for training.Noise aug-
mentation and overlapping speech simulations were ap-
plied. Both Reconstruction and Adversarial losses are
optimized by the Adam optimizer.Testing Phase: AHC
was used to cluster refined embeddings. Results were
compared with baseline results via x-vector based clus-
tering and end to end diarization.
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7.3 Hardware and Software

Hardware: The experiments are performed on
the computer which possesses the following fea-
tures:NVIDIA A100 GPUs.32 GB RAM.Intel Xeon
CPU.Software: Python version 3.8.+ Pytorch with
GAN for Python. Kaldi for extracting characteristics
(x-vectors). Clustering and evaluation metric extraction
using Scikit-learn.

7.4 Dataset
7.4.1 AMI Meeting Corpus

The AMI Meeting Corpus is one of the most popu-
lar datasets used for the speaker diarization challenge.
It contains multi-speaker meeting recordings with dif-
ferent levels of noise and speech overlap. Some of
its distinctive features are:Number of Speakers: 4 to
5 speakers per session.Duration: Roughly 100 hours
of audio files.Acoustic Conditions: Both distant mi-
crophone and close talking microphone.Annotation:
Speaker labels at ground truth are time-stamped.

7.4.2 VoxConverse

The VoxConverse dataset includes conversational au-
dio recordings containing speech captured under real-
world conditions. It poses a difficult benchmark against
which to evaluate the performance of diarization sys-
tems in the presence of noise and speech overlap.
Some of its distinctive features are:Number of Speak-
ers: 2 to 8 speakers per session.Duration: More
than 50 hours.Diversity: Large variety of acoustic en-
vironments such as telephone and broadcast record-
ings.Annotation: Detailed speaker turn labels are pro-
vided.

7.4.3 Data Augmentation

In order to mimic challenging conditions, data aug-
mentation techniques such as Noise Injection: Adding
background noise to audio clips of speech by using
the MUSAN dataset.overlapping speech:Artificially
mixes the audio files of different speakers with each
other while changing the ratio of how they overlap
with each other in a process known as overlapping
speech.Reverberant:Different RIRs are used to apply
reverberation to clean audio which helps to simulate a
reverberant environment.

7.4.4 Train-Test Split

Training Set: 75% of Sessions of AMI Meeting and
75% of VoxConvers Recordings.Testing Set: 30 per-

cent of each of the 3 datasets while ensuring that none
of the data from the training set is present.

7.5 Evaluation Metrics

The systemas performance is evaluated using the fol-
lowing metrics: Diarization Error Rate (DER): Indi-
cates the percentage of speech segments incorrectly at-
tributed to a speaker. Speaker Confusion Rate (SCR):
Measures the misclassification of embeddings pertain-
ing to different speakers. t-SNE Visualization: Visu-
alizes the separability of clusters of refined embeddings
within a two-dimensional space.

8 Result
8.1 AQuantitative Analysis
8.1.1 Diarization Error Rate (DER)

The primary evaluation metric DER describes the rate
of errors in the speaker assignment. The GAN-based
system proposed in the study performed much better
than all baseline methods on all datasets.

Table 1: GAN-based System Results

Dataset Baseline Baseline Proposed
(X-vectors | (EEN Di- | GAN-
+ AHC) arization) Based
System
AMI 23.4% 19.8% 14.7%
Meeting
Corpus
VoxConverse28.5% 25.1% 18.3%

When compared to the averaged baseline models,
the previously reported findings demonstrate an average
improvement of 25% in DER values, highlighting the
benefits of the added GAN embeddings.

Speaker Diarization Result

Figure 3: Process of Speaker Embedding.

8.1.2 System Robustness to Noise and Overlapped
Speech

The system was evaluated for robustness against noise
level variances and overlap ratios.Noise Conditions:
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Speaker Diarization Results (Using GAN Refined

TTTTTTT

Figure 4: Process of Speaker Embedding.

Speaker Diarization Results (Using GAN Refined

Figure 5: Process of Speaker Embedding.

Noise added from MUSAN dataset caused DER to
remain at less than 20% for SNR levels around -10
dB.Overlap Conditions: A 30% speech overlap led to
an improvement of DER over the baseline by 20% for
the system.

8.2 Qualitative Analysis
8.2.1 Graphic Visualization of Embeddings (t-SNE)

Improvements gained in speaker embedding from GAN
refinement was verified using t-SNE based visualiza-
tion. The plots reveal: Baseline Embeddings: Mod-
erate improvement on separability due to overlapping
clusters per speaker. GAN-Refined Embeddings:
Well-separated clusters are now present which indicates
an improvement in the embeddingas quality.

8.2.2 Audio Case Studies

Selected audio samples from the AMI Meeting Cor-
pus as well as VoxConverse phonetic datasets were ex-
amined. The system accomplished speaker attribution
with the utmost accuracy during speech events includ-
ing: Overlapping Speech: The system was able to
tell speakers apart while they were both speaking at
the same time. Background Noise: High background
noise did not affect speaker attribution along with all
other speaker attribution tasks.

8.3 Comparative Analysis

8.3.1 Benchmark Models

The evaluation of the system using the following tech-
niques Y-vectors + Agglomerative Hierarchical Cluster-
ing (AHC): This had poorer performance stability due
to its robustness to noise. End to End Neural Diariza-
tion: Works well with overlapping speech but not as
good as x vectors.

8.3.2 Computational Efficiency

The GAN-based system did not lag behind in terms of
processing time: Real Time Factor (RTF): The system
clocked an RTF of 0.85 which makes it eligible for live
environments.

8.4 Error Analysis

The most common system errors were: Speaker Bound-
ary Errors: Small speaker change point detection in-
accuracies. Highly Overlapping Speech (>40%): This
was a performance dip area and as such could be one of
the focus improvement areas.

9 Conclusion

This research illustrates the capability of using GANs
to enhance speaker diarization through refining speaker
embeddings while addressing the problems relating to
noise and speech overlap. The system proposed utilizes
GAN:Ss in the diarization pipeline, which in turn allows
embedding to be improved through adversarial learn-
ing. Evaluation experiments across the AMI Meeting
Corpus and VoxConverse datasets show that our sys-
tem, which uses GAN architecture, is able to achieve
25% lower DER when compared with baseline models.
The following are the key contributions of the study:
Refinement of speaker embedding by means of GANs
for improved cluster separability. Increased resilience
to overlapping speech and noise makes the system more
applicable to real world scenarios. Framework valida-
tion procedures involved systematic tests coupled with
sophisticated visualization techniques such as t-SNE.
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