
Numeric Feature Analysis in Deep Learning-Based Ransomware
Detection with Convolution Neural Network Models

1LUKMAN ADEBAYO OGUNDELE, 2JULIUS TEMITAYO ADEPOJU, 1FEMI EMMANUEL AYO,
3IDAYAT ABIKE AKANO, 3OLUYEMISI ADENIKE OYEDEMI

1Department of Computer Sciences, Faculty of Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
2Department of Mathematical Science, Faculty of Physical Science, University of Ilorin, Kwara State, Nigeria

3Department of Cyber-security, Faculty of computing, University of ilesa, ilesa osun state
1(ogundele.lukman,ayo.femi)@oouagoiwoye.edu.ng

2adepojujulius58@gmail.com
3(idayat_akano,yemisi.oyedemi)@unilesa.edu.ng

Abstract. The research introduces ResMalNet, a convolutional neural network architecture designed for
malware detection. The architecture employs domain expertise to identify critical behavioral categories,
such as registry operations, network activities, and process/file interactions, and statistical optimization to
select the most discriminative numeric features. ResMalNet outperforms four established CNN architec-
tures, achieving 98.91% accuracy and 98.92% precision while maintaining balanced recall and F1-scores
of 98.91%. The technical implementation addresses three persistent challenges in malware classifica-
tion: prevention of model over-fitting, preservation of critical feature relationships, and optimization of
residual block designs. Experimental results show architectural specialization through residual connec-
tions improves accuracy by 1.82% over conventional CNN designs, domain-informed feature selection
reduces false positive rates by 42%, and exceptional detection rates for previously unseen malware vari-
ants during validation testing. The ResMalNet framework offers practical implementation guidelines
for security systems, with immediate applications in next-generation endpoint protection solutions and
network monitoring infrastructure.

Keywords: Ransomware, Deep-learning, Neural network

(Received December 22th, 2024 / Accepted June 14th, 2025)

1 Introduction

The latest advancement in technology and the rapid
implementation of computer systems have produced
previously unprecedented levels of cyber attacks
wherein one of the most damaging categories of
malware is ransomware [19, 1]. Ransomware refers
to a form of malicious codes which encrypts the
victims? files or operating system for a reward of
payment in ransom to decode them. This cyberattack
has gone to the next level where attackers use advanced
mechanisms to bypass traditional security controls.
Institutions, organizations, and individuals have lost a
lot of money and operations as a result of ransomware

attacks, which further vindicate the need for effective
detection and prevention efforts [5, 15].

Ransomware has become one of the most preva-
lent types of cyberattacks on individuals, enterprises,
and critical infrastructure. Ransomware encrypts
data and demands payment to be decrypted, causing
significant financial loss, service disruption, and
breaches in confidential data [18, 12]. The frequency
and sophistication level of ransomware attacks have
grown with passage of time since cybercriminals use
advanced avoidance measures to bypass detection
systems. These facts highlight the need to develop

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.

(ogundele.lukman,ayo.femi)@oouagoiwoye.edu.ng
adepojujulius58@gmail.com
(idayat_akano,yemisi.oyedemi)@unilesa.edu.ng


OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 2

advanced and reliable systems that can effectively
identify ransomware.

Traditional methods used to identify ransomware,
including signature-based and heuristic approaches,
have proven to be ineffective in managing the dynamic
and ever-changing nature of modern ransomware
[23, 13]. Signature-based detection systems are based
on predefined patterns or signatures linked to malicious
files and are therefore ineffective when presented with
uniquely created or polymorphic ransomware versions
[3, 14]. Though heuristic techniques can detect unseen
attacks, they are mainly plagued by high rates of false
positives, which reduces the efficacy of cybersecurity
tools [9, 21].

One of the initial efforts towards malware detec-
tion with convolutional neural networks (CNNs) was
MalConv, proposed by Raff et al. [16]. MalConv
employs a one-dimensional convolutional neural
network on the raw byte streams of malware binaries
themselves, directly feeding them as image inputs.
This work laid the foundation for future work in
this area, reflected in Droid-Sec, proposed by [22].
Droid-Sec, a malware detector for Android, employs
a two-dimensional CNN to learn semantic features
from opcode sequences and Android app manifest files.
Tian et al. (2021) recently suggested DeeperForensics
[6], where deep CNNs are used to explore pixel-level
features of screenshots of malware behavior, thus
enabling visual-based detection methods.

Although previous research, including MalConv,
Droid-Sec, and DeeperForensics, has shown the suc-
cess of Convolutional Neural Networks (CNNs) on
image-like featured data where malware samples are
considered as raw binary strings, visual representa-
tions, or screenshots. In contrast, this research operates
on a formalized, tabular dataset rich in system-level
features, e.g., malware header information, behavioral
signatures manifested as registry activity, network
activity, and process execution information. By in-
putting this multi-dimensional, non-image data directly
to the model, we expect to capture more precise
and subtle malicious activity patterns to enhance the
validity and robustness of malware detection with-
out having to convert the data into an image-like format.

This paper offers a custom-made residual CNN
known as ResMalNet for detecting ransomware and
compares the results with various CNN variantions.
The models were trained on a dynamic malware dataset

containing 58,596 samples from the OMM-2022
dataset as well as a manually selected ransomware
dataset. Second, this study proposes an end-to-end
pipeline for feature engineering and training in which
dynamic behavioral data (e.g., API requests and
registry updates) is normalized using MinMaxScaler,
encoded using LabelEncoder, and reshaped to be
compatible with 1D CNN layers.

The rest of the paper is organized as follows: Section 2
gives a critical review of existing CNN-based malware
detection research, which guides the architecture
choices in this research. Section 3 provides detailed
methodology with preprocessing operations in datasets,
feature transformation, model implementation, and
training protocols. Section 4 presents experimental
results with comparisons of performance on the basis
of accuracy, precision, recall, and F1-score metrics.
Finally, Section 5 presents practical implications of our
findings and suggests areas of future work, particularly
adversarial robustness improvement and generalization
improvement.

2 Related Work

[6] proposed DeepWare, a ransomware detection
framework based on deep learning and hardware
performance counters (HPC). Unlike conventional ap-
proaches that consider individual process monitoring,
DeepWare captures system-wide HPC variations, trans-
forming the variations into images for classification
by convolutional neural networks (CNN). The model
achieved a recall rate of 98.6% and demonstrated con-
siderable effectiveness in detecting unseen ransomware
families, including CoronaVirus, Ryuk, and Dharma.

[8] proposed D-WARE, a malware detection system
based on CNN with PCA used for feature extraction
and PSO for dimensionality reduction. D-WARE was
tested on the Malimg dataset and compared with other
models like VGG16, VGG19, and DenseNet. The sug-
gested method had an accuracy of 96%, demonstrating
the success of deep learning in malware classification.

[17] proposed an attention-enabled CNN for mal-
ware classification. The research tackled the problem
of identifying small malware-infected areas in image-
based Windows malware file representations. With
multi-headed attention in a CNN, the model achieved
better classification accuracy without any loss in
computational efficiency. The method achieved 99%
accuracy across different data splits and showed re-
silience in the detection of polymorphic and obfuscated

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 3

malware.

[11] suggested a CNN-based solution for the de-
tection of crypto-ransomware in IoT environments.
The solution inspects opcode patterns of binary
executables for ransomware and benign application
classification. Through the utilization of a late fusion
method for the combination of feature representations,
the system detected ransomware with a 97% success
rate. The solution was found to be especially useful for
low-end embedded processors and thus was determined
to be suitable for IoT security.

[7] proposed XRan, an explainable AI-based model
for ransomware detection that focuses on applying
dynamic analysis to identify behavioral patterns during
ransomware execution. The model attained 99.4% true
positive rate and offered interpretability in classifying
malware so that security analysts are able to com-
prehend the rationale behind decision making by the
model.

[4] proposed an efficient deep learning system to iden-
tify ransomware attacks on SCADA-managed EVCS.
The authors compared the three deep learning methods?
DNN, 1D CNN, and LSTM networks?to identify how
effective these are to identify ransomware-based cyber
assaults. The proposed framework accomplished an
average rate of 97%, and an AUC greater than 98% and
false alarm rate under 1.88% under 10-fold stratified
cross-validation. In addition to this, the researchers
unveiled the impact of ransomware-type DDoS and
FDI attacks with the possibility to alter the SOC profile
and cause damage to the BES system.

[20] introduced a Windows malware detection system
based on CNN from visualized images of Portable
Executable (PE) file execution-time behavioral fea-
tures. The model applied the Relief Feature Selection
Technique to minimize the significant behavioral
features and 10-fold cross-validation to evaluate it.
Experimental evaluation showed that the detection rate
of the CNN-based detector was 97.97%, and it could
effectively identify obfuscated malware.

[2] introduced DeepMalore, an image malware
system based on deep learning that uses CNN architec-
tures to identify malware images. The study compared
different CNN architectures like AlexNet, VGG-16,
ResNet-50, and InceptionV3 on the dataset called Mal-
img that comprises malware binaries presented in the

form of images. The proposed approach achieved an
accuracy level of 98.90%, showcasing the effectiveness
of deep learning in malware detection through image
processing.

3 Materials and Methods

This study presents a robust approach for malware
detection using convolutional neural networks, evalu-
ating both custom architectures and established design
patterns. The research employs five distinct CNN
variants - Basic CNN, Bidirectional CNN, Deeper
CNN, Residual CNN, and Inception-like CNN?trained
on the CIC-MalMem-2022 dataset containing 21,752
samples with 18 behavioral and structural features.

The experimental framework addresses three criti-
cal challenges in malware detection: (1) processing
heterogeneous feature spaces combining static, dy-
namic, and behavioral characteristics, (2) mitigating
class imbalance through strategic oversampling, and
(3) preventing model overfitting using dropout regu-
larization (25-50% rates) and early stopping. Unlike
traditional image-based malware classification, our
method transforms multidimensional feature vectors
into optimized 1D convolutional inputs, enabling
efficient pattern recognition while preserving tempo-
ral relationships in API call sequences and registry
operations.

3.1 Datasets

This research uses two datasets to analyze and classify
malware. The first dataset, OMM-2022, is an obfus-
cated malware dataset developed by the Canadian Insti-
tute for Cybersecurity (CIC), and the second dataset is
a custom ransomware dataset.

3.1.1 The CIC-MalMem-2022 (OMM-2022) Dataset

OMM-2022 is a newly designed dataset for malware de-
tection, released by the Canadian Institute for Cyberse-
curity in 2022. The dataset comprises a total of 58,596
samples divided equally between benign and malware
samples. The dataset contains 56 extracted feature vari-
ables and a single classification target. Malware sam-
ples have been categorized into three primary classes,
including Trojan Horse, Spyware, and Ransomware,
and further sub-classification into 15 various malware
families. Table 1 provides an overview of the malware
families contained in this dataset.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 4

3.1.2 Custom Ransomware Dataset

To complement OMM-2022, a ransomware-specific
dataset was constructed using samples from a variety
of sources, including VirusTotal, VirusShare, Malware-
Bazar, and GitHub. 21,752 malware and benign pro-
grams were collected with 18 features, with the same
number of malicious and non-malicious examples [10].
The dataset includes samples of 11 prominent ran-
somware families: Cerber, DarkSide, Dharma, Gand-
Crab, LockBit, Maze, Phobos, REvil, Ragnar, Ryuk,
Shade, and WannaCry. Further, to assess how well the
model generalizes over different threats, samples from
three other categories of malware (Trojan Horse, Infor-
mation Stealer, and Remote Access Trojan (RAT)) were
included.

Table 1: Example of Table

Category Family Samples Total Samples

Trojan Horse

Zeus 195

9,487
Emotet 196
Refrose 200

Scar 200
Reconyc 157

Spyware

180Solutions 200

10,020
Coolwebsearch 200

Gator 200
Transponder 241

TIBS 141

Ransomware

Conti 200

9,791
Maze 195
Pysa 171
Ako 200

Shade 220
Benign - - 29,298

3.2 Numeric Feature Selection

In this study, Numerical feature selection process is ap-
plied to the dataset. The goal of feature selection is
to prepare the data for machine learning algorithms by
selecting relevant features and transforming categori-
cal data into a numerical format that can be efficiently
processed by models. This feature selection isolates
the numeric columns from the dataset. This is essen-
tial because many machine learning algorithms require
numerical input, and operations like correlation analy-
sis or scaling can only be performed on numeric data.
The dataset originally contains 77 columns, but only
18 of them are numeric. By selecting only the nu-
meric columns for further analysis, this ensures that
the data used for training the models contains only the
relevant numeric features, eliminating any irrelevant or
non-numeric data that would otherwise be incompatible

with the algorithms.

3.2.1 Encoding Categorical Features

Label Encoding converts each unique category value
into a numeric label. This technique is particularly use-
ful when the categorical feature has an inherent ordinal
relationship, meaning the values have a meaningful
order (e.g., low, medium, high). After applying Label
Encoding, the categorical columns are transformed
into numeric values, making them suitable for use in
machine learning models.

After selecting numeric columns and encoding
the categorical ones, the dataset now contains a com-
bination of numeric features, including the originally
numeric columns and the transformed categorical
columns. The resulting DataFrame is checked to
ensure the correct columns are retained and properly
formatted. The dataset now contains 77 columns in
total, with 18 columns of numeric type (?float64?) and
the remaining columns converted to numeric values via
Label Encoding. This ensures that the data is ready for
the models, which require numerical input for training.

3.3 Proposed custom model: ResMalNet

Residual Convolutional Neural Networks (ResCNNs)
introduce skip connections that allow gradients to flow
more effectively during backpropagation, addressing
the vanishing gradient problem. This technique en-
hances the performance of deep networks by enabling
the reuse of learned features. The Residual CNN layers
consists of:

1. Standard Convolutional Operation
Each convolutional layer applies:

y
(l)
i = f

k−1∑
j=0

x
(l−1)
i+j w

(l)
j + b(l)

 (1)

where:

• y(l)i is the output of the lth layer.

• x(l−1)i+j is the input from the previous layer.

• w(l)
j and b(l) are the filter weights and biases.

• f is the activation function (ReLU).

2. Residual Connection
A skip connection directly adds the input to the
output of a residual block:

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 5

y
(res)
i = y

(l+1)
i + x

(l)
i (2)

where:

• y(res)i is the residual output.

• y(l+1)
i is the standard convolutional output.

• x(l)i is the input being added via the shortcut.

3. 1x1 Convolution for Dimension Matching If the
input and output dimensions differ, a 1× 1 convo-
lution ensures compatibility:

x
(adj)
i = g

 1∑
j=0

x
(l)
i+jw

(1×1)
j + b(1×1)

 (3)

where g is a linear activation function.

4. Fully Connected Layers
The extracted features are processed as:

h = f(Wx+ b) (4)

where W and b are learned parameters, and f is
ReLU.

5. Softmax Classification
The final probabilities are computed as:

P (yi) =
ezi∑N
j=1 e

zj
(5)

where N is the number of classes.

6. Loss Function and Optimization The model is
trained using the Adam optimizer with the sparse
categorical cross-entropy loss:

L = −
N∑
i=1

yi log(ŷi) (6)

3.4 CNN Models

3.4.1 Basic CNN Model

The Basic Convolutional Neural Network (CNN) im-
plemented in this study serves as a foundational deep
learning model. This architecture is designed with a
minimal yet effective structure to capture essential pat-
terns within the malware dataset. Each layer in the
CNN follows specific mathematical operations.

Algorithm 1 ResMalNet

1: Input: Training data Xtrain, Labels Ytrain
2: Output: Trained Residual CNN model
3: Initialize model with Input layer
4: First Residual Block:
5: Add Conv1D layer with 32 filters, kernel size =

3, ReLU activation
6: Add another Conv1D layer with 32 filters, kernel

size = 3, ReLU activation
7: Apply skip connection by adding input directly

to output
8: Second Residual Block:
9: Add Conv1D layer with 64 filters, kernel size =

3, ReLU activation
10: Add another Conv1D layer with 64 filters, kernel

size = 3, ReLU activation
11: Apply skip connection with a 1x1 convolution

for dimension matching
12: Flatten feature maps
13: Add Dense fully connected layer with 128 neurons,

ReLU activation
14: Add Output layer with softmax activation
15: Compile the model with Adam optimizer and

sparse categorical cross-entropy loss
16: Train the model using Xtrain and Ytrain for

epochs iterations
17: Evaluate the model on test data

1. Convolutional Layer A 1D convolution operation
is mathematically represented as:

y
(l)
i = f

k−1∑
j=0

x
(l−1)
i+j wj + b

 (7)

where:

• y(l)i is the output at position i in layer l.

• x(l−1)i+j represents the input from the previous
layer.

• wj are the convolutional filter weights of size
k.

• b is the bias term.

• f is the activation function (ReLU in this
case).

2. Max-Pooling Layer Max-pooling selects the max-
imum value in a given window size:

y
(l)
i = max

j∈P
x
(l−1)
i+j (8)

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 6

where P is the pooling window.

3. Fully Connected Layer The fully connected
(Dense) layer is defined as:

y = f(Wx+ b) (9)

where:

• W is the weight matrix.

• x is the input vector.

• b is the bias term.

• f is the activation function (ReLU for hidden
layers, Softmax for the output layer).

4. Dropout Regularization Dropout prevents overfit-
ting by randomly deactivating neurons with prob-
ability p:

y
(l)
i =

y
(l)
i

1− p
, if not dropped (10)

5. Softmax Activation Function For multi-class clas-
sification, the softmax function converts logits into
probabilities:

P (yi) =
ezi∑N
j=1 e

zj
(11)

where:

• P (yi) is the probability of class i.

• zi is the logit (raw output before activation).

• N is the total number of classes.

6. Compilation and Optimization The model is com-
piled using:

• Adam optimizer with a learning rate of
0.001, which dynamically adapts learning
rates.

• Sparse categorical cross-entropy loss,
given by:

L = −
N∑
i=1

yi log(ŷi) (12)

where yi is the true label and ŷi is the pre-
dicted probability.

Algorithm 2 Basic CNN

1: Input: Training data Xtrain, Labels Ytrain
2: Output: Trained Basic CNN model
3: Initialize Sequential CNN model
4: Add Conv1D layer with 32 filters, kernel size = 3,

ReLU activation
5: Add MaxPooling1D layer with pool size = 2
6: Add Dropout layer (rate = 0.25) to reduce overfit-

ting
7: Flatten feature maps
8: Add Dense fully connected layer with 64 neurons,

ReLU activation
9: Add Dropout layer (rate = 0.5)

10: Add Dense output layer with softmax activation for
classification

11: Compile the model with Adam optimizer and
sparse categorical cross-entropy loss

12: Train the model using Xtrain and Ytrain for
epochs iterations

13: Evaluate the model on test data

3.5 Bidirectional CNN Model

The Bidirectional Convolutional Neural Network (Bi-
CNN) extends the capabilities of a standard CNN by
incorporating multiple convolutional layers in a sequen-
tial manner, allowing the model to capture deeper fea-
ture representations. The model utilizes two consec-
utive convolutional layers with different filter sizes be-
fore pooling, making it more effective in detecting com-
plex patterns in malware data. Additionally, a larger
fully connected layer enhances feature abstraction be-
fore classification. The layers in Bi-CNN consist of:

1. Multiple Convolutional Layers
Unlike a standard CNN, which typically applies a
single convolutional layer before pooling, Bi-CNN
employs two consecutive convolutional layers:

y
(1)
i = f

k1−1∑
j=0

x
(0)
i+jw

(1)
j + b(1)

 (13)

y
(2)
i = f

k2−1∑
j=0

y
(1)
i+jw

(2)
j + b(2)

 (14)

where:

• y(1)i and y(2)i are the outputs of the first and
second convolutional layers, respectively.

• x(0)i+j represents the input from the previous
layer.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 7

• w(1)
j and w(2)

j are filter weights for the two
layers.

• b(1) and b(2) are the respective bias terms.

• f is the activation function (ReLU).

• k1 and k2 represent the kernel sizes of the
first and second convolutional layers.

2. Max-Pooling Layer After two convolutional lay-
ers, a pooling layer reduces feature map dimen-
sionality:

y
(p)
i = max

j∈P
y
(2)
i+j (15)

where P is the pooling window.

3. Dropout Regularization Bi-CNN applies a two-
stage dropout mechanism:

y
(d)
i =

y
(l)
i

1− p
, if not dropped (16)

with dropout rates of 30% and 40%, respectively.

4. Fully Connected Layer A 128-neuron fully con-
nected layer is applied to further refine features:

y = f(Wx+ b) (17)

whereW is the weight matrix, x is the feature vec-
tor, b is the bias, and f is the activation function
(ReLU).

5. Softmax Classification The final softmax layer
computes the probability of each class:

P (yi) =
ezi∑N
j=1 e

zj
(18)

where zi is the logit and N is the number of
classes.

6. Compilation and Optimization The model is com-
piled using:

• Adam optimizer with a learning rate of
0.001.

• Sparse categorical cross-entropy loss, de-
fined as:

L = −
N∑
i=1

yi log(ŷi) (19)

Algorithm 3 Bidirectional CNN for Malware Detection

1: Input: Training data Xtrain, Labels Ytrain
2: Output: Trained Bi-CNN model
3: Initialize Sequential CNN model
4: Add Conv1D layer with 64 filters, kernel size = 3,

ReLU activation
5: Add another Conv1D layer with 32 filters, kernel

size = 3, ReLU activation
6: Add MaxPooling1D layer with pool size = 2
7: Add Dropout layer (rate = 0.3) for regularization
8: Flatten feature maps
9: Add Dense fully connected layer with 128 neurons,

ReLU activation
10: Add Dropout layer (rate = 0.4)
11: Add Dense output layer with softmax activation
12: Compile the model with Adam optimizer and

sparse categorical cross-entropy loss
13: Train the model for epochs iterations
14: Evaluate the model on test data

3.6 Deeper CNN Model

The Deeper Convolutional Neural Network (Deeper
CNN) expands on traditional CNN architectures by in-
corporating multiple convolutional and pooling layers.
This deeper structure allows for hierarchical feature ex-
traction, improving detection accuracy by capturing in-
tricate data representations. Compared to the Basic
CNN and Bidirectional CNN, this model employs addi-
tional convolutional and pooling layers, enhancing fea-
ture abstraction. Layers consist of:

1. Multiple Convolutional Layers Unlike previous
CNN architectures, Deeper CNN applies multiple
convolutional operations before pooling:

y
(1)
i = f

k−1∑
j=0

x
(0)
i+jw

(1)
j + b(1)

 (20)

y
(2)
i = f

k−1∑
j=0

y
(1)
i+jw

(2)
j + b(2)

 (21)

y
(3)
i = f

k−1∑
j=0

y
(2)
i+jw

(3)
j + b(3)

 (22)

where:

• y(1)i , y
(2)
i , y

(3)
i represent outputs of the first,

second, and third convolutional layers.

• x(0)i+j is the input to the first layer.
INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 8

• w(1)
j , w

(2)
j , w

(3)
j are filter weights.

• b(1), b(2), b(3) are bias terms.

• f is the activation function (ReLU).

2. Max-Pooling Layers Two max-pooling layers are
applied to progressively reduce feature dimen-
sions:

y
(p1)
i = max

j∈P
y
(2)
i+j (23)

y
(p2)
i = max

j∈P
y
(3)
i+j (24)

where P is the pooling window.

3. Dropout Regularization The Deeper CNN em-
ploys two dropout layers to prevent overfitting:

y
(d1)
i =

y
(l)
i

1− p1
, if not dropped (p1 = 0.4)

(25)

y
(d2)
i =

y
(l)
i

1− p2
, if not dropped (p2 = 0.5)

(26)

4. Fully Connected Layer The final dense layer maps
features to class predictions:

y = f(Wx+ b) (27)

where:

• W is the weight matrix.

• x is the feature vector.

• b is the bias.

• f is the activation function (ReLU).

5. Softmax Classification The final classification
layer computes class probabilities:

P (yi) =
ezi∑N
j=1 e

zj
(28)

where zi is the logit and N is the number of
classes.

6. Compilation and Optimization The model is com-
piled using:

• Adam optimizer with a learning rate of
0.001.

• Sparse categorical cross-entropy loss,
given by:

L = −
N∑
i=1

yi log(ŷi) (29)

Algorithm 4 Deeper CNN

1: Input: Training data Xtrain, Labels Ytrain
2: Output: Trained Deep CNN model
3: Initialize Sequential CNN model
4: Add Conv1D layer with 64 filters, kernel size = 3,

ReLU activation
5: Add another Conv1D layer with 64 filters, kernel

size = 3, ReLU activation
6: Add MaxPooling1D layer with pool size = 2
7: Add Conv1D layer with 32 filters, kernel size = 3,

ReLU activation
8: Add another MaxPooling1D layer with pool size =

2
9: Add Dropout layer (rate = 0.4)

10: Flatten feature maps
11: Add Dense fully connected layer with 128 neurons,

ReLU activation
12: Add Dropout layer (rate = 0.5)
13: Add Dense output layer with softmax activation
14: Compile the model using Adam optimizer and

sparse categorical cross-entropy loss
15: Train the model on training data for epochs itera-

tions
16: Evaluate the model on test data

3.7 Inception CNN

The Inception Convolutional Neural Network (CNN) is
designed to enhance feature extraction through multi-
scale convolutional operations. Let x represent the in-
put data. The output of the convolutional layers can be
mathematically expressed as:

F1x1 = σ(W1x1 ∗ x+ b1x1) (30)

F3x3 = σ(W3x3 ∗ x+ b3x3) (31)

F5x5 = σ(W5x5 ∗ x+ b5x5) (32)

where:

• Wk×k represents the weight matrix of the convo-
lutional filter of size k × k.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 9

• bk×k is the bias term.

• ∗ denotes the convolution operation.

• σ is the ReLU activation function:

σ(x) = max(0, x) (33)

The max pooling operation is computed as:

P = max
(i,j)∈R

xi,j (34)

where R denotes the receptive field of the pooling op-
eration. The final feature representation is obtained by
concatenating the outputs:

Fconcat = Concat(F1x1, F3x3, F5x5, P ) (35)

The final classification output is computed as:

y = softmax(WdFconcat + bd) (36)

where Wd and bd are the weight and bias parameters of
the dense layer.

3.8 Performance Metrics Evaluation

Evaluating the performance of a malware detection
model requires the use of appropriate metrics that assess
its classification effectiveness. In this study, multiple
metrics were employed to ensure a comprehensive anal-
ysis of model performance, including accuracy, preci-
sion, recall, F1-score, and the area under the receiver
operating characteristic curve (AUC-ROC).

1. Accuracy: This measures the proportion of cor-
rectly classified instances out of the total instances
evaluated. It is computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(37)

where TP (True Positives) and TN (True Neg-
atives) represent correctly classified malware and
benign samples, respectively, while FP (False
Positives) and FN (False Negatives) denote incor-
rect classifications.

2. Precision: This quantifies the correctness of pos-
itive predictions, indicating how many of the de-
tected malware instances are actually malware. It
is given by:

Precision =
TP

TP + FP
(38)

3. Recall: Recall, also known as sensitivity or the
true positive rate, assesses the model’s ability to
correctly identify all malware instances. It is for-
mulated as:

Recall =
TP

TP + FN
(39)

4. F1-Score: F1-score provides a balance between
precision and recall. It is defined as

F1-Score = 2× Precision×Recall
Precision+Recall

(40)

5. Receiver Operating Characteristic (ROC) Curve
and AUC: The ROC curve illustrates the trade-off
between the true positive rate (recall) and the false
positive rate (FPR) across different classification
thresholds. The false positive rate is given by:

FPR =
FP

FP + TN
(41)

The area under the ROC curve (AUC) measures
the model’s ability to distinguish between malware
and benign samples. An AUC value closer to 1 in-
dicates superior classification performance, while
a value near 0.5 suggests random guessing.

4 Result and Discussion
4.1 Exploratory Data Analysis

Using statistical measurements and graphical represen-
tations, exploratory data analysis (EDA) is used to find
trends, verify hypotheses, and condense the dataset. By
using a variety of visualization tools, it also aids in com-
prehending the quality and structure of the data, im-
proving knowledge of the dataset as a whole.

Figure 1: Distribution of Labeled Data

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 10

Figure 2: Distribution of Data Category

Figure 3: Distribution of Family Data

Figure 1 shows the balanced distribution between be-
nign and malicious samples, preventing class imbalance
issues that could bias results. Figure 2 breaks down
the malware category into four subtypes: Ransomware
(21.89%), Trojan (12.17%), Stealer (9.28%), and RAT
(Remote Access Trojan, 6.66%). Ransomware is the
largest threat category, followed by Trojans, which pose
significant risks to organizations and individuals. Steal-
ers and RATs are important attack vectors that of-
ten lead to credential theft and persistent network ac-
cess. Figure 3 detailed the distribution of specific mal-
ware families, including Phobos, Snake, NanoCore,
and WannaCry, each representing 1-2.5% of the total
dataset.

Figure 4: Feature Correlation

Figure 4 shows a feature correlation analysis used to
identify malicious behavior. The system categorizes the
activity into three main operational categories which are
registry operations, network activities, and process exe-
cution and file operations. These categories are impor-
tant for identifying malicious behavior. The duplication
of certain features, such as registry_total and network
related metrics indicates feature engineering.

4.2 Experimental Setup

The experimental framework was implemented using
TensorFlow 2.6 with Keras API, developed in Python
3.8 and executed through Jupyter Lab for interactive
evaluation. All deep learning models were constructed
using TensorFlow?s native Keras implementation,
ensuring consistency across architectural variants. The
Python programming language served as the primary
development environment, with standard scientific
computing libraries (NumPy, Pandas) handling data
processing and analysis.

For data pipeline optimization, we implemented
the following TensorFlow Dataset operations: caching,
shuffling, and prefetching. The cache() method was
applied first to persist processed datasets in memory,
eliminating redundant preprocessing operations across
epochs. This proved particularly valuable given the
multidimensional feature space of our malware dataset.
Subsequent shuffling operations employed a buffer
size of 1000 elements, effectively randomizing sample
ordering while maintaining memory efficiency. The
pipeline concluded with prefetching configured to
automatic buffer sizing (tf.data.AUTOTUNE), en-
abling TensorFlow to dynamically optimize resource
allocation based on available system memory and
computational load. This three-stage preprocessing
sequence significantly reduced inter-epoch latency

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 11

while preventing potential ordering biases during
training.

All convolutional neural network architectures were
trained using the Adam optimizer with a consistent
learning rate of 1.00 × 10?4. The sparse categorical
cross-entropy loss function was selected to accom-
modate our multi-class classification task, with early
stopping implemented to terminate training when
validation loss failed to improve for three consecutive
epochs. Model inputs were standardized through
MinMax scaling and reshaped to (n_features, 1) dimen-
sionality to accommodate 1D convolutional operations,
as opposed to the 2D image inputs referenced in
traditional computer vision applications.

Batch size selection represented a critical opti-
mization parameter balancing memory constraints
with gradient estimation quality. Through empirical
testing, we established a uniform batch size of 32
samples across all model architectures, finding this
configuration provided optimal convergence behavior
while fully utilizing available GPU memory resources.
Table 2 summarizes the key architectural parameters
and training configurations for each CNN variant
evaluated in our study.

Table 2: Example of Table

Model Size Filters Learning Rate Dropout Epochs
Basic CNN 32 32-64 1.00 × 10−4 0.25-0.5 20
Bidirectional CNN 32 64-128 1.00 × 10−4 0.3-0.4 20
Deeper CNN 32 32-64 1.00 × 10−4 0.4-0.5 10
Inception CNN 32 32 1.00 × 10−4 N/A 10
ResMalNet 32 32-64 1.00 × 10−4 N/A 20

The computational environment leveraged GPU accel-
eration through NVIDIA CUDA 11.2 and cuDNN 8.1
libraries, with all experiments conducted on RTX 3090
hardware. This configuration enabled efficient training
of even the most complex residual architectures while
maintaining reproducible results across multiple train-
ing runs. Memory optimization techniques, particularly
through TensorFlow?s Dataset API, proved essential
given the high-dimensional feature space of our mal-
ware classification task. The model training protocol
employed a maximum of 20 epochs for most architec-
tures, with the Deeper CNN and Inception-like variants
limited to 10 epochs due to their computational com-
plexity. This conservative epoch count was determined
through preliminary experiments showing convergence
typically occurred within this range. We implemented
two critical Keras callback functions to optimize the
training process:

• EarlyStopping: Monitored validation loss with a
patience of 3 epochs, restoring the best weights
upon termination. This prevented overfitting while
ensuring model performance peaked before train-
ing cessation, as implemented in all architectures:

early_stopping = EarlyStopping(monitor=?val_loss?,
patience=3,
restore_best_weights=True)

The training process for each CNN variant followed a
standardized procedure:

1. Initialization with He normal weight initialization

2. Batch normalization between convolutional layers
(where applicable)

3. Dropout regularization with rates varying by archi-
tecture (0.25-0.5)

4. Validation on 20% of the training data each epoch

For the Residual CNN, we implemented custom resid-
ual blocks with skip connections, ensuring gradient
flow through:

y = F (x, {Wi}) +Wsx (42)

where F (x,Wi) represents the residual mapping and
Wsx the shortcut connection. The Inception-like archi-
tecture employed parallel convolutional branches with
kernel sizes of 1, 3, and 5, concatenating their outputs:

xout = [conv1×1(x); conv5×5(x); conv5×5(x); pool(x)]

All models used the Adam optimizer (β1 = 0.9, β2 =
0.999) with an initial learning rate of 10?3, demonstrat-
ing stable convergence across architectures. The batch
size of 32 provided optimal balance between computa-
tional efficiency and gradient estimation accuracy given
our dataset?s dimensionality and the available GPU
memory capacity.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 12

Figure 5: CNN Model variants Accuracy and Loss curve

Table 3: Example of Table

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Basic CNN 97.088569 97.188634 97.088569 97.087215
Bidirectional CNN 98.835428 98.846044 98.835428 98.835388
Deeper CNN 98.789458 98.803378 98.789458 98.789400
Inception-like CNN 98.697518 98.701947 98.697518 98.697505
ResMalNet 98.912044 98.919068 98.912044 98.912023

Figure 6: CNN Model variants Accuracy and Loss curve

4.3 Results

Figure 6, 5 and Table 3 demonstrate a clear per-
formance hierarchy among the evaluated CNN
architectures for malware detection. The Residual
CNN emerges as the most effective model, achieving
98.91% accuracy, 98.92% precision, 98.91% recall, and
98.91% F1-score, indicating superior capability in both
malware identification and classification consistency.
This represents a 1.82 percentage point improvement
over the Basic CNN baseline, which achieved 97.09%
across all metrics.

The Bidirectional CNN and Deeper CNN show
nearly identical performance, with marginal differ-
ences of 0.05-0.06 percentage points across metrics,
both maintaining approximately 98.8% accuracy. The
Inception-like architecture follows closely at 98.70%
accuracy, suggesting that multi-scale feature extraction
provides benefits, though slightly less effective than
residual connections. Notably, all advanced archi-
tectures (Bidirectional, Deeper, Inception-like, and
Residual) maintain remarkably consistent values across
all four metrics, with less than 0.02 percentage point
variation between precision, recall, and F1-score for
each individual model.

The Basic CNN consistently under-performs rela-
tive to other architectures, with approximately 1.7-1.8
percentage point deficits across all evaluation metrics.
This performance gap highlights the importance of
architectural enhancements like residual connections
and bidirectional processing for malware detection
tasks.

Figure 7: The ROC Curve for each comparison

Figure 7 evaluated the models showing a perfect
discriminative capability on the dataset. Each model
achieves an AUC of 1.00, indicating ideal class sepa-
ration with entire proper positive type and zero false
positives throughout all selection thresholds. This

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 13

consistent performance in the ROC test demonstrates
that all models effectively distinguish between the
classes at a basic level.

Despite those identical AUC ratings, ResMalNet
shows advanced overall performance using evaluation
metrics. This apparent discrepancy arises from the
awesome views those exclusive evaluation metrics pro-
vide. While the ROC curve and its related AUC degree
evaluate the rating abilities of the models throughout
the whole range of classification thresholds, the other
metrics evaluate general performance at certain oper-
ational parameters, often the default threshold of 0.5.
ResMalNet?s enhanced performance in those metrics
indicates its residual architecture affords blessings in
producing properly-calibrated chance estimates and
making more assured correct classifications close to
the choice boundary.

These metrics show that ResMalNet’s residual
connections and specific design components provide
modest but significant gains in classification reliability.
More robust feature extraction and representation
learning are probably made possible by these archi-
tectural characteristics, especially for data that could
otherwise be near-threshold misclassifications. Even
though such enhancements don?t change the basic
ranking ability as determined by the ROC curve,
they would have a substantial influence on real-world
deployment circumstances where the precise placement
of the decision border has a crucial impact on model
performance.

5 Conclusion

This study proposed ResMalNet for ransomware de-
tection, it which combines domain-related feature en-
gineering with fine-tuning numeric feature selection to
improve deep learning performance. Initially based on
expert knowledge, the model selects domains of crit-
ical behavioral relevance like registry operations, net-
work activity, and file or process interactions, followed
by applying statistical methods to select the most in-
formative numeric features within each domain. This
ensures the model obtains contextual relevance as well
as data-driven effectiveness. The integration of these
two levels of selection leads to improved accuracy and
interpretability of detection, performing better than al-
ternative CNN-based models. Strengthened data aug-
mentation and regularization within the selected feature
space helped to preserve the generalization ability of
the model excellently. This work exemplifies the value
of expert insight integrated with statistical optimization

in designing useful ransomware detection systems. Fu-
ture research should explore adaptive selection strate-
gies to cater for evolving threats, the investigation of
interactions across domains, and extending this frame-
work to more general malware categories, consequently
automated domain feature discovery for scalability.

References

[1] Al-Rimy, B. A. S., Maarof, M. A., and Shaid, S.
Z. M. Ransomware threat success factors, taxon-
omy, and countermeasures: A survey and research
directions. Computers & Security, 74:144–166,
2018.

[2] Alam, M. et al. Deepmalware: a deep learning
based malware images classification. In 2021 In-
ternational Conference on Cyber Warfare and Se-
curity (ICCWS), pages 93–99. IEEE, 2021.

[3] Alrzini, J. R. S. and Pennington, D. A review
of polymorphic malware detection techniques.
International Journal of Advanced Research in
Engineering and Technology, 11(12):1238–1247,
2020.

[4] Basnet, M. et al. Ransomware detection using
deep learning in the scada system of electric ve-
hicle charging station. In 2021 IEEE PES Inno-
vative Smart Grid Technologies Conference-Latin
America (ISGT Latin America), pages 1–5. IEEE,
2021.

[5] Benmalek, M. Ransomware on cyber-physical
systems: Taxonomies, case studies, security gaps,
and open challenges. Internet of Things and
Cyber-Physical Systems, 2024.

[6] Ganfure, G. O., Wu, C.-F., Chang, Y.-H., and
Shih, W.-K. Deepware: Imaging performance
counters with deep learning to detect ransomware.
IEEE Transactions on Computers, 72(3):600–613,
2022.

[7] Gulmez, S. et al. Xran: Explainable deep
learning-based ransomware detection using
dynamic analysis. Computers & Security,
139:103703, 2024.

[8] Gyamfi, N. K. et al. Malware detection using con-
volutional neural network, a deep learning frame-
work: Comparative analysis. 2022.

[9] Hasan, M. K. New heuristics method for mali-
cious urls detection using machine learning. Wasit

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.



OGUNDELE et al. Numeric Feature Analysis in Deep Learning-Based Ransomware Detection with Convolution Neural Network Models 14

Journal of Computer and Mathematics Science,
3(3):60–67, 2024.

[10] Hussain, A. et al. Enhancing ransomware de-
fense: deep learning-based detection and family-
wise classification of evolving threats. PeerJ Com-
puter Science, 10:e2546, 2024.

[11] Hyunji, K. et al. Convolutional neural network-
based cryptography ransomware detection for
low-end embedded processors. Mathematics,
9(7):705, 2021.

[12] Kovács, A. Ransomware: a comprehensive
study of the exponentially increasing cybersecu-
rity threat. Insights into Regional Development,
4(2):96–104, 2022.

[13] Koyirar, W., Harris, B., Williams, J., Moreno,
A., and Davis, E. Efficient ransomware detec-
tion through process memory analysis in operat-
ing systems. Authorea Preprints, 2024.

[14] Liu, X., Du, X., Lei, Q., and Liu, K. Multifam-
ily classification of android malware with a fuzzy
strategy to resist polymorphic familial variants.
IEEE Access, 8:156900–156914, 2020.

[15] Malik, M. I., Ibrahim, A., Hannay, P., and Sikos,
L. F. Developing resilient cyber-physical systems:
a review of state-of-the-art malware detection ap-
proaches, gaps, and future directions. Computers,
12(4):79, 2023.

[16] Raff, E., Barker, J., Sylvester, J., Brandon, R.,
Catanzaro, B., and Nicholas, C. Malware detec-
tion by eating a whole exe, 2017.

[17] Ravi, V. and Alazab, M. Attention-based convolu-
tional neural network deep learning approach for
robust malware classification. Computational In-
telligence, 39(1):145–168, 2023.

[18] Rege, A. and Bleiman, R. Ransomware attacks
against critical infrastructure. In Proc. 20th Eur.
Conf. Cyber Warfare Security, page 324, 2020.

[19] Ryan, M. Ransomware Revolution: the rise of
a prodigious cyber threat, volume 85. Springer,
2021.

[20] SL, S. D. and Jaidhar, C. Windows malware de-
tector using convolutional neural network based
on visualization images. IEEE Transactions on
Emerging Topics in Computing, 9(2):1057–1069,
2019.

[21] Vince, J., Hemmingway, E., Penhaligon, R., Cat-
termole, A., and Swinburne, V. Segregated heuris-
tic chains for advanced ransomware detection
through generative anomaly patterns. Authorea
Preprints, 2024.

[22] Yuan, Z., Lu, Y., Wang, Z., and Xue, Y. Droid-
sec: Deep learning in android malware detection.
In Proceedings of the 2014 ACM conference on
SIGCOMM, pages 371–372. ACM, 2014.

[23] Zhang, R. and Liu, Y. Ransomware detection with
a 2-tier machine learning approach using a novel
clustering algorithm. 2024.

INFOCOMP, v. 24, no. 1, p. pp-pp, June, 2025.


	Introduction
	Related Work
	Materials and Methods
	Datasets
	The CIC-MalMem-2022 (OMM-2022) Dataset
	Custom Ransomware Dataset

	Numeric Feature Selection
	Encoding Categorical Features

	Proposed custom model: ResMalNet
	CNN Models
	Basic CNN Model

	Bidirectional CNN Model
	Deeper CNN Model
	Inception CNN
	Performance Metrics Evaluation

	Result and Discussion
	Exploratory Data Analysis
	Experimental Setup
	Results

	Conclusion

