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Abstract. Gliomas are classified as high-grade glioma and low-grade glioma based on the extent of
spread. The tumor grade provides essential information about the tumor’s aggressiveness and ma-
lignancy, assisting physicians in prescribing the appropriate dosage of radiation and chemotherapy.
Histopathological analysis of tumor tissue samples, usually obtained through biopsy, is commonly re-
quired for brain tumor grading. However, these tissue samples may not completely represent the tumor’s
heterogeneity, leading to potential sampling bias. To overcome this limitation and avoid the negative im-
pact of biopsy, it becomes crucial to assess the tumor grade directly from MRI scans. Hence in this study,
we propose a method that leverages a deep neural network classifier on optimally selected 3D wavelet
radiomic features, extracted automatically from multisequence 3D MRI to predict the tumor grade. The
proposed method for classifying high-grade glioma and low-grade glioma is evaluated on BraTS 2019 3D
MRI dataset using metrics such as Fl-score, precision, recall, and accuracy. The proposed method out-
performs the conventional machine learning algorithms and also outperforms the state-of-the-art tumor

grade classification models.
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1 Introduction

Glioma is the most prevalent form of malignant brain
tumor, constituting around 80% of all malignant brain
tumors [[16]. Based on the extent of spread, glioma are
classified as high-grade glioma (HGG) and low-grade
glioma (LGG). Several treatment procedures such as
microsurgical resection, radiotherapy and chemother-
apy are used to treat gliomas. The glioma core tissues,
are surgically removed and treated with radiation and
chemotherapy. For treatments such as radiotherapy and
chemotherapy, accurate determination of tumor grade is
critical which helps the physician to prescribe the cor-
rect dosage for radiation and chemotherapy.
Traditionally, tumor grade assessment involves an
invasive procedure known as biopsy, which carries the

risk of potential long-term morbidity or even mortal-
ity [14]. The histopathology samples obtained through
biopsy are utilised to predict the overall tumor grade,
with particular focus on the high-grade component.
However, due to the inherent heterogeneity of gliomas,
histopathology samples taken from different areas of
the same tumor may have varying tumor grades. As
pathologists typically analyse only a small portion of
the tumor for examination, there is a risk that the biopsy
sample might not accurately represent the highest-grade
component. This phenomenon, known as biopsy sam-
pling error, can potentially lead to incorrect clinical
management of the disease. In order to avoid biopsy
sampling error and negative consequences of biopsy
procedure, it is essential to determine tumor grade non-
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invasively.

In medical imaging, a paradigm shift has occurred
where images are no longer viewed solely for vi-
sual interpretation. Brain tumors are normally diag-
nosed non-invasively from magnetic resonance images
(MRI). The brain MRI can also serve as a powerful tool
for non-invasive tumor grade assessment. Advanced
techniques, such as radiomic feature extraction and
deep learning-based methods, are extensively utilised
to analyse these images with precision and efficiency.
These techniques leverage the power of medical imag-
ing data to extract relevant features and patterns asso-
ciated with the disease. These non-invasive methods
offer a safer and more patient friendly means of assess-
ing tumor grade, contributing to improved treatment,
decision-making and patient care. Each approach pos-
sesses unique strengths and weaknesses, and the choice
between them depends on various factors, such as the
research objective, data availability, and computational
resources. A combination of both approaches can be
used to harness the advantages of each method for fea-
ture extraction and analysis from MR images.

Accurate determination of tumor grade using ra-
diomics plays a crucial role in tailoring personalised
treatment strategies based on tumor aggressiveness and
malignancy. Radiomic features provide quantitative
characterisations of tumor tissues, capturing intricate
details related to shape, texture, and intensity variations
[8]. These features effectively reflect the heterogeneity
and complexities of brain tumors, which are essential
for accurate classification. These extracted features are
then utilised with artificial intelligence for disease pre-
diction, diagnosis, and prognosis.

The radiomic features can be categorised into differ-
ent types based on their definitions and descriptive char-
acteristics. These categories include statistics-based,
model-based, transform-based, morphology-based, and
sharpness-based features, each providing valuable in-
sights into the underlying tissue properties. Statistics-
based features in radiomics encompass a range of quan-
titative measures derived from the density histogram of
medical images. Among these features are first-order
statistics, run-length features, and matrices like neigh-
bourhood gray tone difference matrix (NGTDM) and
gray level co-occurrence matrix (GLCM).

First-order statistics features provide essential in-
sights into tumor density distribution. Mean, standard
deviation, skewness, and kurtosis are fundamental sta-
tistical measures used to describe the distribution of
voxel intensities in the image. Run-length features are
employed to characterise image coarseness. They count
the number of maximum contiguous voxels with the

same gray level along a line. Higher values indicate a
coarser texture, while lower values indicate a finer tex-
ture. The statistics-based features provide useful infor-
mation about tissue characteristics and identifies subtle
changes in texture patterns that can indicate the pres-
ence of abnormal tissue. By extracting these texture
features, machine learning algorithms can be trained to
classify brain tumors into HGG and LGG. The combi-
nation of these different texture analysis methods help
capture diverse textural characteristics, improving the
accuracy of the classification process.

Model-based features provide fractal dimension fea-
tures. The fractal dimension feature describes the rela-
tionship between change in a measuring scale and its
resultant measurement value at that scale. The rougher
the texture, the larger the fractal dimension. Transform-
based features are extracted from transformed images.
Gabor filters and wavelets decomposition are two im-
portant transformations in the field of digital image
processing. Gabor filters are linear filters designed
for edge detection. Wavelets decomposition can ex-
tract finer/coarser textures at multiple frequency scales.
Morphology-based features contain information about
tumor size and shape. Shape features can describe both
global and local tumors [13]]. In sharpness-based fea-
tures, sigmoid curve fitting feature is used to quantify
the density relationship between a tumor and its sur-
rounding background, e.g., sharpness of the tumor mar-
gin.

By leveraging artificial intelligence, these quantita-
tive features can be analysed to facilitate precise diag-
nosis and improve the prognosis of the disease. Util-
ising the extracted features, predictive models can be
developed to forecast the dependent variable(s) of in-
terest, further enhancing our understanding of brain tu-
mor characteristics and contributing to advancements in
medical research and patient care [3]. Radiomic fea-
tures exhibit consistency across diverse datasets, en-
able rapid implementation for swift analysis, and pro-
vide transparent and interpretable outcomes, making
them well-suited for medical applications. Moreover,
radiomic feature extraction is computationally less de-
manding compared to deep learning.

The motivation of this study is to non-invasively de-
termine the grade of tumor with accuracy from mul-
tisequence 3D MRI. Thus, in this study, we adopt ra-
diomic feature extraction from multisequence 3D MRI
as a valuable approach for accurate tumor grade clas-
sification. In this work, we automatically extract 3D
wavelet filter-based and unfiltered radiomic features us-
ing the PyRadiomics 3.0.1 package. To identify the
most informative subset of features in the extracted ra-
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diomic features, we compared and evaluated the per-
formance of different feature selection methods and the
feature selection method that performed well was cho-
sen for feature selection. These selected features are
then applied to a deep neural network (DNN) classifier
for tumor grade classification into HGG and LGG.

The proposed approach does not require domain ex-
pertise for feature extraction and selection, making it
accessible to researchers and practitioners. The use of
DNNss bring several advantages to our model. By incor-
porating multiple layers, DNNs can detect complex re-
lationships within the features, even those that might be
subtle or hidden. DNNs possess the capability to learn
hierarchical representations of features, enabling them
to capture increasingly intricate and abstract patterns in
the data. This hierarchical representation learning en-
hances the model’s ability to discern important distinc-
tions between tumor grades, ultimately improving the
overall discriminative power of the classifier.

2 Related Studies

Deep learning and machine learning techniques are
more dominantly used in the classification of brain tu-
mor grade.

[6] proposed a neural network classifier for differ-
entiating between normal and malignant brain MR im-
ages. [7] used fuzzy C-means clustering algorithm for
classification of different types of tumor.

[LO] used logistic regression (LR) to classify HGG
and LGG. Four histogram moment features were
utilised in this study to describe the global gray-scale
distributions of glioma tissues, while 14 textural fea-
tures were used to evaluate local correlations between
neighbouring pixel values. The individual feature set
and the combination of both feature sets were utilised
to build the malignancy prediction model using LR al-
gorithm. The Cancer Genome Atlas (TCGA) and the
Cancer Imaging Archive (TCIA) dataset are used in this
work.

[S] used LR to classify HGG and LGG through ra-
diomic features extracted from BraTS 2015 training
dataset. In this work, 45 radiomic features based on
histogram, shape and GLCM were extracted from each
MRI sequence. Ll-norm regularisation was used to
choose significant features from 180 features.

[20] demonstrated the utility of deep learning to pre-
operatively grade glioma by using conventional MRI
images. The authors used AlexNet and GoogLeNet
to classify tumor grade using private dataset contain-
ing 113 patients. GoogLeNet performed better than
AlexNet with test accuracy of 90.9%.

[L] proposes an improved deep learning framework.
In the approach, ResNet50 and DenseNet201, two pre-
trained deep learning models, are used after the first
preprocessing phase. Transfer learning was used to
fine tune and train both models. The features are then
retrieved from the feature layers. The enhanced ant
colony optimisation (EACO) method was used to opti-
mise the retrieved characteristics. The selected charac-
teristics of each network are combined using a serial-
based technique, and then they are eventually cate-
gorised using multi-class SVM, which employs the cu-
bic method.

[21] proposes 3D brain tumor segmentation based
on a modification of the popular U-Net model and mask
R-CNN for automatic, non-invasively distinguishing
LGG and HGG on BraTS 2018 MRI dataset and TCGA
LGG collection dataset.

Since radiomic features offer consistent, inter-
pretable outcomes across datasets, and are computa-
tionally efficient compared to deep learning methods,
in this study, we adopted automatic radiomic feature
extraction from multisequence 3D MRI using PyRa-
diomics package,

3 Materials and Methods
3.1 Dataset

The BraTS 2019 training dataset includes pre-operative
multimodal MRI scans of 335 patients, of which 259
are HGG and 76 are LGG cases. This work uses 3D
MR images of 150 HGG patients from the BraTS 2019
training dataset. Each patient case has four MRI se-
quences such as T1-weighted (T1), T1-weighted with
gadolinium contrast (T1Gd), T2-weighted (T2), fluid-
attenuated inversion recovery (FLAIR), and ground
truth. The ground truths in these datasets are manually
segmented and annotated by the experts as background
(label 0), NET (NCR/NET) (label 1), ED (label 2), and
ET (label 4). Label 3 is not used by the experts.

The dimension of each MRI is (240 x 240 x 155)
where 240 x 240 indicates the height and width of a
slice and 155 specifies the number of slices. These MRI
scans were acquired with different clinical protocols
and various scanners from multiple (n=19) institutions.
Since the MR images are acquired using different scan-
ners, they are of different resolution. The images are
co-registered, skull-stripped, and re-sampled to 1mm3

(5[]

3.2 Methods
The workflow of the proposed model consists of 4 steps

1. Feature extraction
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2. Feature selection using optimal feature selection
process

3. Enhancing classification with modified DNN Clas-
sifier

Feature Extraction using PyRadiomics

To avoid biopsy sampling error and the negative con-
sequences of biopsy, it is necessary to determine the tu-
mor grade non-invasively from MR images. Techniques
such as radiomic feature analysis and deep learning are
prevalently used to extract features from MR images.
However, in this study, radiomic feature analysis ap-
proach is used since these features can be automatically
extracted from 3D MRI using PyRadiomics 3.0.1 pack-
age, based on the segmented mask. Radiomic feature
analysis provide useful information about tissue charac-
teristics and identifies subtle changes in texture patterns
that can indicate the presence of abnormal tissue.

Since wavelets decomposition can extract
finer/coarser textures at multiple frequency scales,
we apply 3D discrete wavelet transform (DWT) filter in
PyRadiomics to extract features automatically. Wavelet
transforms are useful in image processing to analyse
the abrupt change in the image. A 3D DWT is a
mathematical tool used to analyse and process signals
and images. It decomposes the volumetric images into
eight decomposed volumes of images such as LLL,
LLH, LHL, LHH, HLL, HLH, HHL, HHH where L
and H are low and high frequency signals respectively.

Some of the classes of extracted statistics-based fea-
tures are as follows:

1. Gray Level Co-occurrence Matrix (GLCM) : It is
a statistical texture analysis method that quanti-
fies the co-occurence of gray levels between neigh-
bouring pixels in an image. It provides informa-
tion on the spatial relationships between pixels.
GLCM can be used to extract features such as con-
trast, dissimilarity and homogeneity of an image.
These features can be used to analyse the texture
of an image. Variations in GLCM features reflect
differences in textural patterns, which can help dis-
tinguish HGG from LGG.

2. Gray Level Run Length Matrix (GLRLM) : It an-
alyzes the distribution of run lengths, which are
consecutive pixels with the same intensity value,
in an image. It quantifies the number and length
of runs for each gray level, capturing information
about the texture’s uniformity, coarseness, and di-
rectionality. GLRLM features are commonly used
for texture classification and segmentation tasks.

Differences in GLRLM features can reflect differ-
ences in the coarseness, homogeneity, and com-
plexity of the tumor texture [18]]. It can be used to
extract features such as gray level run-length en-
tropy, short run emphasis, long run emphasis.

. Gray Level Size Zone Matrix (GLSZM): It focuses

on characterising the size and spatial distribution
of homogeneous regions or zones within an im-
age. To compute the GLSZM, an image is first
converted into a grayscale representation. Then,
a thresholding operation is applied to classify the
image into different homogeneous regions based
on intensity levels. Each region represents a dis-
tinct zone in the image. Then the GLSZM is con-
structed by counting the number of occurrences of
each zone size and the corresponding gray level.
The GLSZM is essentially a matrix where the rows
represent different zone sizes, and the columns
represent different gray levels. Common statisti-
cal measures derived from the GLSZM include the
number of zones, zone size distribution, zone size
entropy, and zone size non-uniformity. These mea-
sures describe the characteristics of the image tex-
ture. HGGs often have larger zones and a higher
number of zones compared to LGGs, reflecting
the more chaotic and disorganized nature of high-
grade tumors.

. Neighboring Gray Tone Difference Matrix

(NGTDM): It quantifies the difference between
a gray value and the average gray value of its
neighbours within delta distance. It characterises
the differences in gray level values between each
pixel and its surrounding neighbors. It measures
the local variations in intensity within an image.
NGTDM features capture textural information
related to the distribution of gray level differences,
providing insights into the texture’s roughness,
homogeneity, and complexity.

. Gray Level Dependence Matrix (GLDM) : It fo-

cuses on quantifying the differences between adja-
cent pixels in an image to extract texture informa-
tion. Common statistical measures used in GLDM
include the mean, variance, entropy, energy, and
contrast [17]. They can capture subtle changes
in texture patterns, such as variations in texture
roughness or coarseness, which may indicate the
presence of abnormal tissue or other distinctive
features in medical imaging applications. HGGs
generally exhibit higher heterogeneity and irregu-
lar texture patterns, resulting in different GLDM
features compared to LGGs.
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6. 3D Shape

Feature Selection

In radiomics analysis, the careful selection of relevant
radiomic features is essential to avoid overfitting and
enhance prediction accuracy. To mitigate overfitting, it
is essential to reduce the number of extracted radiomic
features from medical images to a manageable level.
Feature selection methods play a critical role in iden-
tifying an optimised subset of features that have a sig-
nificant relationship with the target variable [4]. There
are three main types of feature selection methods: filter,
wrapper, and embedded methods.

Filter methods evaluate feature relevance or impor-
tance based on their intrinsic characteristics, indepen-
dent of any specific machine learning algorithm. Sta-
tistical measures like Pearson’s Correlation, chi-square,
and ANOVA are commonly used to rank or select fea-
tures. Wrapper methods, on the other hand, employ a
machine learning approach to generate a subset of fea-
tures. Techniques like forward feature selection (FFS)
and recursive feature elimination (RFE) are examples
of wrapper methods. FFS is an iterative wrapper tech-
nique that builds a predictive model by sequentially
adding features based on their importance or relevance
[12][11]. Embedded feature selection is a technique
that integrates feature selection into the process of train-
ing a machine learning algorithm. Unlike filter methods
that evaluate features independently or wrapper meth-
ods that use an external evaluator, embedded methods
perform feature selection as part of the model training
process. Embedded method is a combination of filter
and wrapper methods. LASSO (Least absolute shrink-
age and selection operator) and RIDGE are examples of
embedded methods.

In order to determine the best feature selection tech-
nique, in this study we first compare the performance
of some of the feature selection techniques on the ex-
tracted radiomic features.

Enhancing Classification with Modified Deep Neural
Network Classifier

In order to leverage the advantages of deep learning
methods, we employ a DNN classifier to classify tumor
grade based on optimal feature subset chosen from the
radiomic features extracted from brain MR images. The
architecture of the DNN, illustrated in Figure E], com-
prises four hidden layers with 64, 32, 32, and 16 hidden
units, respectively, in addition to the output layer. These
hidden layers utilise the rectified linear unit (RELU) ac-
tivation function, while the output layer employs the

sigmoid activation.

4 Results and Discussion

In this work, we adopted a novel approach to classify
brain tumor grade into HGG and LGG. In the proposed
method, we use PyRadiomics 3.0.1 python package for
extracting wavelet filtered radiomic features from mul-
tisequence 3D MR images based on the segmented task.
It calculates single value per feature for the segmented
mask. Features are extracted from T1, T1Gd, T2 and
FLAIR MRI sequences of 259 HGG and 76 LGG pa-
tients (1340 samples) in BraTS 2019 dataset. Features
are extracted automatically from both unfiltered origi-
nal images and 3D wavelet based filtered images.

In total, 710 features were obtained based on eight
decompositions per level (LLL, LLH, LHL, LHH,
HLL, HLH, HHL, HHH), of 3D wavelet filters and
unfiltered images. Out of the 710 features, 22 were
diagnostic characteristics such as such as version, ap-
plied filters, settings, and original image spacing etc.
, 601 were wavelet-based features, and 89 were unfil-
tered original image features. The extracted radiomic
features belong to the classes of unfiltered original im-
age and 3D wavelet filters, such as GLCM, GLRLM,
GLSZM, NGTDM and GLDM. All features of these
classes are extracted. These features provide useful
information about tissue characteristics and identifies
subtle changes in texture patterns that can indicate the
presence of abnormal tissue. By extracting these texture
features, machine learning algorithms can be trained to
classify brain tumors into HGG and LGG. The combi-
nation of these different texture analysis methods helps
capture diverse textural characteristics, improving the
accuracy of the classification process. The 22 diagnos-
tic characteristics in the extracted feature set, are re-
moved from the analysis since they do not offer relevant
contextual information about the tumor. Subsequently,
we included the target label "grade" with values HGG
and LGG for further classification.

To fully harness the potential of deep learning, we
utilise a DNN classifier to assess and classify tumor
grade. The DNN is configured using the Adam opti-
miser with a learning rate of 1le~2 and binary cross-
entropy loss function. To evaluate the performance
of the tumor grade classifier model, various evaluation
metrics such as Fl-score, precision, recall, area under
curve (AUC), and accuracy are used, providing com-
prehensive insights into the model’s effectiveness and
predictive capabilities.

The DNN classifier was trained and tested using the
extracted features without applying any feature selec-
tion technique, and achieved a classification accuracy of
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Figure 1: Modified Deep Neural Network (DNN) classifier

85.44%. To further improve classification accuracy, it
is essential to reduce the number of extracted radiomic
features from medical images to a manageable level.
Therefore in this study to enhance the performance of
tumor grade classification, radiomic features extracted
using 3D wavelet-filter in PyRadiomics are subjected to
feature selection. Feature selection techniques are used
to choose the optimal subset of features based on the
target variable.

In order to determine the best feature selection
technique, in this study we first compare the perfor-
mance of some of the feature selection techniques on
the extracted radiomic features. The extracted features
are preprocessed by normalisation such that each fea-
ture/variable will have mean = 0 and standard devia-
tion = 1. The target labels are encoded with values O
for HGG and 1 for LGG. In all feature selection tech-
niques except for LASSO and RIDGE, we tried with
different set of features (50, 100 and 150). The num-
ber of features to select cannot be specified in LASSO
and RIDGE. In the experiment, we have used the value
of the hyper parameter o as 0.0001 and 0.1 in LASSO
and RIDGE respectively. We applied LR algorithm for
classification. It is apparent from the Table [I] that FFS
method with 150 feature selection, performs better ex-
cept for precision metric, than the other feature selec-
tion techniques. Therefore we employed the FFS tech-
nique for feature selection.

FFS is an iterative method that begins with zero fea-
tures and progressively adds the features that contribute
the most to the model’s accuracy. This iterative pro-
cess continues until adding a new variable no longer im-
proves the model’s performance. FFS utilises an induc-
tion algorithm in conjunction with a statistical resam-
pling technique, such as cross-validation, to estimate
the final accuracy of the selected feature subsets. This
approach ensures that the chosen feature subset is opti-
mised for accurate tumor grade classification [9]. The
process of FFS typically involves the following steps:

1. Start with an empty set of selected features.

2. TIterate through the remaining features that have not
been selected yet.

3. Along with each candidate feature, evaluate the

performance of the model using the current set of
selected features .

4. Select the feature that improves the model’s per-
formance the most.

5. Add the selected feature to the set of selected fea-
tures.

6. Repeat steps 2-5 until a stopping criterion is met
(e.g., reaching a predetermined number of features
or a certain level of performance improvement).

Further we explored several induction algorithms
with FFS method as shown in Table [2} such as random
forest (RF), support vector classifier (SVC), stochas-
tic gradient descent (SGD), and LR, within the FFS
method. In the experiment with FFS using RF, we
specifically use an RF classifier with 100 decision trees,
leveraging out-of-bag samples to estimate prediction er-
ror. Additionally, we experimented with other algo-
rithms, including LR with SGD cost function, linear
SVC with regularisation parameter C set to 1, and SGD
classifier.

We also conducted experiments to determine the
number of features to be selected, considering options
like 100, 139, and 150 features, to achieve an improved
classification result. However, due to the computational
intensity of the RF and LR algorithms used in the FFS
approach, we limit the exploration to 150 features. The
RF-based FFS approach took approximately 17 hours
to select the optimal subset of 150 features for tumor
grade prediction. The results in Table [2] clearly indi-
cates that the DNN model achieves superior classifica-
tion outcomes when utilising 150 features selected with
induction algorithm RF, in the FFS process. The se-
lected subset of 150 features contains 14 shape-based
and 136 texture-based features, obtained from both un-
filtered and wavelet-filtered images. The texture-based
features consist of 54 GLCM, 23 GLDM, 29 GLRLM,
23 GLSZM, and 7 NGTDM.

Figure [2| displays the AUC obtained by the DNN
model using features selected with different induction
algorithms (RF, LR, SVC, and SGD) in the FFS mech-
anism. The ROC curve illustrates the model’s ability
to differentiate between the HGG and LGG classes. A
higher ROC curve (closer to the top-left corner of the
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Table 1: Comparison of feature selection techniques on the 3D wavelet filter based radiomic features

Feature No. of Features Fl-score Precision Recall Accuracy AUC
Selection selected
SelectKBest 150 0.6434 0.7115 0.5873 0.8470 0.76
SelectKBest 100 0.5714 0.6530 0.5079 0.8208 0.71
RFE 150 0.6610 0.7090 0.6190 0.8507 0.77
RFE 100 0.6153 0.7804 0.5079 0.8507 0.73
SelectPercentile 172 0.6722 0.7142 0.6349 0.8544 0.78
FFS 150 0.7301 0.7301 0.7301 0.8731 0.82
LASSO 139 0.6611 0.7272 04782 0.8470 0.77
RIDGE 250 0.6557 0.6779 0.5942 0.8432 0.77

Table 2: Performance metrics of DNN classifier based on the 150 features selected by FFS technique using different algorithms.

Induction Algorithm F1-score Precision Recall Accuracy AUC
used with FFS

SGD 0.8811 0.8806 0.6825 0.8843 0.81

SVM 0.8784 0.8775 0.6984 0.8805 0.82

RF 0.9041 0.9044 0.7301 0.9067 0.85

LR 0.8589 0.8598 0.7142 0.8582 0.81

plot) indicates better discrimination power, suggesting
a higher true positive rate while maintaining a low false
positive rate. From the graph, it can be observed that
the FFS with RF algorithm achieves the maximum AUC
value of 0.85.

Figure [3] presents the confusion matrices predicted
by the DNN classifier using various induction algo-
rithms employed with FFS feature selection. When
using induction algorithm RF, the DNN classifier cor-
rectly classifies 197 out of 205 HGG patient cases and
46 out of 63 LGG cases.

The selected subset of features is preprocessed
through normalisation, ensuring that each fea-
ture/variable has a mean of 0 and a standard deviation
of 1. Target labels are encoded with 0 for HGG and
1 for LGG. The dataset is split into an 80:20 ratio for
training and testing the model. Preprocessed features
are then trained using a DNN classifier with Adam
optimiser and binary cross-entropy cost function,
utilising a learning rate of 1e 3.

Additionally, the performance of DNN classifier is

compared against conventional machine learning clas-
sifiers (LR, RF, SVM, SGD) using 150 features. Table
[3] shows that the DNN classifier outperforms all con-
ventional machine learning classifiers in all evaluation
metrics.

Table 4] compares the performance of our proposed
approach with state-of-the-art methods for classifying
LGG and HGG tumors. State-of-the-art methods use
different feature extraction methods such as radiomics
and deep learning, and each of them are evaluated on
different datasets and different image types such as vol-
umetric, multimodal. The proposed method uses ra-
diomic feature extraction method and are evaluated on
BraTS 2019 multimodal dataset. The proposed ap-
proach achieves greater accuracy of 94% against all
state-of-the-art methods.
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Figure 2: Area under Curve(AUC) of DNN model with RF, LR, SVC and SGD as induction algorithms in FFS

Table 3: Classification accuracy of DNN classifier against conventional machine learning classifiers

Classifier Model Fl-score  Precision Accuracy Recall AUC
SGD 0.7448 0.7105 0.8619 0.7826  0.8360
LR 0.7580 0.8545 0.8880 0.6811  0.8204

SVC(kernel=linear) 0.8244 0.8709 0.9141 0.7826  0.8712
RF 0.6285 0.9166 0.8544 0.4782 0.7315

Proposed DNN 0.8787 0.9206 0.9402 0.8405  0.9077
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Figure 3: Confusion Matrix of the DNN classifier based on features selected using FFS with various induction algorithms.A) RF classifier, B)
SVM Classifier, C) SGD classifier, and D) LR.

Table 4: Performance measure of DNN classifier against existing state-of-the-art machine learning classifiers on test dataset

Classifier Dataset Image Feature Extraction Accuracy (%)
30 BraTS 2017  Volumetric Radiomics 89
(285 Patients) (Multimodal)
[10] TCGA Sliced Radiomics 88
(107 Patients) (T1-weighted)
[20] Private Sliced Deep Learning 91
(113 Patients) T1-weighted
[ BraTsS 2019 Sliced Deep Learning 86.2

(271 Patients) (Multimodal)
Proposed method BraTS 2019 Volumetric Radiomics 94
(335 Patients) (Multimodal)
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5 Conclusion

In this study, we automatically extracted radiomic fea-
tures from multisequence volumetric MR images in
the BraTS 2019 benchmark dataset using PyRadiomics
3.0.1 with a 3D wavelet filter. Radiomic features are
preferred due to their consistent, interpretable outcomes
across datasets and computational efficiency compared
to deep learning methods. The DNN classifier was
trained and tested using these extracted features without
feature selection, achieving a classification accuracy of
85.44%. To enhance classification accuracy, we applied
feature selection methods and selected the forward fea-
ture selection (FFS) technique for our proposed method.
We tested various induction methods (RF, SVC, SGD,
LR) for selecting the optimal feature subset from the
extracted features, trying different feature numbers (50,
100, 150). With 150 features selected using the RF-
based FFS technique, the DNN classifier achieved bet-
ter results. Due to class imbalance in the experimented
dataset (76 LGG and 259 HGG instances), the clas-
sifier could achieve only a classification accuracy of
94%. The DNN classifier outperformed conventional
machine learning classifiers and achieved better accu-
racy in comparison with the state-of-the-art methods.
Training the model with more samples from both tumor
grades may further enhance its performance.
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