
Containerization Approach for Secure Internet of Medical Things
(IoMT) Communication Protocols

OYEDEMI OLUYEMISI ADENIKE1

DEMOSTENES ZEGARRA RODRIGUEZ 2

RENATA LOPES ROSA 3

UGOCHUKWU OKWUDILLI MATHEW 4

Department of Computer Science, Federal University of Lavras, Minas Gerais, Brazil.

1oyedemi.adenike@ufla.br
2 demostenes.zegarra@ufla.br

3 renata.rosa@ufla.br
4 ugochukwu.mathew@estudante.ufla.br

Abstract. The need for secure communication protocol has become very paramount due to the rapid
growth of IoMT devices. Lack of robust security measure for communication protocol in IoMT en-
vironment renders them vulnerable to cyber-attacks. Secure communication protocols also address a
major aspect of IoT security. This paper presents containerization-based framework as an approach that
can be deployed, managed, and orchestrated on various IoMT devices and platforms for securing com-
munication protocols. Containerization of communication protocol involves packaging communication
protocols into containers. This approach provides a lightweight, portable, and secure way to deploy
and manage communication protocols. Containerizing the communication protocols can be executed
efficiently, reliably, securely without compromising the integrity and functionality of devices. By imple-
menting robust and secure communication protocol, IoT environment can be better equipped to defend
against potential cyber threats.

Keywords: Internet of Medical Things (IoMT), Containerisation, Security, Communication Protocol.

(Received November 19th, 2024 / Accepted December 29th, 2024)

1 Introduction

The increase in the number of Internet of Things (IoT)
devices that are being used in the 21st century has gen-
erated tons of data in different sectors such as finance,
personal healthcare, social media, traffic management,
and the smart city [14, 18, 5, 6, 21, 8, 23]. These IoT
devices are capable of collecting an enormous amount
of data each day [16]. Some of these applications are
shown in Figure 1 where each sector sends and re-
ceives data to and from the central server (cloud server).
This rapid development of computing technology and
wearable devices such as smart phones, smart watches,

and wristbands has greatly transformed all sectors es-
pecially the health sector which makes it easy to get
access to peopleâs health information including activi-
ties, sleep, and sports. A lot of data is being generated
across the globe and it has quite unique properties. Par-
ticipants make use of their personal mobile devices, In-
ternet of Medical Things (IoMT) to track their health
status without using a publicly accessible devices [17].

This technology is referred to as Mobile Health in
a health care setting [1]. Figure 2 shows the scenar-
ios where health data gathered from different homes are
transmitted to the health practitioner for decision mak-

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 2

ing. With this, the abundant user health data accessed
by Internet of Medical Things (IoMT) devices and re-
cent development in machine learning, smart healthcare
has seen many successful stories. With such systems,
patients can receive better care even from their own
homes, particularly for those with rare or geographi-
cally uncommon diseases.

The Internet of Medical Things (IoMT) consist of
the integrated system of sensors, central controllers and
remote locations. The sensors are responsible for tak-
ing input from users, central controllers may make lo-
cal decisions and/or forward data to the remote lo-
cations which may finally make centralized decisions
based on the values of input parameters [10]. With
the ubiquitous proliferation of such personalized IoMT
devices, collaborative and distributed learning is now
more possible than ever to help best utilize the behav-
ioral information learnt from multiple devices. One
major issue of this advancement is security concerns
[11]. As medical data are highly sensitive and private,
some individual sources may not be willing to share
their data with a central data collector [22] due to se-
curity concerns from multiple participants. This there-
fore makes the issue of secured communication pro-
tocol for device management, data transfer, and con-
nectivity very crucial. Devices communicate with each
other, and with the server through various communi-
cation protocols creating a network that offers real-
time data and insights [2]. The protocols such as Con-

Figure 1: IoT Based Applications

Figure 2: Health Data Transfer

Figure 3: Containerâs stack and realisation Technologies

strained Application Protocol (CoAP), Message Queu-
ing Telemetry Transport (MQTT), Hyper Text Transfer
Protocol Secure (HTTPS), and Lightweight Machine-
to Machine (LWM2M) are set of rules and format that
govern how data is transmitted and received between
devices, networks, and systems [4]. Modern distributed
systems rely heavily on communication protocols for
both design and operation. They facilitate smooth co-
ordination and communication by defining the norms
and guidelines for message exchange between various
components. Communication protocols must be se-
cured to protect sensitive data and also prevent cyber
attacks such as data breaches, unauthorized access, and
Denial-of-Service (DOS). Secured communication pro-
tocol ensures maintenance of device integrity. As a re-
sult, this paper presents the concept of containerization
as a framework towards securing IoT devices in mobile
health. The rest of the paper is organized as follows:
Section 2.0 discusses containerisation and IoT com-
munication Protocol. Section 3.0 discusses the types
of containerization platforms. Section 4.0 presents the
framework for the implementation of containerization
of communication protocols in IoMT devices. Section
5.0 presents the Step by step approach to implement
containerisation of communication protocol in IoMT
devices. Finally, concluding remarks are provided in
section 6.0.

2 Containerization and IoT Communication
Protocol

This section describes containerization and how it is ap-
plied to IoT platforms and scenarios. Containerization
is a software deployment process in which all the com-
ponents of an application are bundled into a single con-
tainer image and can be run in isolated user space on
the same shared operating system [3]. The process bun-
dles an applicationâs code with all the files and libraries
it needs to run on any infrastructure Containers enable
developers to define and build their software environ-
ments and then run them on top of various resources in
a portable, reproducible way. Containerization of com-
munication protocol provides a secure environment for

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 3

communication protocols, protecting them from unau-
thorized access and malicious attacks. It enables easy
deployment and management of communication pro-
tocols across different environments and devices. It
allows efficient scaling of communication protocol to
meet the demands of large-scale IoT deployments and
simplifies the maintenance and updating of communi-
cation protocols, reducing the risk of errors and down-
time. Containers are being used for different applica-
tions such as IoT services, smart cars, fog computing,
and service meshes [15] Figure 3 shows a container as
a building block for a larger technology stack that are
used to facilitate microservice deployment. Develop-
ers have used containers to define and build their soft-
ware environment, and then run them on various IoT re-
sources in a portable, secured and reproducible way [3].
The deployment allows the development of a distributed
platform as a set of independent platforms that work
together. It increases the reliability of communication
and data transfer when applied to IoT scenarios [9].A
modular and scalable architecture based on lightweight
for IoT scenarios was proposed by [19]. Each compo-
nent of the architecture has embedded docker, with the
application divided in small services, and implemented
inside containers. Reliability was achieved through this
application. [12] proposed an IoT platform based on
the microservice models. This with the aim of making
inherent application to be distributed, secure, and have
support for heterogeneity. This platform is leveraged on
a SAVI cloud, a two-layer academic cloud, including a
core in Toronto and seven smart edges across Canada.

3 Containerization Platforms

These are software platforms that enable the creation,
deployment, and management of containers in commu-
nication scenario in IoT context. These platforms im-
prove security of communication protocols through iso-
lation and sandboxing, simplified deployment and man-
agement, increased efficiency in communication and
support for a wide range of container runtimes.

3.1 Docker

Docker is a lightweight container-based virtualization
platform that enables developers to isolate applications
and their dependencies, reducing the attack surface and
enhancing security. It is a popular containerization plat-
form for different operating systems (Linux and Win-
dows) that enables developers to run applications in
containers [7]. By running each application in its con-
tainer, developers can limit the potential impact of secu-
rity vulnerabilities and maintain better control over the

Figure 4: The Docker System

application’s environment. Figure 4 shows the docker
system consisting of the Docker server and daemon, im-
ages, registries, and containers.Docker container pro-
vides methods for security level, by using namespaces,
and Cgroups mechanisms, to achieve process hardware,
and isolation mechanisms. Docker allows an easy way
for running and managing containers among users and
data centers. [13] perform a measurement study on
Linux container security using real exploits that can
break the isolation launched to attack containers, by
proposing a defense mechanism to defeat all identi-
fied privilege escalation attacks. [20] enhanced con-
tainer security by providing a secure container mecha-
nism to protect the container processes from outside at-
tacks using the SGX trusted execution support of Intel
CPUs. Core tools of Docker container technology in-
cludes Docker Engine which processes Dockerfile man-
ifests or runs pre-built container images, Docker Reg-
istry that stores and provides access to numerous pub-
lic and private images that are intended for deployment
within Docker Engine; Docker Compose which helps
assemble applications consisting of multiple compo-
nents with all the required configurations declared in
a single compose file, and Docker Swarm which repre-
sents several independent Docker nodes interconnected
into a cluster.

3.2 Kubernetes

Kubernetes, often called K8s, is an open-source plat-
form for orchestrating containers, first made by Google.
Itâs built to automate deploying, scaling, and managing
containerized applications. Kubernetes gives a strong
and flexible setup for handling containers in complex
setups. It is a container orchestration platform that au-
tomates the deployment, scaling, and management of
containers as shown in the architecture in Figure 5. The
features of Kubernetes includes Scalability which let
applications to automatically add or remove instances
(containers) based on changing load. This ensures ap-
plications are available and perform well; Load balanc-
ing which spreads traffic across containers or pods. This
evens out requests and ensures fault tolerance.

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 4

Figure 5: Architecture of Kubernetes

3.3 Rancher

Rancher is a complete software stack for teams adopt-
ing containers. It addresses the operational and security
challenges of managing multiple Kubernetes clusters,
while providing DevOps teams with integrated tools for
running containerized workloads. It is a container man-
agement platform that enables developers to deploy,
manage, and orchestrate containers in a multi-cloud en-
vironment. Under Rancher’s network, a container will
be assigned both a Docker bridge IP (172.17. 0.0/16)
and a Rancher managed IP (10.42.0.0/16) on the de-
fault docker 0 bridge. Containers within the same en-
vironment are then routable and reachable via the man-
aged network. Rancher infrastructure services include
networking, storage, load balancer, DNS, and security.
Rancher infrastructure services are typically deployed
as containers themselves, so that the same Rancher in-
frastructure service can run on any Linux hosts from
any cloud. Rancher Desktop offers greater flexibility
and power.

3.4 Red Hat Open Shift

It is a container application platform that enables de-
velopers to deploy and manage containers in a hybrid
environment. It has built in security features in Red Hat
for risk analysis and security protection. These features
protect the cluster infrastructure and network communi-
cation, isolate computer resources, and ensure security
compliance across the infrastructure components and
container deployments as shown in the infrastructure.
The architecture is shown in Figure 6.

Figure 6: Architecture of Red Hat Open Shift

Figure 7: Architecture of Apache Mesos

3.5 Apache Mesos

This platform enables developers to manage and
orchestrate containers in a distributed environment.
Apache Mesos is a powerful cluster manager that of-
fers effective resource isolation and sharing across dis-
tributed application. Figure 7 shows the architecture
of how containerisation is supported in Apache Mesos.
Mesos simplifies the complexities of running tasks in
a shared pool of servers, ultimately rendering more ef-
ficient and scalable system operations. Apache Mesos
is a powerful cluster manager that provides efficient re-
source isolation and sharing across distributed applica-
tions or frameworks. It acts as the âkernelâ for your
data center, abstracting CPU, memory, storage, and
other compute resources away from machines (physi-
cal or virtual). Mesos allows for the dynamic sharing of
these resources between applications, which can signif-
icantly improve the scalability and efficiency of large-
scale systems. Mesos runs on Linux (64 Bit) and Mac
OS X (64 Bit). Apache Mesos provides several security
features, such as SSL-based communication, Container
Image verification for Docker and application images,
and Access Control Lists (ACLs) for controlling access
to Mesos APIs. Apache Mesos is known for its out-
standing performance with the ability to scale and man-
age tens of thousands of nodes efficiently. It also mini-
mizes the resource footprint through containerization.

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 5

Figure 8: Framework for the Containerized Communication Pro-
tocol in IoT Context

4 Framework for the Implementation of Con-
tainerization of Communication Protocols
in IoT Devices

This involves packaging communication protocols into
containers, which can be deployed and managed in-
dependently as shown in the framework in Figure 8.
The user layer plays a key role in the implementation
framework by providing an interface for users to in-
teract with the containerized communication protocol.
This layer provides security and access control mecha-
nism. A request initiated at the user layer triggers the
service request to initiate communication between the
user layer and the containerized communication proto-
col. Latency aware ensures that the most suitable pro-
tocol is chosen for a specific application, reliability-
aware mechanism enables error detection and correc-
tion, ensures that communication protocol continues to
function even in the event of any failure or error. Con-
tainer allocation enables containers to be allocated and
deallocated dynamically, Memory and Storage Man-
agement (MSM) ensures that containers use the mini-
mum amount of memory required, while resource man-
agement enables improved scalability and provides a
dedicated environment for each container. The cloud
edge layer is the infrastructure and services that enable
cloud computing capabilities at the edge of the network.
It enables real-time processing and analytics, leverag-
ing containerization to deploy and manage applications.
Latency aware ensures that the most suitable protocol is
chosen for a specific application, reliability-aware The
containers provide isolation and security for the com-
munication protocol, ensuring that each runs indepen-
dently and securely. Multiple communication protocols
can be enabled to run on the same host without conflict-
ing each other.

5 Step by step approach to implement con-
tainerisation of communication protocol in
IoMT devices

This section discusses the steps to implementing the
containerisation of communication protocol in IoMT
devices.

1. Identification of the type of Communication
Protocol: Communication Protocols are the machine to
machine communication language that ensure smooth
communication between different IoT devices. There
are different types such as MQTT, CoAP and HTTP.
Protocol type, protocol version, and protocol configu-
ration such as encryption and authentication determines
the containerization requirement. Different protocols
have varying requirement and dependencies, distinct se-
curity feature and vulnerabilities, and specific configu-
ration to function effectively and efficiently. All these
will ensure optimal performance optimization within
the containerized environment.

2. Selection of suitable containerization plat-
form: Platform compatibility and security features are
two key selection criteria. The containerization plat-
form must be compatible with the IoMT deviceâs op-
erating system, deviceâs hardware architecture, and the
communication protocols and software required by the
IoMT device. The selected platform must provide data
encryption, access control mechanism for the commu-
nication protocol, and support secure communication
protocols such as TLS or IPsec.

3. Containerisation of communication protocol:
This stage involves creating a container image using
the selected communication protocol and its dependen-
cies. For example a Dockerfile or a Kubernestes YAML
are used to define the container image. In the case of
HTTP/HTTPS protocol, the Docker will be used to con-
tainerize an HTTP/HTTPS server, such as Apache or
Nginx. After this, a Dockerfile will be created that
installs the server software and configures it to run
on a specific port. Finally, A Docker image will be
built from the Docker file and run as a container. Ku-
bernestes is used in the case of MQTT protocol to con-
tainerize and MQTT broker, such as Mosquitto. A Ku-
berneste deployment YAML file that defines the con-
tainer and its configuration is created, this file is finally
used to create the deployment and run the container.

4. Configuring the container network and secu-
rity: At this stage, the container is configured to op-
timize its security and performance. This stage also
involves setting up environment variables, configuring
network settings, and installation of dependencies.

5. Deployment of the Container: This can be
achieved in IoT devices using a container orchestra-

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 6

tion tool like Kubernestes or Docker Swarm. After
this stage, the containerâs performance and security are
monitored using tools like Promenthus and Grafana.
The containerized communication protocol is deployed
and monitored in the desired environment.

6 Conclusion

Containerisation provides a high level of isolation be-
tween communication protocols, reducing the risk of a
security breach. It enables secure communication be-
tween IoT devices and the cloud or other devices. Con-
tainerisation makes it easier to manage vulnerabilities
in communication protocols.

References

[1] Adibi. Mobile health: A technology road map.
2015.

[2] Anusha, S. et al. Performance analysis of data pro-
tocols of internet of things: A qualitative review.
International Journal of Pure and Applied Math-
ematics, 115(6):37–47, 2017.

[3] Bentaleb, B. et al. Containerization technologies:
Taxonomies, applications and challenges. The
Journal of. Supercomputing, 78(1):1144–1181,
2021.

[4] Bormann, C. et al. Coap: An application protocol
for billions of tiny internet node. IEEE Internet
Computing, 1(2):62–67, 2012.

[5] Carvalho Barbosa, R., Shoaib Ayub, M.,
Lopes Rosa, R., Zegarra Rodríguez, D., and
Wuttisittikulkij, L. Lightweight PVIDNet: A
priority vehicles detection network model based
on deep learning for intelligent traffic lights.
Sensors, 20(21):6218, 2020.

[6] de Sousa, A. L., OKey, O. D., Rosa, R. L.,
Saadi, M., and Rodriguez, D. Z. A novel re-
source allocation in software-defined networks for
iot application. In 2023 International Conference
on Software, Telecommunications and Computer
Networks (SoftCOM), pages 1–5. IEEE, 2023.

[7] Docker. [online] available april 2020:
https://docs.docker.com.

[8] dos Santos, M. R., Batista, A. P., Rosa, R. L.,
Saadi, M., Melgarejo, D. C., and Rodríguez, D. Z.
Asqm: Audio streaming quality metric based on
network impairments and user preferences. IEEE
Transactions on Consumer Electronics, 2023.

[9] Fazio, C. et al. Open issues in scheduling mi-
croservices in the cloud. IEEE Cloud Computing,
3(5):81–88, 2016.

[10] Garcia-Constantino, K. et al. Ambient and wear-
able sensor fusion for abnormal behaviour detec-
tion in activities of daily living. IEEE Access,
pages 1–6, 2020.

[11] Ji, L. et al. Differential privacy and machine learn-
ing: A survey and review. 2014.

[12] Khazei, B. et al. A self-managing containerized
iot platform. In Proceedings of the IEEE 5th Inter-
national Conference on Future Internet of Things
and Cloud (FiCloud), Prague, Czech Republic, 21
- 23 August, 2017.

[13] Li, J. et al. Application research of docker based
on mesos application container cluster. In Interna-
tional Conference on Computer Vision, Image and
Deep Learning (CVIDL), pages 476 – 479, 2020.

[14] Marjani, N. et al. Yahoo,big iot data analytics: Ar-
chitecture, opportunities, and open research chal-
lenges. IEEE Access, 5:5247–5261, 2017.

[15] Morabito, F. et al. Evaluating performance of con-
tainerized iot services for clustered devices at the
network edge. IEEE Internet of Things Journal,
4(4):1019–1030, 2017.

[16] Mourtzis, V. et al. Industrial big data as a result of
iot adoption in manufacturing. Procedia CIRP 55,
pages 290–295, 2016.

[17] Qadri, N. et al. The future of healthcare internet of
things: a survey of emerging technologies. IEEE
Commun Surv Tutorial, pages 1121–1167, 2020.

[18] Rosa, R. L., Rodriguez, D. Z., and Bressan, G.
Sentimeter-br: A social web analysis tool to dis-
cover consumers’ sentiment. In 2013 IEEE 14th
international conference on mobile data manage-
ment, volume 2, pages 122–124. IEEE, 2013.

[19] Rufino, A. et al. Orchestration of containerized
microservices for iiot using docker. In Proceed-
ings of the 2017 IEEE International Conference
on Industrial Technology (ICIT), Toronto, ON,
Canada, 22-25 March, 2017.

[20] Sergei, B. et al. Scone: secure linux contain-
ers with intel sgx. In Proceedings of the 12th
USENIX Conference on Operating Systems De-
sign and Implementation (OSDI’16). USENIX As-
sociation, USA,, 2016.

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.



Oyedemi et al.CONTAINERISATION APPROACH FOR SECURE INTERNET OF MEDICAL THINGS (IoMT) COMMUNICATION PROTOCOLS 7

[21] Teodoro, A. A., Silva, D. H., Rosa, R. L., Saadi,
M., Wuttisittikulkij, L., Mumtaz, R. A., and Ro-
driguez, D. Z. A skin cancer classification ap-
proach using gan and roi-based attention mecha-
nism. Journal of Signal Processing Systems, 95(2-
3):211–224, 2023.

[22] Van-Zoonen, L. Privacy concerns in smart cities,
government information quarterly. pages 472–
480, 2016.

[23] Vieira, S. T., Rosa, R. L., and Rodríguez, D. Z. A
speech quality classifier based on tree-cnn algo-
rithm that considers network degradations. Jour-
nal of Communications Software and Systems,
16(2):180–187, 2020.

INFOCOMP, v. 23, no. 2, p. pp-pp, December, 2024.


	Introduction
	Containerization and IoT Communication Protocol
	Containerization Platforms
	Docker
	Kubernetes
	Rancher
	Red Hat Open Shift
	Apache Mesos

	Framework for the Implementation of Containerization of Communication Protocols in IoT Devices
	Step by step approach to implement containerisation of communication protocol in IoMT devices
	Conclusion

