

Ministério da Educação

Ministro: Fernando Haddad

Reitor: Antônio Nazareno Guimarães Mendes

Vice-Reitor: José Roberto Soares Scolforo

Pró-Reitora de Pesquisa: Édila Vilela de Resende Von Pinho

Editora UFLA
Presidente do Conselho Editorial: Renato Paiva

Volume 10, no. 2, June of 2011.

Editorial Board
Editor-in-Chief Scientific Editors

Luiz Henrique Andrade Correia, UFLA, Brazil Gabriel Paillard, UFC, Brazil

Executive Editors Horácio Hideki Yanasse, INPE, Brazil

Heitor Augustus Xavier Costa, UFLA, Brazil João M. R. da S. Tavares, FEUP, Portugal

Sanderson Lincohn Gonzaga de Oliveira Muthu Ramachandran, Leeds Metr. Univ., UK

Tales Heimfarth, UFLA, Brazil Pĺınio de Sá Leitão Júnior, UFG, Brazil

Associate Editors
Abdelmalek Amine, Univ. Djillali Liabes-Sidi, Algeria Alceu Britto Jr., PUC-PR, Brazil

Alessandra Alaniz Macedo, USP, Brazil Alessandro Marchetto, IRST, Italy

Alice Kozakevicius, UFSM, Brazil Anderson de Rezende Rocha, Unicamp, Brazil

Anita Fernandes, UNIVALI, Brazil Antonio Maria Pereira de Resende, UFLA, Brazil

Antonio Pedro Timoszczuk, USP, Brazil António Ribeiro, European Commission, Italy

Arnaldo de Albuquerque Araújo, UFMG, Brazil Aruna Ranganath, Bhoj Reddy Eng. Col. for Women, India

Aswani Kumar Cherukuri, VIT University, India Ayyaswamy Kathirvel, KVCET, India

Bruno de Oliveira Schneider, UFLA, Brazil Carlos de Castro Goulart, UFV, Brazil

Claudio Cesar de Sá, UDESC, Brazil Claudio R. Jung, UNISINOS, Brazil

Daniel Mesquita, UFU, Brazil Deepak Dahiya, ITM Gurgaon, India

Denilson Alve Pereira, UFLA, Brazil Eder Mateus Nunes Gonçalves, FURG, Brazil

Elisa Huzita, UEM, Brazil Fábio Levy Siqueira, USP, Brazil

Fatima L. S. Nunes, USP, Brazil Frank José Affonso, UNESP, Brazil

Giovani Rubert Librelotto, UFSM, Brazil Heitor Augustus Xavier Costa, UFLA, Brazil

Hernan Astudillo, Univ. Tec. Federico Santa Maria, Chile Hyggo Almeida, UFCG, Brazil

Ilda Reis, FEUP, Portugal Ildeberto Aparecido Rodello, USP, Brazil

João Carlos Giacomin, UFLA, Brazil João Manuel R. S. Tavares, Universidade do Porto, Portugal

Joaquim Quinteiro Uchôa, UFLA, DCC Johan M. Sharif, Swansea University, UK

Jorge Martinez-Gil, University of Malaga, Spain Jorge Rady Almeida Junior, USP, Brazil

José Lúıs Braga, UFV, Brazil Luciana A. F. Martimiano, UEM, Brazil

Luciano José Senger, UEPG, Brazil Luiz Camolesi Jr., Unicamp, Brazil

Luiz Carlos Begosso, FEMA, Brazil Luiz Eduardo G. Martins, UNIMEP, Brazil

Luiz Henrique Andrade Correia, UFLA, Brazil Marco Aurelio Gerosa, USP, Brazil

Marcos A. Cavenaghi, UNESP, Brazil Marco Tulio Valente, UFMG, Brazil

Maria Istela Cagnin, UFMS, Brazil Michel S. Soares, UFU, Brazil

Muthu Ramachandran, Leeds Metr. Univ, UK Nandamudi Vijaykumar, LAC-INPE, Brazil

Omar Andres Carmona Cortes, CEFET/MA, Brazil O. P. Gupta, Punjab Agricultural Univ., India

Pĺınio Sá Leitão Júnior, UFG, Brazil Priti Sajja, Sardar Patel University, India

Rajkumar Samanta, Megnad Saha Inst.Tech., India Raquel O. Prates, UFMG, Brazil

Reghunadhan Rajesh, Bharathiar Univ., India Renato de F. B. Neto, Innolution Sist., Brazil

Ricardo Terra, UFMG, Brazil Ricardo da Silva Torres, Unicamp, Brazil

Rodrigo Fernandes de Mello, USP, Brazil Roger Pizzato Nunes, UFPel, Brazil

Rogéria Cristiane Gratão Souza, UNESP, Brazil Rosângela A. Delosso Penteado, UFSCar, Brazil

Sanderson Lincohn Gonzaga de Oliveira, UFLA, Brazil Udo Fritzke Jr., PUC-Poços, Brazil

Valter F. Avelino, USP, Brazil Valter Vieira de Camargo, UFSCar, Brazil

Vitus S. W. Lam, University Hong Kong

Technical staff: Ariana da Silva Laureado, Túlio Vono Siqueira (Secretary); Jaqueline Alvarenga Silveira, and Jéssica
Renata Nogueira.

Indexed in: INSPEC; Qualis-CAPES.

INFOCOMP – Journal of Computer Science – v.10, n.2 (2011) – Lavras: Universidade Federal
de Lavras, 2011.
Anual (1999 - 2003), Semestral (2004), Trimestral (2005 -)

Sumários em Inglês

ISSN 1807–4545

1. Ciência da Computação I.Universidade Federal de Lavras. II. Departamento de Ciência
da Computação.

Solicita-se permuta /Exchange desired Tiragem /Quantity issued per print : 310.

A survey of point insertion techniques in bidimensional Delaunay

Triangulations

S. L. G. DE OLIVEIRA

UFLA - Universidade Federal de Lavras
DCC - Departamento de Ciência da Computação

P.O. Box 3037 - Campus da UFLA 37200-000 - Lavras (MG) - Brazil
sanderson@dcc.ufla.br

Abstract. Triangulations are geometric discretizations essential in many scientific applications, such
as engineering simulations, visualizations, and geographic information systems. The preferred shape
of a triangle depends on the applications. Theoretical and experimental analysis of numerical methods
that are used in conjunction with triangulations suggest that triangles with no large angles and/or small
angles serve well in most applications. This paper is a brief review of a point insertion in 2D Delaunay
Triangulations. Important works on the insertion of vertices in Delaunay Triangulations are described as
a start point for one who needs to build a quality mesh using adaptive triangular-mesh refinement.

Keywords: Delaunay Triangulation, mesh generation, adaptive triangular mesh refinement, computa-
tional geometric modeling.

(Received April 10th, 2011 / Accepted June 18th, 2011)

1 Introduction

Triangulations are geometric discretizations essential
in many scientific applications, such as engineering
simulations, medical imaging, visualizations, and geo-
graphic information systems [22]. Erten and Üngör [22]
explain that the preferred shape of a triangle depends on
the applications. However, theoretical and experimen-
tal analysis of numerical methods that are used in con-
junction with triangulations suggest that triangles with
no large angles and/or small angles serve well in most
applications (see [1]). According to Erten and Üngör
[22], “in general, the better the shape of the triangles,
the smaller the interpolation and approximation errors
are in their use”.

Delaunay triangulations are optimum in maximiz-
ing the smallest angle [17]. An approach in order to
provide quality triangular meshes is to use algorithms
based on a automatic point insertion strategy on the De-
launay Triangulation. A planar Delaunay Triangulation
[15] for a point set P is a triangulation DT(P) such that
no point in P is inside the circumcircle of any triangle

in DT(P). The Delaunay Triangulation builds the opti-
mal triangular mesh. This means that it builds triangles
more similar to the equilateral ones for a given fixed
point set.

The Delaunay Triangulation and its duals Voronoi
Diagram [52] and medial axes have been applied in
many different fields, such as the ones earlier cited, in-
cluding numerial methods and computer graphics. The
reader is referred to Guibas and Stolfi [26] and Barth
[4] for properties and algorithms in order to build 2D
Delaunay Triangulations. Shewchuk [45] presented as-
pects of the Delaunay mesh generation. Edelsbrunner
[18] provided a theoretical review on Delaunay Trian-
gulation. De Floriani and collaborators [12] reviewed
the basic triangulation properties, Delaunay Triangula-
tions, constrained and conforming triangulations. They
also presented a survey of algorithms for building these
kind of triangulations, mainly in the context of digital
terrain modeling in geographic information systems.

In order to build a Delaunay Triangulation, the
reader is referred to the mesh generation software Tri-

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 2

angle [48]. Triangle’s high-quality mesh generation
is based on Chew-Ruppert Delaunay refinement al-
gorithm [41]. Both were surveyed by Shewchuk in
[46]. In addition, Shewchuk described Ruppert’s De-
launay refinement algorithm in [47]. These algorithms
evolved from the works of Chew [7] and Bern et al.
[5]. The Chew-Ruppert Delaunay refinement method
is modified in Triangle to handle domains with small
angles well, following a idea in the paper of Miller
et al. [32]. It also incorporates a modification by
Üngör [51] that reduces the number of triangles gen-
erated. Triangle’s implementation of the divide-and-
conquer and incremental Delaunay triangulation algo-
rithms follows closely the presentation of Guibas and
Stolfi [26]. Triangle uses a triangle-based data structure
instead of Guibas and Stolfi’s quad-edge data structure.
The O(n log n) divide-and-conquer algorithm promoted
by Guibas and Stolfi was originally developed by Lee
and Schachter [31]. Dwyer [16] showed that the al-
gorithm is improved by using alternating vertical and
horizontal cuts to divide the vertex set. Triangle uses
an expected O(n1/3) time point location scheme pro-
posed by Mücke [33]. Triangle’s O(n log n) sweepline
algorithm for Delaunay triangulation is due to Fortune
[23], and relies upon Sleator and Tarjan’s splay trees
[50]. The earlier description is based on the Triangle’s
website [48].

Given a Delaunay Triangulation, one is allowed to
insert points (called the Steiner points) in order to com-
pute good quality triangulations. This, however, may
increase the number of points and triangles in a trian-
gulation, which is a key factor in the running time of an
application algorithm. The reader is referred to [22] for
details and a survey on the context of providing a good
triangulation.

After this brief introduction, Section 2 provides a
further review of the schemes for point insertion in a
Delaunay Triangulation in the context of providing a
adaptive refined mesh. Section 3 describes the Voronoi
Diagram. Section 4 surveys the Rivara’s schemes and
others. Some future directions are given in Section 5.

2 Point insertion in a Delaunay Triangulation

A point insertion in a Delaunay Triangulation is not
a trivial task. For example, if one simply inserts a
point into the triangle barycenter (Figure 1a), this pro-
cess fastly degenerates the triangulation quality, spe-
cially along boundaries. This occurs even when car-
rying out global refinement. In [38], the authors affirm
that a pure Delaunay algorithm does not provide a natu-
ral point insertion scheme that guarantees the construc-
tion of good-quality nonuniform triangulations when

the algorithm is iteratively used in the adaptive mesh
refinement. They described experiments with the sim-
ple centroid insertion (see Figure 1a) concept.

Figure 1: Triangle partition processes: (a) ternary subdivision - re-
finement by simple centroid insertion; (b) refinement by centroid in-
sertion and adding midedges - a second refinement is performed in the
bottom right triangle; (c) trisection of the edges, joinning the centroid
to those points and also to the vertices.

The literature is rich in approaches to introduce
points into the triangulation. These schemes provide
high-quality Delaunay Triangulations and some of them
are described in the following.

Fowler and Little [24] proposed the vertex inser-

tion in conjunction with the Delaunay Triangulation. A
Delaunay criterion localizes the position of a potential
point to be inserted. This could affect the fit to the cir-
cumscribed circle about the triangle. The authors ar-
gued that it is sufficient to perform series of domain-
limited searches in each triangle of the model; rather
than carrying out global searches for the global "worst-
fit" points. In this approach, adding a point destroys the
original triangle and introduces new triangles. The in-
serted point is a vertex of the new triangles. In Figure
2, a point is introduced and the region is triangulated.
The reverse operation, known in computer-graphic con-
text as decimation, is performed in order to unrefine the
region. In a variation, a point is inserted, the set of tri-
angles on its neighborhood are deleted and the region is
retriangulated (Figure 3). The inverse operator, the ver-

tex removal, deletes a point together with its incident
triangles and constructs new triangles in the region.

Figure 2: Vertex insertion and vertex decimation.

Figure 3: Vertex insertion and vertex decimation.

Clarkson and Shor [9] showed that if the order of
vertex insertion is randomized, each vertex can be in-
serted in O(n) time, not counting point location (see de-

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 3

tails in Shewchuk [48]. Chew ([7] and [8]) proposed
a Delaunay improvement algorithm that triangulates a
given polygon into a uniform mesh with all angles be-
tween 30 and 120. It guarantees that the output mesh
is size-optimal within a constant factor amongst all uni-
form meshes.

The Hierarchical Delaunay Triangulations (HDT)
was proposed by De Floriani and Puppo in [13] and
[14]. It is based on a hierarchy of triangle-based sur-
face approximations, where each node, except the root,
is a triangulated irregular network refining a triangle
face belonging to its parent in the hierarchy (see Fig-
ure 4). This method is similar to the proposed by Scar-
latos Pavlidis in [42]; however, the triangle subdivision
is more general. The subdivision inside every macro-
triangle is locally a Delaunay Triangulation; whereas a
global expanded subdivision of the whole domain ger-
ally is not. The triangle partition is performed by an
iterative application of a selector process that, at each
step, updates the current Delaunay Triangulation by in-
troducing the point having the maximum error. More-
over, in order to subdivide a triangle for a given hier-
archical level, they used a curve approximation algo-
rithm [3] in order to insert points along the edges. Af-
terwards, points are added in the inner triangle until an
error threshold is met throughout the triangle. So, the
inner triangle is retriangulated using Delaunay Trian-
gulation. The constructing algorithm basis for a HDT
must be an on-line approach that incrementally builds
a Delaunay Triangulation through iterative point inser-
tion [12]. According to Heckbert and Garland [28], the
HDT seems to present nearly identical flexibility and
speed compared to the one proposed in [42]. How-
ever, for a given error threshold, the HDT likely yields
slightly better simplification.

Figure 4: Hierarchical Delaunay Triangulations.

Ruppert [41] presented an algorithm to triangulate
planar straightline graphs. It guarantees that every tri-
angle in the output mesh has smallest angle greater than
278. It produces a size-optimal nonuniform mesh. It is
also size-optimal to within a constant factor. The idea
behing these algorithms is either: to refine a small an-

gled triangle by the Delaunay insertion of its circum-
center; or a modification of the boundary if the circum-
circle is external to the meshing region (see [37] for de-
tails). Baker [2] published a comparison of edge and
circumcenter based refinements. Properties of mesh im-
provement for iterative Delaunay refinement based on
inserting a point in the circumcenter of triangles to be
refined was also established by Shewchuk in [44]. A
combination of edge refinement and Delaunay point in-
sertion was described by Borouchaki and George in [6]
and [25].

Shewchuk [46] presentd a framework for analyz-
ing Delaunay refinement algorithms that unifies the
mesh generation algorithms of Chew and Ruppert. The
Shewchuk’s framework improves the Chew’s and Rup-
pert’s algorithms in several ways, and also helps to
solve the difficult problem of meshing nonmanifold do-
mains with small angles.

Üngör [51] presented an algorithm based on the off-

center insertion. In the former case, the off-center of
a triangle with the shortest edge pq is a point o on the
bisector of pq furthest from p (or q) such that the an-
gle among the three points is a user-specified constraint
angle. The idea of using off-centers led Har-Peled and
Ungor [27] to the design of the first time-optimal De-
launay refinement algorithm.

Erten and Üngör [21] proposed algorithms that im-
prove the off-center performance with respect to the
mesh size and a minimum angle tolerance. This is per-
formed by using point selections depending on some
triangle cases. Erten and Üngör [20] published a De-
launay refinement algorithm that generally terminates
for constraint angles up to 42◦.

Erten and Üngör [22] proposed two algorithms to
improve the performance of Delaunay refinement. The
first one uses the Voronoi Diagram and unifies previ-
ously suggested Steiner point insertion schemes (cir-
cuncenters [7], [40], [46], sink [19], off-center [51])
together with a proper strategy. The second algorithm
integrates a local smoothing strategy into the refinement
process. For a given input domain and a constraint an-
gle α, the Delaunay refinement algorithms aim to com-
pute triangulations with angles at least α.

Recently, Plaza and collaborators [34] proposed the
7-triangle Delaunay partition (Figure 5). This refine-
ment scheme also propagates the refinement and inserts
non-similar triangles.

Figure 5: 7-triangle Delaunay partition

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 4

3 Voronoi Diagram

The Voronoi Diagram was proposed in [52]. Shamos
[43] was the first to argue that the Voronoi Diagram can
be used as a tool to provide efficient algorithms for a
wide variety of geometric problems.

Barth [4] defined the Delaunay Triangulation of a
point set as the dual of the Voronoi Diagram of the set.
The 2D-Delaunay Triangulation is formed by connect-
ing two points if and only if their Voronoi regions have
a common border segment. If no four or more points
are cocircular, then the vertices of the Voronoi Diagram
are the triangle circumcenters. Moreover, Voronoi ver-
tices represent locations that are equidistant to three or
more points.

Consider the Delaunay Triangulation of a set V of
planar points. The Voronoi Diagram describes the prox-
imity relationship among the points of V. The Voronoi
Diagram of a set V of n points is a planar subdivision
into n convex polygonal regions. Each region is asso-
ciated with a point of V. Each Voronoi region of each
point of V is the set of planar points which lie closer to
the point than to any other point in V. Two points of V

are neighbors when the corresponding Voronoi regions
are adjacent [12].

An interface orthogonal to the segment between
two centroids facilitates finite-volume approximations.
Moreover, it improves the solution accuracy and re-
duces the computational effort to approximate a solu-
tion of a partial differential equation. Furthermore, in
this approach, the finite volumes are not the triangles
themselves, but the Voronoi Diagram (see Figure 6), i.e.
parts of each triangle.

Figure 6: A single Delaunay Triangulation and its dual the Voronoi
Diagram.

4 Longest-edge based triangle partition
within Delaunay Triangulation

Rivara [35] presented the backward longest-edge refine-
ment (BLER) algorithm based on an interesting concept
in order to conform the mesh in the finite element con-
text: the longest-edge propagation path (LEPP). Briefly,
the LEPP keeps a path of n triangles that have also to
be refined for each triangle of the mesh. For example,
consider that the triangle t0 is marked to be refined.

The LEPP indicates that the triangles t1, t2, · · · , tn also
must be refined in order to mantain a conforming good-
quality mesh. It propagates the list until the longest-
edge shared by triangles tn−1 and tn. This edge is
larger than the one of its previous neighbor or tn is
in the boundary. Figure 7 shows an example of the
LEPP-midedge propagation with 3T-LE partition ap-
proach and tn is bisected, where n=4 in this example.
The BLER is a partition procedure that extended both
the pure longest-edge refinement algorithms for general
nonDelaunay Triangulation (see [39] and the references
therein) and the longest-edge refinement algorithm for
Delaunay Triangulations proposed by Rivara and Inos-
troza [38]. Specifically, the algorithm presented in [38]
guarantees that meshes of analogous quality to the input
reference-mesh are built.

Figure 7: LEPP-midedge of t0.

Rivara and collaborators ([37] and [49]) presented
the LEPP-Delaunay midedge algorithm . It generalized
and improved both previous longest-edge algorithms
for the Rivara’s refinement of general nonDelaunay Tri-
angulations, and the longest-edge algorithm for the re-
finement of Delaunay meshes [38].

In the LEPP-Delaunay midedge algorithm, only
considering local information associated to the terminal
triangle that contains a constrained edge allows a real
constrained Delaunay Triangulation. The constrained
Delaunay Triangulation is the best approximation of the
Delaunay Triangulation containing the set of given seg-
ments among its edges.

The LEPP-Delaunay midedge algorithm avoids the
interaction with the entire set of constrained items. This
algorithm is not a nested partition procedure because
it changes the previously existing points. Moreover, it
replaces previous triangles by Delaunay triangles due
to the circumcircle test of DT(P). In addition, it suf-
fers of a looping case for angle tolerance greater than
22◦. Namely, in certain cases, the triangles are not im-
proved during the refinement. Nevertheless, it is inter-
esting since it provides meshes with triangles which the
smallest angle is greater than or equal to π/6, including
along boundaries.

Hitschfeld and Rivara [29] introduced a automatic

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 5

construction of nonobtuse triangles in boundary for
LEPP-Delaunay Triangulations within control volume
methods. Each 1-edge obtuse boundary triangle is elim-
inated by the Delaunay insertion of midedges.

Consider that α is the smallest angle of the triangle.
In the case that α ≥ 25.4◦, any isolated 1-edge obtuse
triangle and isolated pairs of neighbour 1-edge obtuse
triangles sharing their longest edge demand the inser-
tion of only one point. When α ≥ 15.4◦, the Delau-
nay insertion of at most three boundary/interface points
eliminates any isolated 1-edge boundary triangle and
isolated pairs of neighbour 1-edge boundary triangles
sharing a longest edge. An obtuse angle in each isolated
2-edge boundary triangle having medium-size edge l

and longest-size edge L over the boundary is eliminated
by building an isosceles triangle of boundary edges of
lengths l/2 followed by the Delaunay insertion of a fi-
nite number of points N, where N ≤

2.14
sin(α/2) .

A generalization of those approaches solves more
complex patterns of obtuse triangles, i.e. chains of 2-
edge constrained triangles forming a saw diagram and
clusters of triangles that have boundary/interface edges
sharing a common vertex [29]. Hitschfeld and collabo-
rators [30] presented the LEPP algorithm for Delaunay
mesh and its dual Voronoi Diagram, without obtuse an-
gles opposite to the boundary and interfaces for semi-
conductor device simulation using Box-method Delau-
nay meshes.

Rivara and Calderon [36] presented the LEPP-
Delaunay centroid algorithm. They proved that the cen-
troid version of the LEPP-Delaunay algorithm produces
triangulations both with average smallest angles greater
than those obtained with the midedge version and with
larger smallest edges without suffering from the loop-
ing case associated to the midedge method. In addition,
the centroid version terminates for high-quality thresh-
old angle, i.e. up to π/5. They also showed that the
centroid version behaves better than the off-center al-
gorithm for quality threshold angle larger than 25◦.

Because the finite-element conformity requirement,
most of those previous articles describe algorithms that
propagate the refinement in neighbors of the triangle
marked to be refined and/or modify the points of the
current mesh. As an example, Rivara and Inostroza
[38] pointed out that numerical experiments performed
with their 2D algorithm have shown that the number of
points inserted by propagation is approximately N1/2,
where N is the number of points in the mesh.

If an algorithm modifies the positions of the refined-
triangle points, the data-structure nodes that represent
those triangles also have to be changed. A process that
operates strict local changes (a nested mesh) is desir-

able. In [26] and [11], the authors described algorithms
that perform the circumcircle test of DT(P) without lo-
cally destroying the current triangulation.

In [36], for constrained edges, in both the circum-
center and the off-center algorithm if a prospective
point P to be inserted is inside the diameter circle of
any constrained edge E, the midpoint of E is inserted
instead of P . This implies that a strict Delaunay Trian-
gulation is maintained. As a result, no angle lesser than
π/2 appears in the triangulation.

5 Concluding remarks

Plaza and collaborators [34] provided several open
problems related to their 7-triangle partition ap-
proaches. There is a lot of work related to 3D (for ex-
ample, see [10]). In addition, the 3D review shall be
provided.

The purpose of this article is to survey the ap-
proaches and not to evaluate them. Probably other
schemes exist. However, such schemes may be either
variations of the ones cited in this article or are not
known to the author. However, the author hopes that
this review and the references cited serve to consoli-
date the ideas, principles and schemes that constitute
the state-of-art in this subject. Moreover, the author
hopes that the list of references and descriptions to the
large body of work on this issue can provide a useful
starting point for one faced with the task of adaptively
constructing a Delaunay Triangulation.

6 Acknowledgements

This work was supported by FAPEMIG under the
project CEX-APQ-01198-10, year 2010.

References

[1] Babuzka, I. and Aziz, A. K. On the angle condi-
tion in the finite element method. SIAM Journal

on Numerical Analysis, 13:214–226, 1976.

[2] Baker, T. J. Triangulations, mesh generation and
point placement strategies. In Caughey, D., editor,
Computing the future. John Wiley, pages 61–75,
1995.

[3] Ballard, D. H. and Brown, C. M. Computer Vision.
Prentice Hall, Englewood Cliffs, NJ, 1982.

[4] Barth, T. J. Aspects of unstructured grids and
finite-volume solvers for the Euler and Navier-
Stokes Equations. In Von Karman Institute for

Fluid Dynamics Lecture Series, NASA Ames Re-

search Center, 1994-05, February 1995.

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 6

[5] Bern, M., Eppstein, D., and Gilbert, J. R. Provably
good mesh generation. Journal of Computer and

System Sciences, 48(3):384–409, June 1994.

[6] Borouchaki, H. and George, P. L. Aspects of 2-d
Delaunay mesh generation. International Journal

for Numerical Methods in Engineering, 40:1957–
1975, 1997.

[7] Chew, L. P. Guaranteed-quality triangular meshes.
Technical Report 983, Department of Computer
Science, Cornell University, 1989.

[8] Chew, L. P. Constrained Delaunay triangulation.
Algorithmica, 4:97–108, 1994.

[9] Clarkson, K. L. and Shor, P. W. Applications of
random sampling in computational geometry ii.
Discrete & Computational Geometry, 4(1):387–
421, 1989.

[10] Danovaro, E., De Floriani, L., Magillo, P., Puppo,
E., and Sobrero, D. Computer Graphics in Italy -
Level-of-detail for data analysis and exploration:
A historical overview and some new perspectives.
Computers & Graphics, 30:334–344, 2006.

[11] De Floriani, L. Surface representation based on
triangular grids. The Visual Computer, pages 27–
48, 1987.

[12] De Floriani, L., Bussi, S., and Magillo, P.
Triangle-based surface models. Chapter 9 in Intel-

ligent Systems and Robotics, Breach Science Pub-

lishers, pages 340–373, 2000.

[13] De Floriani, L. and Puppo, E. A hierarchical
triangle-based model for terrain description. In
et al., A. U. F., editor, Theories and Methods of

Spatio-Temporal Reasoning in Geographic Space,

Berlin, Springer-Verlag, pages 236–251, 1992.

[14] De Floriani, L. and Puppo, E. Extrating contour
lines from a hierarchical surfase model. Computer

Graphics Forum (Proceedings Eurographics 93),
12(3):249–260, 1993.

[15] Delaunay, B. Sur la sphère vide. Izvestia Akademii

Nauk SSSR, Otdelenie Matematicheskikh i Es-

testvennykh Nauk, 7:793–800, 1934.

[16] Dwyer, R. A. A faster divide-and-conquer algo-
rithm for constructing delaunay triangulations. Al-

gorithmica, 2(2):137–151, 1987.

[17] Edelsbrunner, H. Triangulations and meshes in
computational geometry. Acta Numerica, 9:133–
213, 2000.

[18] Edelsbrunner, H. Geometry and Topology for

Mesh Generation. In: Cambridge monographs on

applied and computational mathematics. Cam-
bridge University Press, New York, 2001.

[19] Edelsbrunner, H. and Guoy, D. Sink insertion
for mesh improvement. In Proceedings of the

17th ACM Symposium on Computational Geom-

etry, pages 115–123, 2001.

[20] Erten, H. and Üngör, A. Computing acute and
non-obtuse triangulations. In Canadian Confer-

ence on Computational Geometry (CCCG), pages
205–208, 2007.

[21] Erten, H. and Üngör, A. Triangulations with lo-
cally optimal Steiner points. In Belyaev, A. and
Garland, M., editors, Eurographics Symposium on

Geometry Processing, pages 143–152, 2007.

[22] Erten, H. and Üngör, A. Quality triangulations
with locally optimal steiner points. SIAM Journal

of Scientfic Computing, 31(3):2103–2130, 2009.

[23] Fortune, S. A sweepline algorithm for voronoi di-
agrams. Algorithmica, 2(2):153–174, 1987.

[24] Fowler, R. and Little, J. Automatic extraction of
irregular network digital terrain models. ACM

Computer Graphics (SIGGRAPH ’79 Proceed-

ings), 13(3):199–207, 1979.

[25] George, P. L. and Borouchaki, H. Delaunay trian-

gulation and meshing. Hermes, 1998.

[26] Guibas, L. J. and Stolfi, J. Primitives for the ma-
nipulation of general subdivisions and the compu-
tation of Voronoi Diagrams. ACM Transactions

on Graphics, 4(2):74–123, April 1985.

[27] Har-Peled, S. and Üngör, A. A time-optimal de-
launay refinement algorithm in two dimensions.
In Proceedings of the 21st ACM Symposium on

Computational Geometry, Pisa, Italy, pages 228–
236, 2005.

[28] Heckbert, P. S. and Garland, M. Survey of polyg-
onal surface simplification algorithms. Technical
report, Carnegie Mellon University - Department
of Computer Science, 1 May 1997.

[29] Hitschfeld, N. and Rivara, M. C. Automatic con-
struction of non-obtuse boundary and/or interface
Delaunay triangulations for control volume meth-
ods. International Journal for Numerical Methods

in Engineering, 55:803–816, 2002.

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

S. L. G. de Oliveira A survey of point insertion techniques in bidimensional Delaunay Triangulations 7

[30] Hitschfeld, N., Villablanca, L., Krause, J., and
Rivara, M. C. Improving the quality of meshes
for the simulation of semiconductor devices using
LEPP-based algorithms. International Journal for

Numerical Methods in Engineering, 58:333–347,
2003.

[31] Lee, D.-T. and Schachter, B. J. Two algorithms for
constructing the delaunay triangulation. Interna-

tional Journal of Computer and Information Sci-

ence, 9(3):219–242, 1980.

[32] Miller, G. L., Pav, S. E., and Walkington, N. J.
When and why ruppert’s algorithm works. In
Twelfth International Meshing Roundtable, pages
91–102, September 2003.

[33] Mücke, E. P., Saias, I., and Zhu, B. Fast random-
ized point location without preprocessing in two-
and three-dimensional delaunay triangulations. In
Proceedings of the Twelfth Annual Symposium on

Computational Geometry, May 1996.

[34] Plaza, A., Márquez, A., Moreno-González, A.,
and Suárez, J. P. Local refinement based on the 7-
triangle longest-edge partition. Mathematics and

Computers in Simulation, 79:2444–2457, 2009.

[35] Rivara, M. C. New longest-edge algorithms for
the refinement and/or improvement of unstruc-
tured triangulations. International Journal for Nu-

merical Methods in Engineering, 40:3313–3324,
1997.

[36] Rivara, M. C. and Calderon, C. LEPP ter-
minal centroid method for quality triangulation.
Computer-Aided Design, 42:58–66, 2010.

[37] Rivara, M. C., Hitschfeld, N., and Simpson, B.
Terminal-edges Delaunay (small-angle based) al-
gorithm for the quality triangulation problem.
Computer-Aided Design, 33:263–277, 2001.

[38] Rivara, M. C. and Inostroza, P. Using longest-side
bisection techniques for the automatic refinement
of Delaunay triangulations. International Journal

for Numerical Methods in Engineering, 40:581–
597, 1997.

[39] Rivara, M. C. and Venere, M. Cost analysis of the
longest-side (triangle biection) refinement algo-
rithms for triangulations. Engineering with Com-

puters, 12:224–234, 1996.

[40] Ruppert, J. A new and simple algorithm for qual-
ity 2-dimensional mesh generation. In Proceed-

ings of the Fourth ACM-SIAM Symposium on Dis-

crete Algorithms, pages 83–92, 1993.

[41] Ruppert, J. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal

of Algorithms, 18(3):548–585, May 1995.

[42] Scarlatos, L. and Pavlidis, T. Hierarchi-
cal triangulation using cartographic coherence.
CVGIP: Graphical Models and Image Processing,
54(2):147–161, March 1992.

[43] Shamos, M. I. Computational geometry. PhD the-
sis, Yale University, New Haven, Conn., 1977.

[44] Shewchuk, J. R. Triangle: Engineering a 2D qual-
ity mesh generator and Delaunay triangulator. In
First Workshop on Applied Computational Geom-

etry. ACM, pages 124–133, 1996.

[45] Shewchuk, J. R. Lecture notes on Delaunay mesh
generation, 1999.

[46] Shewchuk, J. R. Delaunay refinement algorithms
for triangular mesh generation. Computational

Geometry, 22:21–74, 2002.

[47] Shewchuk, J. R. Ruppert’s delaunay refinement
algorithm. website, July 2005.

[48] Shewchuk, J. R. Triangle: A two-dimensional
quality mesh generator and delaunay triangulator.
website, July 2008.

[49] Simpson, B., Hitschfeld, N., and Rivara, M. C.
Approximate shape quality mesh generation. En-

gineering with Computers, 17:287–298, 2001.

[50] Sleator, D. D. and Tarjan, R. E. Self-adjusting bi-
nary search trees. Journal of the ACM, 32(3):652–
686, July 1985.

[51] Üngör, A. Off-centers: A new type of
Steiner points for computing size-optimal quality-
guaranteed Delaunay triangulations. In Proceed-

ings of the Latin American Symposium on The-

oretical Informatics, Buenos Aires, Argentina,
pages 152–161, April 2004.

[52] Voronoi, G. Nouvelles applications des
paramétres continus à la théorie des formes
quadratiques. Journal fur die Reine und Ange-

wandte Mathematik, 133:97–178, 1907.

INFOCOMP, v. 10, n. 2, p. 01-07, June of 2011

Operational Profiles for Statistical Testing of Distribution

Management System

ILIJA BASICEVIC
1

ILIJA KUPRESANIN2

MIROSLAV POPOVIC
1

1University of Novi Sad

Faculty of Technical Sciences

21000 Novi Sad- Serbia
2JP SRBIJAGAS

Narodnog Fronta 12

21000 Novi Sad - Serbia
1ilibas@uns.ac.rs,miroslav.popovic@rt-rk.com

2ilija.kupresanin@srbijagas.com

Abstract. Each generation of software systems is becoming more complex. Also, software is becoming

more important because today critical infrastructure systems depend on software. This paper presents

the method applied in testing of a complex software system. For complex systems, it is very important to

measure their reliability. Statistical testing based on operational profiles is a de facto industrial standard

for this purpose. As a case study, we used Windows-based distribution management system that is

used in electric power distribution utilities. A library that contains the analytical functions subsystem

was tested. The paper gives an overview of the system and module being tested, and of the statistical

method we applied. The main contribution of this paper is development of operational profiles for a real-

world complex system. Two of the operational profiles we have developed for testing of the system are

presented in detail. Another contribution is a new approach which supports generation of test cases on-

the-fly: during execution of implementation under test on a test bed. This is possible by joining together

the test case generator and the test bed.

Keywords: power distribution management system, statistical testing, operation profiles, software test-

ing, software reliability.

(Received December 8th, 2010 / Accepted June 16th, 2011)

1 Introduction

Statistical testing is a technique that originates from

quality assurance in automatic production of mechan-

ical and electrical devices. Given the importance that

complex software systems have in everyday life, some-

times in critical applications, it is no surprise that this

technique has found its place in software engineering,

too.

Along the time scale, software of today is getting

more complex. The statistical testing using operational

profiles is a method for measuring reliability of com-

plex software systems. An example of critical infras-

tructure system that depends on software is Distribution

Management System (DMS) in electrical power distri-

bution network, the case study that is used in this paper.

The complexity of this class of software systems stems

from the complexity of mathematical models of distri-

bution networks, which are the basis for the software

model. As an example of complexity, the input space

for DMS in the case of the State of Texas measures 13

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 9

million of variables [8].

This paper presents operational profiles we have de-

veloped for DMS system. In our approach, the test case

generator and test bed are joined together. This way,

system supports generation of test cases during execu-

tion of implementation under test on the test bed.

The DMS Software is a software package for per-

forming technical tasks in electric power distribution

utilities. This software tool enables utility’s staff to de-

sign and manage the network’s power and automation

equipment in order to maximize the quality and quan-

tity of the electrical energy supplied to the consumers.

The DMS software is modularly organized pack-

age with three-tier software architecture. It is based on

standard software solutions that should allow for sim-

ple integration with other standard software and hard-

ware equipment found in the environment of electricity

distribution (SCADA Systems, equipment for medium

voltage (MV) automation, etc.).

The general DMS software architecture is briefly

described as follows. The first tier is a relational data

base. The middle tier integrates static technical and his-

torical data with dynamic data (available for example

from third party SCADA systems). In the third tier,

there are user clients - Microsoft Windows applications.

In the actual software architecture, some of third tier

clients represent a shell for the DMS analytical func-

tions system.

The most important applications of the third tier are

[2]:

• Front-end application for data base editing. Used

for editing of parameters of network elements, of

their connectivity and finally their graphic repre-

sentation in the form of a network diagram.

• Multiple-view user interface for visualization of

supply and distribution substations and MV and

LV network, as well as for managing and moni-

toring distribution network state. It contains inte-

grated DMS analytical function system.

• SCADA system user interfaces.

2 Related Work

Whittaker and Thomason described a method for statis-

tical testing based on Markov chain model of software

usage in [14]. In this fundamental paper, authors dis-

cuss the construction of Markov chain and show how

analytical results associated with Markov chains can aid

in test planning. An innovation in this method is that

test sequences generated and applied to the software

are used to create the second Markov chain to encap-

sulate the history of the test. The paper also presents a

stopping criterion for testing process. However, the ex-

ample Markov chain for a hypothetical graphical user

interface (GUI) is a very simple one. In the conclusions

and prospects for future work authors mention that they

are investigating more abstract models. To that end, we

are still missing more complex and abstract domain spe-

cific models in the available literature. That is exactly

the place where our paper tries to provide contribution

by dealing with the construction of real-world opera-

tional profiles for the complex library of power distri-

bution functions. The parameters of application pro-

gramming interface (API) functions of this library are

complex data structures rather than simple keystrokes.

In contrast to [14], the stopping criterion in our paper is

simply reaching the given target reliability figure.

In their essay on application of statistical science to

testing and evaluating software intensive systems [5],

Poore and Trammell present a high-level overview of

the statistical testing process. In the section on build-

ing usage models they provide valuable rules and hints,

e.g., how to expand states and arcs and how to create

sub-models within a model, but they do not cover sen-

sitive issue of how to generate inputs. Generating in-

puts gets really complicated when they are not simple

types, such as strings, etc. For example, in the case

of the DMS library the input may be the part, or com-

plete model of the power distribution network, which

is essentially a graph whose nodes and arcs are com-

plex data types. In our paper, we provide some guid-

ance and experience how to generate such inputs. Au-

thors of [5] also present analytical method of assign-

ing probabilities to state transitions within usage model.

Alternatively, in our paper, we practice direct assign-

ment of probabilities based on domain specific knowl-

edge of power distribution systems, because they pro-

vide rather accurate representation of the reality. But,

it is worth mentioning that analytic assignment has its

place in practice when the probabilities are unknown.

Guen, Marie, and Thelin have proposed coverage

measures for both states and transitions of the usage

model and an approach to estimate the reliability from

Markov chains by using their tool MaTeLo in [3]. Af-

ter necessary definitions they introduce a heuristic for

the construction of: equivalence classes, estimators in

spaces of internal states and input vectors, and global

indicators for individual transitions and for the whole

chain. Then they present limitations of solutions pro-

posed by Whittaker and Sayre, and propose their own

method which combines the Sayre’s solution and calcu-

lation based on the equivalence classes. In contrast to

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 10

[3], we do not measure model coverage directly. We use

an alternative approach by selecting the test case length

based on the domain-specific knowledge and then use

significance quality indicators (SLi)s as the measure of

generated test cases quality. The stopping criterion in

this paper is that the mean significance confidence level

is above 20% and that the target reliability figure is

reached. Another difference between [3] and this pa-

per is that we use the reliability estimation method pro-

posed by Woit [15], which is based on the purely statis-

tical hypothesis approach and therefore does not require

construction of equivalence classes.

In another paper [4], closely related to [3], Guen and

Thelin report on their practical experiences with sta-

tistical usage testing by means of their tool MaTeLo.

The company’s Alitec experience shows that the model

construction takes between 0.5 and 4.5 days per KLOC

(1000 lines of code). They have found that even for

small software products, the size of the model would be

very large, and have commented that it is probably the

major drawback of that sort of modelling. In addition,

they reported that time to finish testing was between 1.5

and 8.3 days/KLOC for 5 example projects, but they do

not provide data about the target reliability and cover-

age. In our own experience, the most consuming part of

modelling was gathering domain-specific knowledge of

the behaviour of the power distribution network, e.g.

knowledge about how switches and tap changers are

operated. That activity lasted several months, and it

is still work in progress. Once the basic knowledge

was collected, we were able to construct various op-

erational profiles within a working week each, so that

time for a model per MLOC (million lines of code) be-

came extremely low, e.g. 5/2x106 = 2.5 days/MLOC.

Typical testing campaign in our experience lasts for 2-3

weeks, yielding time to finish test in the range of 7-11

days/MLOC.

MaTeLo [4] contains a usage model editor. Based

on entered usage model, the back end test case gener-

ator generates automatically TTCN-3 test cases. Simi-

larly, in [10], [9], [7], there is usage model editor based

on GME. Depending on entered usage model, textual

test cases are generated and executed in a JUnit based

test bed. In both approaches, there are three separated

steps:

1. Input of the model

2. Generation of test case

3. Execution of test case in test bed

Also in the prototype tool presented in [12], the test

case generator and the test oracle are separated. In their

approach, test case generator is Java framework used

for testing Java classes. In this paper, we present an

approach where steps 2 and 3 are joined. The first step

is realized by writing C++ code.

The flat and hierarchical models supported by cur-

rent statistical testing environments, such as MaTeLo

[3], tend to become enormous very quickly as systems

grow in complexity. This fact is recognized as major

drawback in [4]. In his study [13], Weber proposes a

solution to this issue. The proposed solution is to use

parallel models because their usage provides exponen-

tial reduction in model size. Essentially, Weber creates

an operational profile of a system by extending its re-

quirement specification model. The approach is demon-

strated with the example of Flight Guidance System

(FGS) provided by Rockwell Collins. Although [13]

presents an interesting approach, it requires a specifica-

tion model in language such as RMSL-e (based on Re-

quirements State Machine Language, RSML) as its in-

put which may not be readily available in case of legacy

systems and development of such models would be very

costly. For example, the library we are dealing with in

our paper contains millions of lines of FORTRAN code.

Additionally, this legacy code is sequential by its very

nature. Therefore, reducing the size of operational pro-

file based on introduced parallelism is not possible.

Most of research on operational profiles is focused

on operations and little is said about operation param-

eters. Shukla et al. [12] offer a solution to this issue

by introducing support for defining constraints on indi-

vidual parameters, relationships between different input

parameters (of the same or different operation calls),

and between output parameters of calls and input pa-

rameters of subsequent calls. Unfortunately, they do

not report in details what kinds of constraints and rela-

tionships are supported and how. Although their work

seems promising, they demonstrated it only on a three

rather small examples, namely Stack, Symbol Table and

Forest (of abstract syntax trees) with 35, 128, and 234

lines of code, respectively. In our paper, we deal with

the complex legacy library of power distribution func-

tions. We provide parameter constraints and relation-

ships by translating them into C++ code that directly

manipulates power distribution network model used by

the library.

3 Implementation under Test

This DMS analytical function system is a component

that contains the domain specific knowledge of DMS

software. It implements comprehensive set of sophis-

ticated algorithms that enable efficient design, optimal

operation and decision making referring to the whole

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 11

equipment installed in the distribution network [6]. It

realizes all technical tasks in distribution utilities in the

following four modes of operation:

• Operation Management,

• Operation Planning,

• Development Planning,

• Simulation, Analysis and Training.

All analytical functions are developed on the basis of

algorithms specially aimed for distribution networks,

which enable performing both analysis and optimiza-

tion of operation and development of very large radial

and weakly meshed distribution networks.

The DMS analytical function system is imple-

mented as a dynamic link library, named dmsapp.dll.

This paper describes the method we have applied in the

black-box testing of the library. The library is written

in the FORTRAN programming language (version 10,

as of today it is being ported to version 11). It is de-

veloped by development team, and tested by quality as-

surance team. It is an important module of the DMS

system and realizes calculation of load flow, fault calcu-

lation, thermal monitoring and several other functions.

Application Programming Interface (API) of the library

contains functions for creation and destruction of the

network model and invocation of specific calculations.

There is a C language API for use in C applications.

API functions will not be described here in detail. All

calculations that the library and its API provide to de-

velopers are based on the software model of distribution

network and this model is implemented in the library.

The software model of the distribution network in

DMS system is a complex data structure. As has al-

ready been stated, it is the graph whose nodes and arcs

are complex data types. Elements in the model are

linked by identifications: for each element, in the data

structure that represents it, there are fields for identifi-

cations of adjacent elements. In the general case, each

network element is presented with three objects, con-

taining different types of data. Those three objects com-

prise an abstraction hierarchy. The catalogue object

contains catalogue data. Those are technical and ad-

ministrative data that describe the class of objects. The

set of similar objects after a period of use are assigned

type data that is the result of statistical processing of

measured data about the set. The basic data describe

the specific element in case, and among others, contain

the dynamic values. Thus, the catalogue object is the

highest one in abstraction hierarchy and the basic data

object is the lowest.

4 Testing Procedure

Testing of the library is realized using test environment

we have developed. It is based on CPPUnit [1] frame-

work for automated testing. In the setUp() method of

CPPUnit test case, the test environment is prepared for

the test. The tested library is initialized and the net-

work model is loaded into the library. In the main test

case method, which is registered to the CPPUnit frame-

work, the finite state machine of Markov chain is ex-

ecuted. This is done by using OP State Machine class

which is configured with particular states and their tran-

sitions. Each state transition implies invocation of func-

tions that belong to the application programming inter-

face of the tested library. In the tearDown() method,

the test environment is closed down by freeing the used

memory and by closing the handles of used system ob-

jects. It is possible that CPPUnit has defects, but during

the testing we did not encounter them. If those defects

manifested themselves, it would not make a problem

for the testing process, because in that case, the asserts

would fail.

The applied methodology is based on statistical test-

ing methods described in [15], which are often used to-

day, for example in Cleanroom Engineering [11]. This

method implies that the functional correctness of DMS

System is tested using operational profiles. The method

is sufficient for testing provided that the operational

profile correctly models the statistics of the usage of

the tested product. An operational profile is modelled

as a finite state machine. It can be represented as a

graph, consisting of a certain number of states which

are nodes of the graph. We can describe the state as a

general condition of the software module. The edges

are state transitions which are triggered by events that

occur with certain probabilities. An event is either an

external invocation of a member function of the tested

module or a change of value of an externally accessible

variable.

We have developed realistic, non trivial operational

profiles for the DMS system. The API that is used for

program invocation of DLL functions is rather complex

because data structures that are used for data passing

- as input and output arguments of function calls - are

large and complex. This implies a large number of test

cases required for testing of the analytical functions li-

brary.

The primary task of the testing tool is to generate

requested number of test cases with the requested num-

ber of test steps. A test step represents an event that is

defined in operation profile. The length of the test case

represents the number of test steps in the test case. The

more test cases are executed successfully, the greater

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 12

is the system reliability. An important characteristic of

our approach is that tests are generated and executed dy-

namically. Test cases are generated (based on specified

operational profile) during execution of the system in

the test bed. This feature is realized by joining together

the test case generator and the test bed.

In the traditional statistical testing, the first step is

to generate (based on the operational profile) test cases

and to save generated test case in a file. In the next step,

the file is read and the test case is executed in the test

bed. On the other hand, in our approach, the two steps

are joined. First, the test bed generates the next test

step by selecting one of the state transitions available

in the currently active state - according to probabilities

of state transitions and then, generated test step is ex-

ecuted. This is repeated until the last test step in the

test case is executed. Operational reliability of the soft-

ware module is the probability that module execution,

selected at random according to given operational pro-

file, will not fail.

Reliability = 1 - (failure rate).

Module execution is considered to be the sequence of

events issued to the module beginning with module ini-

tialization (or re-initialization) and ending with module

termination (or re-initialization). Operational profile is

a description of the distribution of input events that is

expected to occur in module operation. System reliabil-

ity is determined by formula:

M = rN

where:

N - number of successfully executed tests,

r - reliability,

M - confidence

For example, for the system’s reliability (with the con-

fidence of 0.7%) to be 99%, 500 test cases ought to be

executed successfully, for the reliability of 99.9%, 5000

test cases ought to be executed successfully, for the re-

liability of 99.99%, 50000 test cases ought to be exe-

cuted successfully, etc. Confidence is the probability

that module has reliability less than r and still passes

N tests. Significance level represents the quality of test

sample of operation profile. Significance level is calcu-

lated using next formulas:

eij = Pij ∗
∑

fij,

Di =
∑

(fij − eij) ∗
fij−eij

eij
,

where:

Pij - probability of event j in state i,

fij - real occurrence of event j in state i,

eij - expected occurrence of event j in state i,

Di - discrepancy of state i.

For significance level calculation, it is necessary to form

a table in which rows represent states and columns rep-

resent events. Elements of the table are real and ex-

pected occurrence of events (eij and Pij). Significance

level is determined in χ-table for every state based on

calculated discrepancy. The mean value of the signifi-

cance level is calculated next. It is given as the arith-

metical mean value of significance levels of all states.

If the mean value of significance level is greater than

20%, the given sample of operation profile is valid.

The testing method also includes a method for esti-

mating software reliability based on statistical hypothe-

sis testing. The result is reliability estimation accompa-

nied by the measure of confidence. The overall proce-

dure comprises of the following steps:

1. Specification of an operational profile

2. Generation of random test cases based on the op-

erational profile

3. Execution of test cases

4. Verification of test cases

5. Reliability estimation based on the model and the

results of the verification of test cases

Testing process is modelled using Binomial distri-

bution because it satisfies the following criteria:

• Testing is performed with replacement

• Tests are selected at random and they are mutually

independent

• Test has only two possible outcomes (success, fail-

ure)

• The probability of failure does not change during

the testing

In this testing, three operation profiles have been

identified and implemented:

1. Operational profile for changing dynamic data

of distribution scheme. This profile randomly

chooses a number of elements of each type and

randomly changes dynamic values of selected ele-

ments. As each switchgear element contains pur-

pose field, the elements are classified according

to the value of that field. The set contains 5%

of all switchgear elements with the purpose field

indicating supply line or reactor, 10% of those

with purpose indicating three types of high voltage

transformers or a feeder, etc. After each change,

load flow is calculated once again. The validity

of Kirchhoff laws is checked before and after se-

ries of changes of dynamic values of different ele-

ments.

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 13

2. Operational profile for scheme mutation. This pro-

file is different from profile 1 because instead of

dynamic values, the static structure of the network

is changed. There are two basic types of muta-

tion: scheme extension and scheme reduction. Ex-

tension is achieved by adding elements or groups

of elements, and reduction by deleting elements or

groups of elements from the scheme.

3. "Realistic" operational profiles. We have devel-

oped six operational profiles based on operations

that network operators routinely undertake in their

everyday work. Those are:

• Change of the position of tap changers,

• Activation of capacitor batteries and its impact on

currents and voltages,

• Load growth simulation and monitoring of

changes of currents in the transformer bay,

• Detection location and insulation of faults,

• Feeder looping,

• Load sharing between the two feeders (Feeder to

feeder load shedding).

We describe here a typical test case for operational

profile 1. First, the tested library is initialized and an ex-

isting network scheme is loaded. This is a scheme that

has already been used with the DMS system and thus,

it is assumed to be correct. This starting statement is

necessary because in further steps, the network scheme

would be modified.

The test procedure modifies the scheme and checks

if the library would successfully process or recognize as

invalid the subsequent states of the scheme. The scheme

is stored in a set of binary files and placed in the com-

mon folder. It is loaded from binary files to the library

by first placing it into an array of binary type data struc-

tures. If this step goes well, the scheme is loaded from

the array into dmsapp.dll.

Using one of the described profiles, the loaded net-

work scheme is modified (by modifying dynamic val-

ues of network elements), see 1. By invoking the load

flow calculation or by checking the validity of Kirch-

hoff laws, test case verifies if the DMS system can pro-

cess the modified network. The expected behaviour is

that the library should either correctly perform the re-

quested calculations or return an error code in the case

of an invalid state of the input network. Any other be-

haviour (e.g., unsuccessful calculation, throwing an ex-

ception during calculation) is considered to be test fail-

ure.

For the operational profile 2 (scheme mutation), the

scheme is modified (by modifying the network struc-

ture) before it is loaded into dmsapp.dll.

From the programmer’s point of view, test execu-

tion is achieved by instantiating an object of class OP-

StateMachine that models the finite state machine of

module execution. First, objects that represent spe-

cific states of operation profile are instantiated and their

state transitions (including probabilities) are config-

ured. Thus a vector of state objects is formed. This

vector is a parameter of the OPStateMachine construc-

tor. During the construction of the object, the state ma-

chine is executed. By applying probabilities that are

given in the state machine, the test case is generated and

executed dynamically. Next the significance level of the

test is calculated. This calculation is based on two ma-

trices: of expected and achieved occurrence of events.

Based on the calculated value, it is decided whether

generated test case is a representative sample.

5 Operation Profile for Changing Dynamic

Data

The operation profile for changing dynamic data has the

following three states: S0 - Initial state, S1 - Network

loaded, ready for check procedures, S2 - Check pro-

cedure done, network ready for the next modification.

and seven state transitions which are represented with

events that trigger them and state transition probabili-

ties we used in testing:

1. LoadDMIAndSetLibOptions (100%),

2. CheckKirchhoffsLaws (100%),

3. ChangeCapacitorChangers (15%),

4. ChangeFuseStatus (20%),

5. ChangeSwgStatus (35%),

6. ChangeTRTapChangers (15%),

7. SetDynValueGenerator (15%).

In the following text, each of the events is explained.

The LoadDMIAndSetLibOptions event triggers scheme

loading. The following options are set for dmsapp.dll:

Load Flow, Estimation, Performance and Switching.

All Switching options are activated except grounded

and energized and different levels.

The CheckKirchhoffsLaws event triggers the pro-

cedure in which the validity of Kirchhoffs Laws for

the network is checked. The ChangeCapacitorChang-

ers event starts the procedure in which the list of all

capacitors with variable capacity is compiled, and then

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 14

the capacity of each capacitor in the list is changed to

a random value in acceptable interval. This interval is

read in the catalogue object of the capacitor.

Figure 1: The UML activity diagram for the profile 1 (changing dy-

namic data)

The ChangeFuseStatus event starts the procedure

in which the list of all fuses in the network is com-

piled. 10% of elements in the list are chosen at ran-

dom and turned off, the rest are turned on. Before each

turn on/off operation, the viability of the operation is

checked, and upon each successful state change, it is

checked whether the load flow calculation of the new

network topology is possible. If not, the test is finished

at that point.

The ChangeSwgStatus event starts the procedure in

which the list of all switchgear elements in the network

is compiled. Next, the elements in the list are classified

by the value in their purpose field. For each purpose

type, a set of randomly chosen elements A is formed.

Set B, is subset of A and elements of B are chosen at

random from A. The status of elements in B is set to

open, and the status of all elements in A that are not in

B is set to close.

The ChangeTRTapChangers event starts the proce-

dure in which the list of all tap changers for high voltage

transformers in the network is compiled. Next, values

of elements in the list are randomly set in ranges that

are read from their catalogue objects. This procedure is

repeated for middle voltage transformers, too.

The SetDynValueGenerator event starts the proce-

dure in which the list of all generators in the network is

compiled. The regulation type of the generator can be:

1. Regulation of active power,

2. Regulation of active power and voltage,

3. Regulation of active and reactive power,

4. Regulation of active and reactive power and volt-

age.

Based on the regulation type, the values of elements in

the list are changed:

1. Active power in the range (Pmin, Snom), where Pmin

is the minimal power of the generator and Snom is

the nominal power of the generator,

2. Reactive power in the range (Qmin, Qmax), where

Qmin is the minimal reactive power and Qmax is

the maximal reactive power

3. Voltage in the range (0.5*Vnom, 1.5*Vnom), where

Vnom is the nominal voltage.

Pmin, Snom, Qmin, Qmax, and Vnom values are retrieved

from the catalogue object for the generator. The

probabilities of events are determined in the follow-

ing manner. LoadDMIAndSetLibOptions and Check-

KirchhoffsLaws have 100% probabilities to occur.

The events ChangeTRTapChangers, ChangeCapacitor-

Changers and SetDynValueGenerator are assumed to be

less probable to cause errors, so they have smaller prob-

abilities. The events ChangeSwgStatus and Change-

FuseStatus are changing the topology of the network.

Therefore, it is assumed that they can cause more errors

and thus have greater probabilities.

Figure 2) presents the operational profile for chang-

ing dynamic data. There are three states. Upon loading

the scheme, the system transitions from S0 to S1, and

afterwards, upon checking Kirchhoff laws, it transitions

from S1 to S2. It returns from S2 to S1 by changing dy-

namic values of certain network elements.

6 Feeder-to-Feeder Load Shedding

This operational profile is based on one of the scenarios

of the realistic use of the DMS system. In the following

paragraph the reader can find explanation of the testing

procedure in this operational profile. The first step is to

compile a list of all candidates. The candidate has to

meet the following conditions:

• Switchgear element SWG is in off state

• SWG is contained in feeder bay TSM (transformer

station medium voltage) or joint

• Bay should be connected to an energized bar

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 15

Figure 2: The operational profile for changing dynamic data

• SWG should be connected to two different feed-

ers, belonging to different TSH (transformer sta-

tion high voltage) elements

In the second step, an element from the list is selected

at random (SWG1) and the testing is started. Measured

values for both feeders are recorded. The following

variables are set: the feeder with greater load is Fmax;

TSH that contains Fmax is TSHmax. Next, the direct

path from TSHmax to SWG1 over Fmax is searched.

A list of elements containing sections and TSMs in the

direct path from TSHmax to the selected TSM is com-

piled. A list of all SWG elements that belong both to

that path and to the feeder is compiled. If there are no

SWG elements in the path that meet the requirements,

the test is considered to be successful, and the execution

returns to the beginning of step 2.

Next, SWG1 is switched off. If it is not possible to

execute load flow calculation, SWG1 is switched to its

former state, the test is considered to be successful, and

the execution returns to the step 2.

From the list of SWG elements that are in the path

and are switched on, one is selected (SWG2). SWG2

is switched off. If it is not possible to execute load flow

calculation, SWG1 and SWG2 are switched back to

their previous states, the test is considered to be suc-

cessful, and the execution returns to the step 2.

Check of the validity of Kirchhoffs laws for the new

state of the network is conducted. The new measured

values for selected feeders are compared with old, and if

the following conditions are met, the test is considered

to be successful:

Feeder1Load < Feeder2Load :
Feeder1Load < Feeder1LoadNew

Feeder2LoadNew < Feeder2Load
Feeder1Load > Feeder2Load :
Feeder1Load > Feeder1LoadNew

Feeder2LoadNew > Feeder2Load
Afterwards, SWG1 and SWG2 are switched back

to their previous states and the check of the validity of

Kirchhoffs laws for the new state of the network is con-

ducted. The execution returns to the beginning of the

step 2.

The test is performed in the following manner. First,

from the list of SWG1, one by one, each of the ele-

ments in the list is selected. Next, the path from TSH

to TSM containing SWG1 is searched (over the feeder

with greater load). Afterwards, all SWG elements in the

path are added to the SWG2 list and a SWG is selected

at random from the SWG2 list. In the last step, feeder

to feeder load shedding is performed for the selected

combination.

7 Conclusion

DMS is a large and complex software package for per-

forming technical tasks in electric power distribution

utilities. As already stated, DMS software systems are

getting more complex every day. One important soft-

ware metric is its reliability, and therefore, statistical

testing by using operational profiles as a de facto stan-

dard for measuring software reliability is of special in-

terest in development of DMS systems.

Two important contributions of this paper are the set

of developed operational profiles for statistical testing

of DMS systems and on-the-fly testing approach, which

is achieved by joining together the test case generator

and the test bed. In earlier test beds that are described

in the available literature, the two were separated.

The operational profiles have been developed for

testing of one module of distribution management sys-

tem software - that is the module that contains analyt-

ical functions subsystem. Several operational profiles

have been developed, two of which are presented here

in detail (operational profile for changing of dynamic

data, and feeder-to-feeder load shedding).

Besides providing us with a measure of reliability,

the testing with the use of operational profiles has al-

lowed us to identify certain software faults earlier in the

development process.

8 Acknowledgement

This work was partially supported by the Ministry of

Education and Science of the Republic of Serbia under

the project No. 44009 and 32031, year 2011.

Authors thank Pavle Kuzevski, Jelena Djurica,

Tereza Kovac, Snezana Crnogorac Jovanovic, Ranka

Slijepcevic, Rodoljub Radivojevic and Ljiljana Drago-

jlic for implementation of operation profiles, and valu-

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Ilija Basicevic, Ilija Kupresanin, and Miroslav Popovic Operational Profiles for Statistical Testing of Distribution Management System 16

able discussions and feedback during realization of this

paper.

References

[1] Cppunit - c++ port of junit. source-

forge.net/projects/cppunit.

[2] Dms software, windows for distribution networks.

DMS Group, 2006.

[3] Guen, H. L., Marie, R., and Thelin, T. Reliabil-

ity estimation for statistical usage testing using

markov chains. In International Symposium on

Software Reliability Engineering (ISSRE), 2004.

[4] Guen, H. L. and Thelin, T. Practical experiences

with statistical usage testing. In Annual Interna-

tional Workshop on Software Technology and En-

gineering Practice (STEP), 2004.

[5] Poore, J. H. and Trammell, C. J. Statistics, Testing,

and Defense Acquisition, chapter Application of

Statistical Science to Testing and Evaluating Soft-

ware Intensive Systems. National Academy Press,

1998.

[6] Popovic, D., Bekut, D., and Treskanica, V. Speci-

jalizovani DMS algoritmi. DMS Group, 2004.

[7] Popovic, M., Basicevic, I., Velikic, I., and Tatic,

J. Practical experiences with statistical usage test-

ing. In Annual Conference on Engineering of

Computer Based Systems (ECBS), pages 377–386,

2006.

[8] Popovic, M., Basicevic, I., and Vrtunski, V. Prac-

tical experiences with statistical usage testing. In

Annual Conference on Engineering of Computer

Based Systems (ECBS), 2009.

[9] Popovic, M. and Kovacevic, J. A statistical ap-

proach to model-based robustness testing. In

Annual Conference on Engineering of Computer

Based Systems (ECBS), pages 485–494, 2007.

[10] Popovic, M. and Velikic, I. A generic model-

based test case generator. In Annual Confer-

ence on Engineering of Computer Based Systems

(ECBS), pages 221–228, 2005.

[11] Prowell, S. J., Trammell, C. J., Linger, R. C., and

Poore, J. H. Cleanroom Software Engineering:

Technology and Process. Addison-Wesley Profes-

sional, 1999.

[12] Shukla, R., Strooper, P. A., and Carrington, D. A.

Tool support for statistical testing of software

components. In Asia-Pacific Software Engineer-

ing Conference (APSEC), 2005.

[13] Weber, R. J. Statistical software testing with paral-

lel modeling: A case study. In International Sym-

posium on Software Reliability Engineering (IS-

SRE), 2004.

[14] Whittaker, J. A. and Thomason, M. G. A markov

chain for statistical software testing. IEEE Trans-

actions on Software Engineering, 20(10), October

1994.

[15] Woit, D. M. Operational Profile Specification,

Test Case Generator, and Reliability Estimation

for Modules. PhD thesis, Queen’s University

Kingston, Ontario, Canada, 1994.

INFOCOMP, v. 10, no. 2, p. 08-16, June of 2011

Applying the Heterogeneity Level Metric in a Distributed Platform

PAULO S. L. SOUZA

FABIO HISTOSHI

MARCOS J. SANTANA

REGINA H. C. SANTANA

SARITA M. BRUSCHI

KALINKA R. L. J. C. BRANCO

USP - University of São Paulo

ICMC - Institute of Mathematics and Computer Sciences

SSC - Computer Systems Department

P.O. Box: 668 - 13560-970 - São Carlos (SP) - Brazil

{pssouza, hitoshi, mjs, rcs, sarita, kalinka}@icmc.usp.br

Abstract. Heterogeneity Level (HL) metric has been developed by our research-group to help scheduling

algorithms to adapt themselves to the existent heterogeneity in the platforms. This paper presents our

results considering the HL’s behaviour in a real adaptive scheduling. HL metric quantifies qualitative

aspects from heterogeneity in order to provide efficient performances and lower cost to the execution

in both heterogeneous and homogeneous platforms. HL use is investigated under different perspectives:

CPU, memory, network and considering benchmarks results. A simple but effective adaptive scheduling

using HL is proposed and its results point out to performance-gains around 53% when a non-adaptive

scheduling algorithm is used. Our case studies show that the HL was efficient, flexible and easily used

for scheduling policies.

Keywords: heterogeneity, load balancing, cluster.

(Received February 22nd, 2011 / Accepted May 2nd, 2011)

1 Introduction

Heterogeneous distributed platforms allow exploring

different and specific resources according to differ-

ent demands. They extend the platform performance

through both gradual improvements and reuse of the

resources already available in the organization. How-

ever, associating different resources with diversified de-

mands implies to compute a more complex strategy for

this distribution. Heterogeneity must be used carefully

in order to improve the computing cost vs. benefit rela-

tion.

Processes scheduling is directly affected by hetero-

geneity. It is necessary to consider relevant aspects from

both platform and applications demand when the re-

sources present different features, architecture or per-

formance. On the other hand, when the platform is

homogeneous, the scheduling may encapsulate details

from devices and basic software (such as operating sys-

tems and compilers), because they present a uniform

behavior, performance and architecture. This allows

simpler and cheaper scheduling with efficiency. Other

important point is that heterogeneity can be temporal

as well, due to workload dynamical variation and node-

changes in the platform [3].

Branco et al. [3] proposed the HL (Heterogene-

ity Level) metric to quantify the platform heterogene-

ity, considering the performance’s dispersion from each

node, in relation to an average performance [3]. Their

preliminary results show the HL performance under

simulation. This paper presents our main results from

considering the HL’s metric in a real adaptive schedul-

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 18

ing for distributed platforms. Our aim in this paper is

compare the HL metric behavior when applied in an

adaptive scheduling policy on a platform with different

heterogeneity levels.

The HL behavior is investigated using two differ-

ent perspectives: changes in the hardware-resources

and with distinct benchmarks. These hardware re-

sources and benchmarks allow analyzing the HL behav-

ior according to different and real perspectives, such as:

floating-point, integer operations, memory use and net-

work consumption [6, 7, 10, 11, 12, 14, 15].

A novel adaptive scheduling algorithm has been

proposed to investigate HL impact in this context. This

algorithm is used by AMIGO (DynAMical FlexIble

SchedulinG EnvirOnment) [13] and PVM (Parallel Vir-

tual Machine) [5]. The choice by PVM is due to both

its source code structure and its tightly coupling to

AMIGO. However, the PVM choice does not imply in

generality loss, because the studies presented here are

focused on the HL impact mainly, independently if this

scheduling is done by MPI, PVM or by a distributed op-

erating system. Indeed, the novel scheduling policy and

the investigations about the use of the HL are orthogo-

nal to the message passing interface used.

The best results in our case studies show that the

adaptive scheduling using HL metric allow a real per-

formance gain around 53% for the application runtime.

The HL is simple to be used in scheduling algorithms

and presents a stable behaviour.

This paper is organized as follows. Section 2

presents some basic definitions about heterogeneity.

Section 3 presents HL metric and its behavior consider-

ing benchmarks demand. Section 4 presents the adap-

tive scheduling algorithm proposed, describing how to

use the HL metric. Section 5 describes the main results

obtained using the HL metric and Section 6 presents the

concluding remarks.

2 Heterogeneity and Homogeneity

There are different kinds of heterogeneity [3]. Initially,

it can occur considering the configuration and architec-

ture. There is configuration heterogeneity when differ-

ences of performance are observed on devices with the

same platform (hardware and basic software). Architec-

tural heterogeneity implies different devices when con-

sidering hardware and/or basic systems.

Heterogeneity can be considered as positive or neg-

ative, depending on heterogeneity contribution for the

system performance. We have a positive heterogene-

ity when devices with better performance in relation to

previous ones are added in the platform. A negative

heterogeneity (or a performance lack) can occur when

devices with worse performance are added in a platform

[3].

Time is other important feature related to hetero-

geneity. There is temporal or dynamical heterogene-

ity if the platform presents a homogeneous behavior in

determined situations and heterogeneous in other. Fac-

tors that contribute for a temporal heterogeneity are:

workload, multi-users and the resources being consid-

ered to report the heterogeneity level. Considering the

last one (resources), for example, when two nodes have

both distinct processors and the same memory quan-

tity/type, they can be heterogeneous under CPU point-

of-view and homogeneous when considering memory.

Depending on application demand, the platform can be

considered heterogeneous or homogeneous [3].

Different research works quantify the platforms het-

erogeneity degree [1, 3] [6, 14, 16]. Some models and

metrics for heterogeneous systems were proposed by

Zhang and Yang [16], in which heterogeneous com-

puting systems can be represented by a graph (M,C),
where M = M1,M2,M3,M4,M5,,Mn is consid-

ered a set of heterogeneous workstations and C is the

communication network linking the workstations (with

a homogeneous bandwidth). Aiming to quantify the

heterogeneity of a system machines without using com-

plex measurements, Zhang and Yang [16] proposed two

metrics to evaluate the relative computing power of a

set of workstations (the capacity of each workstation is

evaluated in comparison to the fastest one):

Wi(A) =
Si(A)

maxn
i=1

{Si(A)}
(1)

Where i = 1, ..., n and Si(A) represents the speed

of Mi to execute application A dedicatedly. Speed can

be defined by the number of basic operations per time

unit, for instance, and the computing power of each

workstation is represented by a relative speed. A sec-

ond metrics proposed is:

Wi(A) =
minn

i=1
{T (A,Mi)}

T (A,Mi)
(2)

Where i = 1, ..., n and T (A,Mi) is the time re-

quired to execute application A at workstation Mi.

Grosu [6] extends these metrics so that the computing

power is given by the relative speed of the workstation

in relation to the slowest one:

Wi(A) =
minn

i=1
{Si(A)}

Si(A)
(3)

Where i = 1, ..., n and Si(A) is the speed of work-

station Mi to execute application A dedicatedly, and the

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 19

computing power is given by relative speeds. Further-

more, Grosu [6] defines:

Wi(A) =
T (A,Mi)

maxn
i=1

{T (A,Mi)}
(4)

Where i = 1, ..., n and T (A,Mi) is the time it takes

to execute application A at workstation Mi.

Thus, equations 1 and 2 now act as the basis to de-

fine the computing power, considering the fastest ma-

chine as a reference point, which is renamed W
f
i (f −

fast). On the other hand, equations 3 and 4 identify the

computing power based on the slowest machine, which

is represented by W s
i (s− slow). Four ways to quantify

the heterogeneity level in a system based on the value

of W are proposed in [16] and [6]. The first and second

use the standard deviation H1, which can be calculated

based on the computing powers compared to either the

fastest or the slowest workstation:

H1 =

√

∑n

i=1
(Wmed −Wi)2

n
(5)

The mean absolute deviation, called H2, also calcu-

lated based on the fastest or the slowest workstation:

H2 =

∑n

i=1
|Wmed −Wi|

n
(6)

where:

Wmed =

∑n

i=1
Wi

n
(7)

The values in both H1 and H2 are observed and an-

alyzed uniformly, using the average to find the standard

deviation and the mean absolute deviation. However,

this uniformity invalidates the analysis when there are

reasonable differences among the workstations comput-

ing powers, since the standard deviation cannot reflect

computer systems.

Based on this weakness of the H1 and H2 metrics,

Zhang and Yang [16] proposed a third metric, H3, eval-

uated from the fastest workstation in the computing sys-

tem:

H3 =

∑n

i=1
(1−W

f
i (A))

n
(8)

Similarly, Grosu [6] defines H4 based on the com-

puting power of the slowest workstation in the comput-

ing system:

H4 =

∑n

i=1
(1−W s

i (A))

n
(9)

In H3, the computing power of the fastest worksta-

tion is equal to 1 while, in H4, the slowest machine has

a computing power value of 1. Thus, H4 represents the

difference of computing power between each machine

and the fastest machine and H3 calculates the same dif-

ference between each machine and the slowest one.

Based on his experiments, Grosu [6] states that the

metric H4 is more suitable than H3. However, the

case studies presented in [3] demonstrate the fallacy

of that statement in some situations, because the met-

rics present contradictory behaviour when evaluating

the same platform, in different cases.

Branco et al. [3] propose the HL (Heterogeneity

Level) metric to eliminate these discrepancies. HL con-

siders a hypothetic (not real) standard node, represent-

ing the nodes average performance [3]. This metric will

be detailed in next section due to its importance for this

work.

3 The HL Metric

Platform heterogeneity can be quantified considering

different perspectives, such as: architectural aspects,

operating systems or resources performance [15]. In

this sense, Branco et al. proposed the HL metric [3] to

quantify the heterogeneity, using a virtual node (called

standard node), which represents the average perfor-

mance in the platform. The dispersion around this stan-

dard node allows quantifying the platform heterogene-

ity level, in a similar way to the works presented in

[6] and [16] that use respectively the worst and the

best node as standard node. The main difference be-

tween HL metric and those two is that HL has a uni-

form behaviour when quantifying distinct heterogene-

ity levels and also both the positive and the negative

heterogeneities. HL quantifies the platform heterogene-

ity level through equation 10, where n represents the

amount of nodes in the platform, Xi is the nodei perfor-

mance and X is the virtual standard node performance.

HL =

∑n

i=1

∣

∣Xi −X
∣

∣

n ∗X
(10)

The preliminaries results using the HL [3] consid-

ered a general parameter called "speed", in order to

qualify application demands. Indeed, Branco et al. con-

sidered "speed" as a generic value, which should be eas-

ily instantiated later at real parameters, such as: MIPS,

MFLOPS, runtime, RAM amount or other.

Different experiments were conducted by Branco et

al. [3] to simulate the HL behaviour when including

new nodes in a heterogeneous platform with just three

nodes with "speeds" 10, 100 and 1000.

Figure 1 show the HL behaviour when nodes iden-

tical to the fastest one are added. The heterogeneity de-

gree behavior is coherent, since as similar high-speed

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 20

nodes are being added, the system heterogeneity level

drops and stabilizes close to zero. Few nodes with high-

speeds change the platform status quickly for homoge-

neous. This situation could be represented by the met-

rics proposed by Zhang (Zhang & Yang) as well; how-

ever, it is not properly represented by Grosu’s metrics

[6], due to standard node, based on the slowest work-

station.

Figure 1: Behavior of the heterogeneity degree when nodes identical

to the system’s fastest node are added (initial speeds of 10, 100 and

1000)

Figure 2 shows the HL behaviour when nodes iden-

tical to the slowest one are added. The heterogeneity

level rises at a first moment, because more nodes with

"speed" 10 are required to reach the speed of the fastest

node. When they reach this threshold, the heterogene-

ity level falls near to zero, where it must stabilize. The

HL metric evaluations done by Branco et al. [3] were

not concerned about static or dynamic behaviour of the

environment being used for the experiments, since the

"speed" parameter encapsulated this question.

However, metrics based on static data, such as hard-

ware features, offer just a partial view of both perfor-

mance and heterogeneity. They are not able to repre-

sent usual dynamic changes in the platforms that make

them temporarily heterogeneous. In this sense, dynamic

metrics, such as runtime, can point out the heterogene-

ity level on-the-fly and according to user point-of-view

[12]. Runtime encapsulates basic details from hardware

and software, grouping them in a common point: to of-

fer better performance (considering time) to end-user

applications. Indeed, if used properly, time allows a

performance comparison while encapsulating architec-

ture details.

We develop initially two new experiments with HL

metric to show these perspectives. For the first one

Figure 2: Behavior of the heterogeneity degree when nodes identical

to the system’s slowest node are added (initial speeds of 10, 100 and

1000)

we use real and static hardware features to evalu-

ate the HL metric. For the second one we use dy-

namic benchmarks results to determine the heterogene-

ity. Both experiments consider the same platform. The

hardware features considered for the first analysis are:

CPU frequency, cache amount, RAM amount, swap-

memory amount and network peak throughput (see Ta-

ble 1). The second analysis considers six different

open-source benchmarks: (Whetstone, Dhrystone and

Linpack), memory (Stream and Cachebench) and net-

work (Netperf). Table 2 points out the main features

evaluated in each benchmark and their respective met-

rics [4, 7, 9, 10, 11, 14]. These benchmarks were cho-

sen because they are: (1) meet the specific-demands

planned for our experiments, (2) open-source and (3)

free.

The experiments were executed on a cluster with

5 nodes, all using GNU/Linux, distribution OpenSuse

10.0, 100Mbits ethernet network and gcc compiler. Ta-

ble 1 contains the HL resulting from each hardware fea-

ture analyzed, where it is possible to observe a stable

HL behavior. This platform can be viewed as homoge-

neous if the network maximum throughput is consid-

ered and as heterogeneous one if the CPU performance

is taken account. The demand generated by applica-

tion should determine which metric must be used to

reach effectiveness when using the heterogeneity level

with these data. This implies in a previous study of

the demand and usually is associated with monitoring

software tools, which automates this process and helps

managers to characterize the demand in a correct way

[8].

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 21

Table 1: HL results when evaluated on a five nodes cluster and ac-

cording to hardware features such as: CPU frequency, cache amount,

RAM amount, swap amount and network peak throughput.

Features Node1 Node2 Node3 Node4 Node5 HL

CPU 400.91 451.05 1200.07 1666.73 2017.99 0.50

(MHz)

Cache 512 512 64 256 512 0.45

(KB)

RAM 192 128 256 256 256 0.21

(MB)

Swap 196 243 415 512 256 0.34

(MB)

Network 100 100 100 100 100 0.00

(Mbps)

It can be observed through Table 3 that HL metric

is also efficient to represent the platform heterogeneity

and it presents a stable behaviour according to bench-

marks results. The values showed in the Table 3 repre-

sent the average of 30 executions.

The HL values in Tables 2 and 3 point out some pos-

sible discrepancies that occur when considering hetero-

geneity in a distributed platform. An example is the HL

value obtained from CPU feature (0.50) and the Whet-

stone result (0.74), because both consider CPU perfor-

mance. In these cases, the results obtained from the

benchmark were considered more efficient to represent

the platform heterogeneity, since they intend to indicate

the real performance for the user.

This difference can also be observed with mem-

ory and network. Network is a critical case, since the

platform is homogeneous (HL=0.00) when consider-

ing peak performance (100Mbps). However, Netperf

benchmark shows that when different nodes send mes-

sages to (or receive from) node 5, the platform pre-

sented the second major HL result (0.67) and thus, can

be considered heterogeneous. Again, in these cases, the

benchmark results should be used because they repre-

sent the performance expected by final user. In these

cases, a simple view considering just one hardware fea-

ture is not a better choice to estimate the heterogeneity

level.

4 An Adaptive Scheduling As/Hl

An adaptive scheduling based on the heterogeneity level

(or As/Hl) was developed in this work to investigate the

HL metric impact in a real scenario, considering the

end-user perspective. The As/Hl is adaptive because it

changes dynamically the scheduling algorithm accord-

ing to the HL metric.

AMIGO (DynAMical FlexIble SchedulinG Envi-

Table 2: Benchmarks used to evaluate the HL metric behaviour.

Category Benchmark Demand Metric

Whetstone Floating-Point Execution Time

simple execution time

arithmetic, and dhrystones;

Dhrystone strings, performance in

logical and relation to Vax

CPU access to the 11/780 for one

memory benchmark iter

linear eq FLOPS and

Linpack systems execution time

float/double

in arrays

memory throughput and

Stream throughput avg execution

Memory time

accesses to throughput

Cachebench memory and

to cache

latency, throughput and

Network Netperf TCP/UDP avg execution

throughput time

rOnment) [13] and PVM (Parallel Virtual Machine) [5]

were used to insert the HL metric in the As/Hl. AMIGO

allows grouping specific scheduling policies according

to different demands. The choice by PVM is due to

its source code structure and because it is tightly cou-

pled to AMIGO. However, it is important to note that

the choice by AMIGO/PVM does not cause general-

ity loss, because this policy could be applied in other

contexts, such as: MPI environment, operating system

or directly inside parallel application code. The As/Hl

determines which scheduling algorithm must be used

considering the platform heterogeneity. The aim is min-

imizing scheduling costs and at the same time maximiz-

ing its benefits.

Table 3: HL results when evaluated on a five nodes cluster and ac-

cording to six distinct benchmarks.

Benchmark Node1 Node2 Node3 Node4 Node5 HL

Whetstone 1119.0 995.4 265.0 190.4 1265.0 0.74

(s)

Dhrystone 3.2 2.8 1.0 0.7 0.8 0.49

(s)

Linpack 0.020 0.018 0.006 0.004 0.005 0.52

(s)

Stream 0.31 0.30 0.07 0.06 0.04 0.58

(s)

Cachebench 984.2 1105.0 3509.6 5054.5 5400.3 0.53

(Mb/s)

Netperf 64.9 5753.3 5559.5 15988.2 x 0.67

(Mb/s)

AMIGO is basically composed by an upper and a

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 22

lower layer. Upper layer is responsible by the config-

uration, while lower layer is responsible by schedul-

ing policies, AMIGOD (AMIGO Daemon), message-

passing environment (in this work instantiated by PVM)

and parallel applications [13].

AMIGO has scheduling policies for memory-

bound, network-bound and CPU bound applications.

DPWP (Dynamical Policy Without Preemption) is one

of them, which presents features such as: dynamic (de-

cides the scheduling at runtime), specific to CPU-bound

applications and does not consider preemption [2]. The

scheduling done by DPWP aims to balance new work-

loads considering the existent nodes load. It tries to

normalize this workload using a relative-performance

in relation to the whole platform. DPWP normalizes

the ready-processes in the ready-queue to determine the

target node.

AMIGO acts just when the message-passing en-

vironment needs to schedule new processes on the

platform. Figure 3(a) shows the steps followed by

the original PVM in this case. An application re-

quests the scheduling from pvm_spawn(), which for-

wards the request to local PVMD. The local PVMD,

running tm_spawn(), create a list contending nodes

that will receive the new processes using by default a

round-robin policy. The functions assign_tasks and

dm_exec are called later to create and to start these pro-

cesses, respectively.

To interact with AMIGO, tm_spawn() routine

was modified (Figure 3(b)), where processes selec-

tion is always requested to AMIGOD through the

GetHostsFromAMIGOD(). This request will be

attended by an AMIGO’s scheduling policy, indepen-

dently if round-robin policy existing in PVM could

present better results or not, according to used plat-

form. The HL metric was inserted in this scenario try-

ing to solve this problem by analyzing the platform het-

erogeneity and creating a simple but efficient adaptive

scheduling algorithm in this point.

AMIGO is requested to give a nodes-relation ac-

cording to DPWP policy when the platform is hetero-

geneous; when it is homogeneous, the request is not

sent to AMIGO and the original round-robin policy is

used to determine the nodes target to the scheduling.

Figure 3(c) shows the algorithm basic steps, highlight-

ing just the tm_spawn() routine. This adaptive algo-

rithm is based on a conditional structure comparing the

HL value returned from eval_HL() with a threshold,

called standard_HL. The correct choice of this value

is a complex question and needs to be investigated in a

more detailed sense. Unfortunately, this study does not

belong to the scope of this paper. The standard_HL

Figure 3: Steps followed by (a) original PVM, (b) PVM/AMIGO and

(c) As/Hl algorithm in order to schedule new processes.

must be defined by the system manager considering the

expected demand, used platform and objectives. The

standard_HL was empirically fixed as 0.01 in this pa-

per, as explained in the next section.

The HL is evaluated by the eval_HL() consider-

ing the nodes performance. The activities conducted by

eval_HL() are: gets the computing performance from

each node, evaluates the HL through equation 10 and

returns the HL value.

The node performance can be determined from dif-

ferent ways. In this paper, they were instantiated

through benchmarks previously executed.

5 Experiments and Results with As/Hl

The objective of the experiments with the As/Hl is to

analyze the HL efficiency when it is applied in schedul-

ing policies on distributed platforms. To reach this ob-

jective, it was developed an experimental study using a

parallel application responsible to solve linear systems,

based on Gauss-Jacobi iterative method. Gauss-Jacobi

application was chosen because it is CPU-bound appli-

cation, representative for a large number of HPC pro-

grams. The version executed in this work is compound

by a master code responsible by dynamically generate

slaves, these ones able to solve a variable sub-group

from the linear system. The new slave processes gener-

ation is made on-the-fly by master processes. The mas-

ter code evaluates the linear system convergence and,

before starts a new iteration, it decides either to stop or

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 23

not the execution.

Experiments were done in a Beowulf cluster with

ten nodes, all of them with: Intel Pentium4 Processor

(64bits and 3.4GHz), RAM with 4GBytes, a Gigabit

Ethernet network and GNU/Linux operating system.

This cluster is a homogeneous platform. Fixed-and-

extra workloads were inserted into some nodes, turn-

ing this platform a temporally-heterogeneous one with

three different levels: totally homogeneous, partially

heterogeneous and totally heterogeneous. The syn-

thetic extra workloads were generated using the Lin-

pack, Dhrystone and Whetstone benchmarks. The ho-

mogeneous scenario is composed by ten nodes without

any extra workload. In the partially heterogeneous sce-

nario the nodes are grouped into five distinct pairs with

workload ranging from 0% to 40% in relation to CPU

utilization. For the totally heterogeneous scenario the

nodes are also grouped in pairs, being generated for

them extra workloads ranging from 0% to 80% in re-

lation to the CPU utilization. Benchmarks used to cre-

ate the two heterogeneous-scenarios affected the plat-

form performance in a fixed and constant way, during

the whole experiment.

The Linpack benchmark was used to evaluate the

node performance in these three platforms. It was cho-

sen because it has features close to the parallel appli-

cation used: operations with floating-point vectors to

solve linear systems. The results obtained from the Lin-

pack were applied to equation 10 in order to evaluate

the HL metric. Using Linpack to establish the hetero-

geneity in platform allows focusing on CPU features,

majorly those related to FPU. Table 4 presents the re-

sults when using Linpack and HL for the three scenarios

discussed.

Table 4: Results for Linpack benchmark and HL metric.

Scenarios Used

Totally Partially Totally

Homogeneous Heterogeneous Heterogeneous

HL = 0.0002 HL = 0.22 HL = 0.57

Nodes Extra Time Extra Time Extra Time

Load (ms) Load (ms) Load (ms)

1 0% 0.506 0% 0.505 0% 0.505

2 0% 0.504 0% 0.504 0% 0.504

3 0% 0.505 20% 0.684 20% 0.684

4 0% 0.504 20% 0.684 20% 0.684

5 0% 0.505 40% 1.074 40% 1.073

6 0% 0.504 40% 1.072 40% 1.072

7 0% 0.505 10% 0.585 60% 1.965

8 0% 0.504 10% 0.585 60% 1.964

9 0% 0.505 30% 0.907 80% 4.944

10 0% 0.504 30% 0.907 80% 4.940

The threshold used by HL to determine if the

platform is either homogeneous or heterogeneous

(standard_HL) was arbitrarily fixed in 0.1, due to

HL results obtained from the three platforms. This HL

value allows separating the totally homogeneous plat-

form (HL=0.0002) from other two possibilities: par-

tially and totally heterogeneous with HL 0.22 and 0.57,

respectively.

In a first execution, the Gauss-Jacobi application

was scheduled using the As/Hl algorithm on the three

platforms and according standard_HL value. This

means that the policy used was the round-robin when

executing the homogeneous scenario and the DPWP

when executing on the partially and totally heteroge-

neous platforms.

In order to compare the scheduling done for each

platform, we repeated the executions, changing the

policies used. In these complementary executions the

policy DPWP was chosen when executing the homoge-

neous scenario and the round-robin policy was the op-

tion when executing both the partially and totally het-

erogeneous platforms.

Table 5 presents the runtime average in sec-

onds for thirty Gauss-Jacobi parallel application

executions, using the round-robin/PVM and the

DPWP/AMIGO/PVM scheduling policies, and consid-

ering platforms: homogeneous, partially heterogeneous

and totally heterogeneous. The values between paren-

theses indicate the complementary execution.

Table 5: Gauss-Jacobi parallel application runtime using round-robin

and DPWP policies on three different platforms. Values between

parentheses indicate the complementary executions to compare the

correct scheduling done in each platform by As/Hl.

Schedule Totally Partially Totally

Policy Homogeneous Heterogeneous Heterogeneous

Round- 5,1s (17,6s) (28,6s)

Robin

DPWP (7,8s) 11,6s 23,7s

The round-robin policy in the homogeneous sce-

nario presents a better performance when compared to

the results from the DPWP. These results point-out a

53% performance loss, in this case. The DPWP spent

more time to find target nodes to receive new pro-

cesses, while the original round-robin policy distribute

these same processes equally among the nodes, doing

scheduling in a simple and efficient way. Since the plat-

form used is homogeneous and there were not external

interferences from other applications, concurring to the

available resources, the DPWP is unnecessary and inef-

ficient. In this case the HL metric is capable to prevent

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 24

the use of a higher computing cost scheduling policy

(such as the DPWP).

The DPWP policy is more efficient than the round-

robin policy when considering the partially heteroge-

neous platform. In this case the performance gain was

around 51.7%. This is due to the heterogeneity pre-

sented in the platform, fact considered only by the

DPWP. Again, the HL metric can choose properly the

schedule policy.

The DPWP obtains a better performance when com-

pared to the round-robin in the heterogeneous scenario,

as expected. However, the difference between both exe-

cutions was lower, with a DPWP performance gain just

around 20.7%. This smaller difference, when compar-

ing to partially heterogeneous platform, is due to the

overload of 60% and 80% in four nodes available for

the experiments. These four nodes are near to satura-

tion and this causes a higher impact in the DPWP per-

formance, due to its costs. In this scenario DPWP spent

more time to find the correct nodes to use and how many

processes each node should receive, when comparing to

the round-robin policy.

6 Concluding Remarks

This work investigates the HL metric behaviour in real

scenarios. The HL metric [3] was investigated consider-

ing static and dynamic perspectives and it was also used

in the As/Hl algorithm. The HL metric presented excel-

lent behaviors in our case studies, pointing out the plat-

form heterogeneity for both static features (e.g.: CPU

frequency, memory quantity or network) and dynami-

cal features, these obtained from benchmarks.

The results obtained from the experiments con-

ducted with As/Hl algorithm, show performance loss

to 53% when using the wrong scheduling policy in re-

lation to the platform heterogeneity level. They show

also performance gains to 51.7% when using the correct

scheduling policy. The investigations performed in this

work confirm that the correct use of the heterogeneity

level is essential to improve the platform performance,

therefore, producing better benefits with lower costs for

the end-user. They also show that the HL is efficient to

represent the heterogeneity degree, flexible when con-

sidering different heterogeneity perspectives and easy

to be used in the processes scheduling context.

Future works include studying the HL metric thresh-

olds to indicate if a platform must be handled either

as homogeneous or heterogeneous, also under differ-

ent perspectives such as: CPU, memory, network and

a mixing of them.

7 Acknowledgments

The authors would like to thank CAPES, CNPq and

FAPESP, Brazilian funding agencies, for the financial

support.

References

[1] Al-Jaroodi, J., Mohamed, N., Hong, J., and Swan-

son, D. Modeling parallel applications perfor-

mance on heterogeneous systems. In Int. Paral-

lel and Distributed Processing Symposium, pages

160.2–, Washington, DC, USA, 2003. IEEE Com-

puter Society.

[2] Araujo, A. P. F., Santana, M., Santana, R. H. C.,

and Souza, P. S. L. Dpwp - a new load balanc-

ing algorithm. In 5th Int. Conference on Infor-

mation Systems Analysis and Synthesis - ISAS’99,

Orlando, U.S.A., 1999.

[3] Branco, K., Santana, M., and Santana, R. H. C. A

novel metric for checking levels of heterogeneity

in distributed computer systems. In Advances in

Intelligent System and Robotic. IOS Press, 2003.

[4] Curnow, H. J. and Wichmann, B. A. A syn-

thetic benchmark. Computer Journal, 19(1):43–

49, 1976.

[5] Geist, G. A., Beguelin, A., Dongarra, J. J., Jiang,

W., Manchek, R., and Sunderam, R. Pvm 3 users

guide and reference manual. Oak National Lab.,

1994.

[6] Grosu, D. Some performance metrics for hetero-

geneous distributed systems. In Proceedings of

PDPTA’96. Las Vegas, 1996.

[7] Linpack. www.math.utah.edu/software/

linpack.html#documentation, Last access:

02/02/2011.

[8] Massie, Matthew, L., Chun, Brent, N., and Culler.

The ganglia distributed monitoring system: de-

sign, implementation, and experience. Parallel

Computing, 30(7):817–840, 2004.

[9] McCalpin, J. D. Memory bandwidth and machine

balance in current high performance computers.

IEEE Computer Society Technical Committee on

Computer Architecture (TCCA) Newsletter, 1995.

[10] Mucci, P. J. and London, K. The cachebench re-

port, 1998.

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 25

[11] Netperf. www.netperf.org/netperf/NetperfPage.html

Last access: 02/02/2011.

[12] Petterson, D. A. Computer organization and

design: the hardware/software interface. Else-

vier/Morgan Kaufmann, third edition, 2005.

[13] Souza, P. S. L., Santana, M., and Santana, R. H. C.

Amigo - a dynamical flexible scheduling environ-

ment. In 5th International Conference on Infor-

mation Systems Analysis and Synthesis - ISAS’99,

1999.

[14] Weicker, R. P. Dhrystone: a synthetic systems

programming benchmark. ACM Computing Sur-

veys, 27:1013 – 1030, 1984.

[15] Zhang, Z. and Seidel, S. Benchmark measure-

ments of current upc platforms. In 19th IEEE In-

ternational on Parallel and Distributed Process-

ing Symposium, 2005.

[16] Zhang, Z. and Yan, Y. Benchmark measurements

of current upc platforms. In 7th IEEE Symposium

on Parallel and Distributed Proceeding, pages

25–34, 1995.

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

An Adaptive and Historical Approach to Optimize Data Access in
Grid Computing Environments

RENATO PORFIRIO ISHII1

RODRIGO FERNANDES DEMELLO2

1UFMS – Federal University of Mato Grosso do Sul
FACOM – Faculty of Computing

P.O. Box549, 79070-900 Campo Grande (MS) – Brazil
renato@facom.ufms.br,

2USP – University of São Paulo
ICMC – Institute of Mathematics and Computer Sciences

P.O. Box668, 13560-970 São Carlos (SP) – Brazil
mello@icmc.usp.br

Abstract. The data Grid, a class of Grid Computing, aims at providing services and infrastructure to
data-intensive distributed applications which need to access, transfer and modify large data storages. A
common issue on Data Grids is the data access optimization, which has been addressed through dif-
ferent approaches such as bio-inspired and replication strategies. However, few of those approaches
consider application features to optimize data access operations (read-and-write). Those features define
the application behavior, which supports the optimizationof operations, consequently, improving the
overall system performance. Motivated by the need of efficient data access in large scale distributed
environments and by the affordable improvements of application characteristics, this paper proposes a
new heuristic to optimize data access operations based on historical behavior of applications. Through-
out experiments we concluded that applications are better optimized by anticipating different numbers
of future events, which vary over the execution. Then, in order to address such issue, we proposed an
adaptive sliding window which automatically and dynamically defines how many future operations must
be considered to improve the overall application performance. Simulations were conducted using the
OptorSim simulator, which is commonly considered in this research field. Our experimental evaluation
confirms that the proposed heuristic reduces application execution times up to50% when compared to
other approaches.

Keywords: data access optimization, grid computing, cluster computing, optimization algorithms, re-
source allocation, modeling and simulation.

(Received February 23rd, 2011 / Accepted May 2nd, 2011)

1 Introduction

The availability of low-cost microprocessors and the
computer network evolution have made feasible the de-
velopment of distributed systems. In such systems, pro-
cesses communicate one another in order to perform
the same computing task. Besides reducing costs, those

systems are scalable and more flexible than real parallel
machines [7].

Concepts of distributed systems motivated the de-
velopment of cluster computing, where resources are
usually interconnected in a local area network [26].
These cluster environments have encouraged researches

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 27

on process scheduling optimization, data prefetching,
distributed file systems, fault tolerance and security.
As those systems became more available as well as
the Internet has allowed the access of long-distance re-
sources, scientists started interconnecting them to solve
more complex problems [33]. That approach started
the development of grid computing environments, in
which resources are usually heterogeneous, geograph-
ically distributed and accessible to several users [33].
The intrinsic features of these platforms have required
new researches on job scheduling, data access, fault tol-
erance and security strategies [33]. Besides the evolu-
tion of every topic, the Data Access Problem (DAP) is
still a major concern when dealing with grids, mainly
due to data location and consistency [8]. Other issues
that should be considered are the data migration, repli-
cation, distribution and also the evaluation of the data
access impact on job scheduling approaches [11].

Besides considering the aforementioned topics, re-
lated works (Section 2) present three main drawbacks.
The first is that most of the works consider exclusively
read-only operations [5]. Such situation tends to re-
strict the execution of real-world applications. They
mainly neglect such subject due to the complexity in-
volved in keeping data consistent. The second draw-
back is that many works consider static data access op-
timization approaches, i.e. they do not adapt themselves
according to dynamic grid computing features, such as
users logging into and out, computers connecting and
disconnecting. The last drawback is that the overall sys-
tem performance depends on data access patterns, what
varies according to job system calls. In this way, it is
very important to understand, estimate and/or predict
the job behavior as a way to optimize read-and-write
operations.

The three main drawbacks of related works have
motivated an initial investigation [19], in which we
evaluated a heuristic to optimize job read-and-write op-
erations on distributed environments, based on applica-
tions historical behavior. In that paper, we optimized
next file access operations by considering a window of
future events (every event corresponds to a file access
operation). However, in that study, we considered fixed-
length windows and confirmed they result in an unsatis-
factory response time to grid environments, mainly due
to the high heterogeneity of computational resources
(CPUs, hard disks and networks) and the variation of
reading and writing operations during the process exe-
cution. By considering initial experiments presented in
that paper, we observed that the interposition of read-
and-write events (i.e., events of different types under the
same window length) affects the efficiency of the win-

dow. Thus, we were motivated to investigate whether a
window of future events under the same type of opera-
tion could improve data accesses and, therefore, reduce
costs.

Based on such hypothesis, this paper proposes an
adaptive sliding window to optimize data access by
improving replication, migration and consistency deci-
sions. An adaptive window is defined over the historical
behavior of applications, and it represents the number
of future events that our heuristic analyzes to optimize
decisions. The adaptive window constantly adjusts its
length according to the dynamic behavior of processes,
i.e., the number of similar operations (readings or writ-
ings) under execution. As this approach considers his-
torical job behavior, applications need to be executed at
least once.

The specific contributions of this paper are: 1) the
formalization of the Data Access Problem (DAP); 2) an
analytical optimization model to address DAP, aiming
at minimizing the overall application execution times;
3) proposal of an adaptive sliding window approach to
define how many historical events are considered in the
optimization process. 4) simulations to evaluate the ef-
ficiency of the adaptive sliding window under a wide
range of environments and system configurations (how
read-and-write operations are distributed over time).

Besides all the listed contributions, experimental re-
sults confirm that this new adaptive heuristic outper-
forms other commonly considered ones (e.g., LRU,
LFU and Economic Model, presented in Section 5) in
approximately50% when dealing with grid environ-
ments.

This paper is organized as follows: Section 2 re-
views related work; Section 3 models the Data Access
Problem (DAP); the proposed adaptive heuristic is pre-
sented in Section 4; Section 5 presents simulation re-
sults and, finally, concluding remarks.

2 Related Work

Several studies have been conducted to improve data ac-
cess on grid environments. Such works are mainly fo-
cused on data replication, distribution and consistency.

Oliker et al. [27] propose a static data allocation
approach and three data-oriented job scheduling algo-
rithms (SI, RI, SYI). The approach attempts to opti-
mize the system overall performance by allocating jobs
where data is available. Among the evaluated schedul-
ing algorithms, SI reduces the average execution time
by 60% when compared to local approaches, and can
execute40% more jobs.

Rahman et al. [28] present a model which uses
a simple data-mining approach (K-Nearest Neighbor,

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 28

KNN) to select the best replicas from grid sites. To
select the best replica, the authors design an optimiza-
tion technique that considers the network latency and
the disk state. Different file access patterns are inves-
tigated and compared to the KNN algorithm. KNN
shows a performance improvement for sequential and
unitary random file access patterns.

Sun & Xu [34] propose two consistency algorithms:
Lazy-Copy (LC) and Aggressive-Copy (AC). LC up-
dates replicas only when needed, i.e., when a user re-
quires them. This may reduce the bandwidth consump-
tion, avoid unnecessary transfers when data are modi-
fied but not required. AC updates replicas whenever a
change occurs in the original file. Therefore, AC fully
guarantees the consistency, while LC partially guaran-
tees it. In the comparison between the two algorithms,
the Aggressive-Copy reduces the access latency, whilst
Lazy-Copy reduces the bandwidth consumption.

Wang et al. [36] consider the parallel access of data
replicas. The access time is minimized by overlapping
requests, what tends to increase the throughput. The
proposed solution (called MSDT) carries on replicat-
ing data in idle intervals as a way to improve system
performance. That work does not consider data consis-
tency. Results present a speedup factor in the range of
2.72 ∼ 3.06 when comparing MSDT to another tech-
nique (called NoObserve) [15].

Oldfield & Kotz [26] propose the Armada frame-
work which launches applications and defines how files
are distributed. It also provides access control and data
access mechanisms. It builds graph structures to repre-
sent the processing and data flow. Experiments com-
pare restructured applications to original ones. Ar-
mada improves throughput of wide-area networks in
40% when compared to original applications.

Dang & Li [11] propose a tree-type structure to cor-
relate data in grid regions aiming at reducing file trans-
fers. When a job needs a file, the approach looks for
high correlation data before asking for transfers. This
reduces network costs and improves the overall appli-
cation performance.

Elghirani et al. [14] define a data management ser-
vice to replicate files on sites as well as a Taboo Search
approach to schedule jobs aiming at optimizing run-
time and system utilization. The Taboo Search attempts
to find good data replication solutions, considering job
data accesses and processing time. Results present per-
formance improvements from8% to 35%, depending
on the replication and job scheduling approaches.

Kim et al. [22] propose a technique to improve
data access, matching nodes to the best remote data
sources. The authors consider a trace-based synthetic

scenario on PlanetLab to evaluate their heuristic. Re-
sults show that the resource selection outperforms con-
ventional techniques such as latency-based or random
allocations.

Chervenak et al. [10] propose a framework called
Replica Location Service (RLS) which maintains and
provides information on physical locations of replicas.
RLS is used in a variety of production environments
such as the Laser Interferometer Gravitational Wave
Observatory (LIGO) [3], Earth System Grid (ESG) [1]
and Pegasus [12]. Authors presented a performance
study demonstrating that the individual RLS servers
have performed well and scale up to millions of entries
compared to the native MySQL using ODBC clients.

AL-Mistarihi & Yong [4] propose an approach to
address the replica selection problem. The authors con-
sider the Analytical Hierarchy Process (AHP) to solve
that problem, and they evaluate this approach in an ex-
tension of the OptorSim simulator. AHP was employed
to solve this optimization problem using a simplifica-
tion of multiple objectives into a single one. However,
the authors evaluated AHP comparing it only against
a random approach. They could and should at least
compare the performance of AHP against strategies in-
cluded in the OptorSim simulator, such as LRU, LFU
and the Economic Model.

It is important to observe that all previous presented
studies do not consider the dynamic behavior of appli-
cations when taking decisions, likewise, they do not
take advantage of future read-and-write operations to
optimize data accesses.

The dynamic behavior of applications motivated
Ishii & Mello [19] to propose a heuristic that adopts
a fixed length window of future events which aims at
anticipating reading and writing operations. Using fu-
ture events, the heuristic optimizes decisions on repli-
cating, migrating and keeping consistency. This study
confirmed that windows of future events can indeed im-
prove application performance in some scenarios. For
example, when considering environments with read-
only operations, the heuristic improved as much as
100%, however under a low frequency of writing op-
erations (5% of writing and95% of reading operations)
and low frequency of reading operations (95% of writ-
ing and5% of reading operations), the heuristic could
not reduce application execution times.

In this previous study [19], the window length is
fixed and defined by the system administrator. Based
on that we attempted different window lengths and an-
alyzed experimental results, such additional work mo-
tivated us to study whether a window of future events,
under the same type of operation, could improve data

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 29

accesses and, therefore, reduce application execution
times. Thus, in this paper, we propose an adaptive
sliding window to optimize data accesses by improving
replication, migration and consistency decisions.

Figure 1: Example of network interconnection

3 The Data Access Problem

This section aims at defining the Data Access Problem
(DAP). We start with an empirical case study and then
we proceed with the formal definition of DAP.

3.1 An Empirical Case Study

In order to empirically state the DAP, we propose the
following hypothetical case study: let two parallel ap-
plications be composed of the processes presented in
Table 1, where MI represents the million of instructions
executed by processes (during their lifecycles); MR
and MW are, respectively, the number of KBytes/sec
read and write from/into the main memory; HDR and
HDW are, respectively, the number of KBytes/sec read
and write from/into the hard disk (or secondary mem-
ory); NETR and NETS are, respectively, the number
of KBytes/sec received and sent through the computer
network – in this case, the sender (for NETR) and the
receiver (for NETS) processes are presented. For ex-
ample, Table 1 row1 shows that processp0 consumes
1, 234 MI, reads123 KBytes/sec (and does not write
data into memory, i.e. MW= 0), it still reads 78
KBytes/sec from the hard disk (and it does not write
data into the hard disk, i.e. HDW=0), receives12
KBytes/sec from processp1 and sends532 KBytes/sec
to processp1 .

Now consider that these processes are allocated on
a setC of computers which is described in Table 2,
whereCE is a computing element; MIPS represents the
processing capacity in million of instructions per sec-
ond; TMR and TMW are, respectively, the read-and-
write throughput of the main memory (in KBytes/sec);
THDR and THDW are, respectively, the read-and-write
throughput of the hard disk (also in KBytes/sec). Let

Table 1: Processes behavior

App 0
MI MR MW HDR HDW NETR NETS

p0 1,234 123 0 78 0 12 –p1 532 –p1
p1 1,537 23 89 0 12 532 –p0 12 –p0
App 1

MI MR MW HDR HDW NETR NETS

p2 1,221 823 70 78 543 10 –p3 321 –p4
p3 1,137 223 179 324 212 423 –p4 10 –p2
p4 2,237 23 17 12 0 321 –p2 423 –p3

the allocation operator be defined by∝, where an ex-
ample of allocation, assuming an application composed
of 5 processes, is given byp0 ∝ CE0, p1 ∝ CE1,
p2 ∝ CE2, p3 ∝ CE3 andp4 ∝ CE4. Computers in
C are interconnected according to Figure 1, which also
presents an example of network bandwidths and laten-
cies.

Table 2: Grid site characteristics

CE MIPS TMR TMW THDR THDW

CE0 1,200 100,000 40,000 32,000 17,000

CE1 2,100 120,000 50,000 42,000 19,000

CE2 1,800 100,000 30,000 22,000 9,000

CE3 1,700 95,000 20,000 25,000 11,000

CE4 2,500 110,000 60,000 62,000 30,000

CE5 2,000 110,000 45,000 40,000 17,000

Also consider that all5 processes (described in Ta-
ble 1) of the2 parallel applications access a set of files
F = {f0, f1, . . . , f9}. In order to solve the DAP, in
an optimal way, we must explore all possible file dis-
tributions over the6 computing elements and evaluate
the access cost for every processpi. In such situation,
permutations would be performed to find out all pos-
sible solutions. For example, let a solution where the
subset of files{f0, . . . , f6} is allocated onCE0 and all
others, i.e.{f7, f8, f9}, are placed onCE1. The set of
all possible solutions, for any instance of the problem,
is obtained by computingnz, wheren is the number of
computing elements andz is the number of files. Con-
sequently, in the previously mentioned instance, the so-
lution space is equal to610 = 60, 466, 176.

Besides the presented example, it is necessary to
study the problem in real-world conditions. For illustra-
tion purposes, assume that the target environment con-
tains more than256 computers. In such situation, the

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 30

expected problem solution space would follow the or-
ders of magnitude defined in Table 3, in which we ex-
pect to address thousands of computers storing millions
of files.

Table 3: Solution space to distribute files over computing elements

CE’s # files Solutions:nz

256 320 ≈ 4× 10770

256 3, 200 ≈ 2× 107706

256 32, 768 ≈ 1× 1078913

512 320 ≈ 9× 10866

512 3, 200 ≈ 4× 108669

512 32, 768 ≈ 2× 1088777

1, 024 320 ≈ 1× 10963

1, 024 3, 200 ≈ 9× 109632

1, 024 32, 768 ≈ 3× 1098641

3.2 Formal Definition

A grid computing environment can be represented as a
non-directed graphG = (S,L), where the set of ver-
texesS represents the grid sites (networks of worksta-
tions, parallel machines, clusters, etc.) and the set of
edgesL is composed of communication links in be-
tween grid sites. Also consider a setF containingz
files, whose sizes are modeled by functionθ(.) : F →
Z+. Each grid sites ∈ S has none, one or more ele-
ments with the storage capacity defined byΩ: S → Z+

which is the size in MBytes of the storage element into
a grid sites. Functionαj,i : F × S → Z+ defines the
cost of storing filej on sitesi. In the same way, the
function δ(.) : F × S → Q+ considers the links inL
to model the communication cost in between grid sites.
Functionα is constrained such asαj,i ≤ Ωi ∀j, i.

Consider the setA which containsk parallel appli-
cations executing on a large scale distributed environ-
ment. Let the functionφ(.) : A → Z+ represent the
number of processes of each parallel application. Con-
sider setP which contains all processes of allk parallel
applications, i.e. the number of terms inP is equal to
h =

∑

a∈A

φ(a). All processes are previously allocated

on the distributed system according to any scheduling
criterion. Every element inP has a setR associated,
which containsm read-or-write file requests. A process
contains particular features, here defined as behavior,

such as processing, memory and input-and-output uti-
lization. Every process, consequently, requires differ-
ent amounts of resources provided by setS of grid sites
as well as the set of communication linksL. A process
p ∈ P may access none, one or many files inF .

The cost to transfer filef in between two grid sitess
ands′ is modeled in Equation 1. It depends on file size
θ(f) and distanced(s, s′) in between both sites, which
is measured in terms of the network latency and band-
width. Costψ is assumed when a constraint forbids the
replication of filef to grid sites′.

δ(s, s′) =

{

θ(fj)d(s, s
′) wheres ∈ S, j = 1, . . . , z

ψ =∞ otherwise
(1)

A file f must be transferred from the shortest path
sites ∈ S whose cost is minimum and defined by func-
tion d(s, s′). The access cost for reading a filef , stored
in a sites, is, therefore, given by Equation 2. Write
operations induct replica updates for every filef ∈ F ,
which consumes resources as described in Equation 3.

rcost(f) = δ(s′, f) = argmin(θ(f)d(s, s′)) ∀ s ∈ S
(2)

wcost(f) =
∑

j

δ(s′, fj) ∀j local and remote replicas

(3)
By unifying Equations 2 and 3, the total cost to ac-

cess a filef is determined in Equation 4, considering all
processes inP . Table 4 describes each model parame-
ter, afterwards the data access problem is formalized.

Λ(f) =
∑

p∈P

∑

j

rcost(fj) + wcost(fj) (4)

Consider a setP of processes which were previ-
ously scheduled on grid sites inS with storage capac-
ities defined byα and transfer costs byδ(s, s′). Let a
set of filesF with a given initial file distributionxij
and sizeθ(f). Assume a set of quintuples TR which
describes read-or-write operations on files inF . The
optimization problem, DAP, consists in determining a
new file distributionyij according to the energy func-
tion defined in Equation 5, which is constrained ac-
cording to Equations 6 and 7 and follows the domains:
xij ∈ {0, 1}, ∀ i, j andyij ∈ {0, 1} ∀ i, j.

Γ(DAP) = min

n
∑

i

z
∑

j

(xij − yij)Λ(fj) (5)

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 31

Table 4: Model parameters

Parameter Description

G The graph of environmentG(S,L)

S Set of grid sites

s Grid site which contains computers,

workstations, nodes or similar

n Number of grid sites

L Set of communication links

l Data link in between sites, e.g.{s, s′}

α(s) Cost function to store data on sites

δ(s, s′) Communication capacity in betweens ands′

θ(f) Size of filef

Ωi Total storage capacity of sitesi

A Set of parallel applications

a An application

k Number of applications

φ(a) Function which determines the number of

processes of applicationa

P Set of processes

h Total number of processes

R Set of read-and-write requests

r Read-or-write request to a filef

m Total number of requests

F Set of files

f A file

z Total number of files

i Grid site index inS (si ∈ S)

j File index inF (fj ∈ F)

xij Equals to1 if fj is stored on site at indexi.

0, otherwise

yij Equals to1 if the new solution allocatesfj

on the site at indexi. 0, otherwise

TR Set of quintuples to describe read-and-write

operations to files inF

tr A quintuple in TR

u Total number of quintuples

n
∑

i

xifj ≤ n (6)

z
∑

j

yij = 1, i = 1, . . . , n (7)

The energy function (Equation 5) attempts to reduce
the cost to request files, considering the distance in be-
tween grid sites, amount of data and storage capacity.
The constraint presented in Equation 6 limits the num-
ber of file replicas, which can not surpassn sites, i.e.
if j = n all storage elements in the grid have one
replica off each. The constraint given by Equation 7
defines that every replica must be allocated on one site
only. This constraint implies that storage elements do
not have more than one replica of filef . All computing
elements connected to a grid site access the replica on
the storage element of that grid site.

In order to prove that the data access problem is NP-
complete, we demonstrate that it is contained in the NP
set and it is NP-hard. To demonstrate that the DAP is
in NP, a reduction is conducted from the allocation of
multiple copies of the same file on a distributed envi-
ronment (here called Multiple File Allocation (MFA))
which is proven to be NP-complete according to [16].
The MFA problem is defined as:

Instance: GraphG(V,E), for eachv ∈ V a us-
ageu(v) ∈ Z+ and a storage costs(v) ∈ Z+, and a
positive integerK.

Question: Is there a subsetV ′ ⊆ V such that, if
for eachv ∈ V we letd(v) denote the number of edges
in the shortest path inG from v to a member ofV ′, we
have:

∑

v∈V ′

s(v) +
∑

v∈V ′

d(v) × u(v) ≤ K? (8)

Theorem 1. DAP is NP-complete.

Garey & Johnson [16] present three different ap-
proaches to prove NP-complete problems: restriction,
local replacement and component design. Consider a
problemΠ ∈ NP , the proof using the restriction ap-
proach consists in showing thatΠ contains a known
NP-complete problemΠ′ as a special case. The main
idea lies in the specification of additional restrictions
on instances ofΠ, so that the resulting problem will be
identical toΠ′. The problemΠ does not need to be ex-
actly the same asΠ′, but it must preserve yes-and-no
correspondence in their outputs. In local replacement,
we must identify the components, or building blocks,
which integrate the instance of a known NP-complete
problemΠ′. In order to prove that a problemΠ is

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 32

NP-complete, we look for similarities of theΠ′ basic
components and relate them to theΠ problem. The last
type of proof is the component design, which considers
the constituents of the target problem instance to design
components to be combined and represent the instance
of the already known NP-complete problem.

Proof. In this paper, we prove that DAP is NP-hard by
using the restriction-proof approach. DAP is contained
in NP due to it is possible to build a non-deterministic
machine to verify the graphG(S,L) in polynomial
time. When building the machine, the following is non-
deterministically defined: for eachs ∈ S an alloca-
tion xij in which the filefj is mapped, and, for each
l ∈ L the costα(s, s′). The verification step checks
out, for eachf ∈ F , whether the grid site mapping

is valid, this is, if
n
∑

j

xj ≤ n. Finally, the condition

n
∑

j

yij = 1, i = 1, . . . , n is evaluated for the new

allocation of files inF .
Consequently, an instance of DAP is translated into

a MFA one. We initially map every element of the set
V in elements inS. Then, we define the numberz of
files. Those files are initially allocated on sites inS,
in a random way. This file allocation respects the con-
straint that each grid sites ∈ S has the maximum stor-
age capacity ofs(v). Besides that,d(v) is mapped into
d(s, s′) what represents the cost to transfer filef ∈ F
in between two grid sitess ands′, and the functionu(v)
is mapped intoθ(f), which models the file size. For ev-
ery elemente ∈ E, there is a correspondentl ∈ L with
network latency and bandwidth associated.

In the MFA problem, Equation 8 formalizes the ob-
jective function which aims at minimizing costs related
to the allocation of multiple copies of the same file.
This equation is bounded byK. Similarly, in the DAP
problem, the objective function is defined by Equation
5 which also attempts to minimize access costs.

Finally, consider an instance for the DAP where:
given a requestr ∈ R which is launched by a pro-
cessp ∈ P when reading or writing on a filef ∈ F .
For any instance of DAP where|S| ≥ 2 and|L| ≥ 2,
the problem presents exponential characteristics and it
is considered NP-complete.

4 Data Access Approach

After stating the DAP, we may address it by using exact
or approximation approaches. Exact approaches guar-
antee optimal solutions for the problem. However, they

may be very time consuming, depending on the prob-
lem and the instance. For small instances, they might
offer acceptable run-time, but, for large instances, they
are prohibitive [35]. This fact motivated the develop-
ment of approximation strategies considering heuristics
and metaheuristics. A heuristic is an algorithm that,
based on the problem knowledge or experience, leads
to appropriate solutions, but there is no guarantee to ob-
tain optimal solutions [16].

Heuristics are commonly considered due to their
trade off in between the solution quality and the time
complexity. Metaheuristic is a type of heuristic to solve
a class of problems and not only a specific one. Exam-
ples of metaheuristics are: Genetic Algorithms (GA)
[18], Ant Colony Optimization (ACO) [13] and Simu-
lated Annealing (SA) [23].

Genetic algorithms have been used as search and op-
timize techniques in several domains [30]. They are
based on the natural selection theory, which guaran-
tees the survival of the most adequate individuals, i.e.
the ones that represent good solutions. This approach
does not ensure optimal solutions for all problem in-
stances, but provides appropriate solutions for a reason-
able number of NP-Complete problems [30].

ACO-based algorithms support the search for paths
in between a given source and a destination. This
bio-inspired approach is based on the stigmergy strat-
egy and the pheromone concentration. Stigmergy is
a communication mechanism used by ants to coordi-
nate global functions. As ants randomly walk look-
ing for food, they lay down pheromone (chemical com-
ponent released by ants) on trails. When another ant
is looking for the food path, it has a certain proba-
bility to follow the previous crossed path (according
to the pheromone concentration). This approach iter-
atively reinforces good paths, supporting the search for
shortest-path solutions on graphs.

Simulated Annealing aims at finding a global mini-
mum for a given energy function [23]. This nomencla-
ture comes from an analogy to the metallurgic process
of annealing, which consists of the controlled heating
and cooling of materials as a way of finding stable en-
ergy states. Those states, for instance, help metallurgic
processes to reduce physical defects on different mate-
rials. This technique introduces the system temperature
concept, which defines the annealing scheduling (heat-
ing and cooling operations). SA supports the search of
global minimal of energy functions.

After stating the DAP, we may address it by using
metaheuristic, which is a type of heuristic to solve a
class of problems and not only a specific one. Exam-
ples of metaheuristics are: Genetic Algorithms (GA)

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 33

[18], Ant Colony Optimization (ACO) [13] and Simu-
lated Annealing (SA) [23]. However, one issue prevents
the adoption of such techniques, which is the dynamic
behavior of data accesses. Those metaheuristics would
model the DAP by evaluating the current accesses as
well as future ones. However, their objective functions
would compose such information in the current mo-
ment, in a way that they tend to optimize the average
behavior. Therefore, such approaches may privilege
remote accesses while they could improve the system
overall performance by replicating data and supporting
local operations. Better solutions could be obtained by
assessing behavior changes and using them to antici-
pate data operations. In order to develop such method,
we must identify the dynamics involved in the process
behavior.

Given the disadvantages presented by the meta-
heuristics, we propose a novel heuristic to approach
the data access optimization using historical applica-
tion behavior and the adaptive sliding window length.
As the heuristic considers the historical process infor-
mation, we can anticipate process read-and-write op-
erations and, therefore, replicate data locally before
needed, what tends to reduce access costs. When data
is locally available, read-and-write operations execute
faster, what avoids access delays. The anticipation of
process events is used to take decisions on data replica-
tion, migration and consistency.

The proposed approach follows the workflow de-
fined in Figure 2, which is composed of the modules:
1) application knowledge acquisition; 2) adaptive slid-
ing window length; and 3) the Heuristic. The following
sections describe the features of each module, including
their integration.

Figure 2: The proposed approach

4.1 Application Knowledge Acquisition

This paper considers applications behavior to guide a
novel heuristic to improve decisions on replication, mi-
gration and consistency of files. The behavior is com-
posed of read-and-write operations issued by applica-
tion processes.

There are two approaches to extract process be-
havior: monitoring and event interception. Monitor-
ing periodically requests information of a given sys-
tem. Examples of monitoring tools are SMART (Self-
Monitoring Analysis and Reporting Technology) [31],
Linux Vmstat [37] and Tcpdump [20]. System moni-
toring is usually based on counters. Counters are vari-
ables which account the system utilization within spe-
cific time intervals. For example, consider SMART. Let
it request the number of hard disk reads and obtain0 at
a given instant. After10 seconds, it asks for the infor-
mation again and the system returns5, what means that
five read operations were executed in between the first
and the second monitoring points. The monitoring ap-
proach grabs the amount of data and what kind of event
has happened in a certain time interval, but it does not
inform when exactly an event happened and its detailed
information. The second approach intercepts process
events and calls a procedure to inform about them (this
approach obtains the exact event moment as well as its
detailed information). However, depending on the event
complexity (such as process system calls) and cost, the
interception may become prohibitive. Examples of the
intercepting tools are the Unix DLSym [21] and Ptrace
[32].

DLSym allows the interception of dynamic proce-
dure calls (from dynamic libraries). This is, when the
program calls a function, instead of having the code in-
ternally, it loads a shared library and runs the procedure.
This approach avoids procedure rewriting and also al-
lows the interception of calls. Consequently, any pro-
cedure in a dynamic shared library can be intercepted,
what helps to build monitoring tools. On the other hand,
Ptrace transparently intercepts process signals and sys-
tem calls. It is usually employed to build diagnosis and
debug tools. Ptrace does not use dynamic libraries and
can intercept any Unix application.

Researchers must evaluate the options in between
monitoring and intercepting and choose the best ap-
proach to address the system under study. Some sys-
tems can only be monitored, while others, only inter-
cepted. Given the physical characteristics, hardware are
usually monitored, while software can be monitored or
intercepted. In this paper, the interception approach was
chosen due to it allows the continuous extraction of ap-
plication behavior over time. Furthermore, the monitor-

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 34

ing approach may hide behavior in between sampling
intervals.

After extracting the application behavior, we trans-
form the sequence of events in series of numer-
ical values which represent time instants. Ev-
ery event is described by the quintuple tr=
{pid,inode,amt,time,op} where pid is the
identifier of the process that performs the operation,
inode is the file identifier,amt is the amount of data
read or written,time is the time interval in between
operations andop is the operation type (whether read-
ing or writing). A series foru sampling intervals is,
therefore, defined as TR= {tr0, tr1, . . . , tru−1} which
is used to analyze relations among events. Those events
are included in a trace file for future usage. Table 5
presents an example of a trace file.

Table 5: Example of trace file

index pid inode amt time op

1 p41 f0 313 24 r

2 p89 f3 94 171 w

3 p10 f9 92 80 w

4 p32 f0 826 132 w

5 p69 – – 76 d

6 p1 f5 292 70 w

Figure 3: The impacts of sliding window variation

4.2 Adaptive Sliding Window Length

The sliding window length defines the number of future
events that the heuristic analyzes to optimize decisions,

which impact on the system performance. An example
of the impact the sliding window has on applications
execution is shown in Figure 3, that considers a sliding
window approach with fixed length. Four techniques
were evaluated: LRU, LFU, Economic model (see Sec-
tion 5), and the heuristic with fixed window length (la-
bel HEU in Figure 3) [19].

We observe that, for the sliding window length4,
the application execution time is higher. We observed
this fact occurs due to the heterogeneity and the inter-
position of writing and reading operations. This also
happens for sliding windows200 and500, where there
is also high heterogeneity in terms of operations. We
experimentally confirmed that the more homogeneous
is the execution order of reading and writing operations
(i.e. similar operations are arranged consecutively), the
longer can be the prediction horizon, i.e. more future
events can be considered and, therefore, we can set
larger window lengths.

This fact motivated this work that proposes of an
adaptive sliding window approach which considers the
type and number of operations. Thus, we proposed pa-
rameterβ to adapt the window length according to con-
secutive homogeneous operations (i.e. reading or writ-
ing). Equation 9 defines the Adaptive Sliding Window
(ASW), whereWt+1 is the next window length,Wt is
the current window length, Op is the number of homo-
geneous operations andβ is the factor which determines
modifications in the window length.

Wt+1 =Wt × (1 − β) + Op2×
Op
Wt × β (9)

For example, givenW1 = 10, Op = 4 andβ =
0.10, we would obtain a next window length equals to
W2 = 9. Note that the window adapts according to the
number of operations under the same type, see Figure
4. On the other hand, when Op is equal toWt (seeW4

in Figure 4) the next window length increases consider-
ably,W5 = 11. Parameterβ is experimentally defined
(as presented in Section 5.4).

Figure 4 presents a sample trace file with process
behavior information (in this example we focused only
in reading (r) and writing (w) operations) obtained
through the interception approach (Section 4.1). The
first part of the Figure 4 shows the initial window length
(W1 = 10) and all consecutive operations. The second
part shows how to compute of the next sliding window
length based on Equation 9. Finally, the last part shows
the subsequent windowsW2 = 9,W3 = 8,W4 = 7 and
W5 = 11, which clearly demonstrates the adaptation of
window length according to the behavior of reading and
writing operations.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 35

Initializing the Adaptive Sliding Window

W1=10

︷ ︸︸ ︷

rrrrwwrwwr rwrrwwrwwwwwwwrrwrrrrrrr

Calculating window length

rrrr
︸︷︷︸

Op=4

wwrwwr →W2 = 10 ∗ (1− β) + 42∗
4

10 ∗ β = 9

r
︸︷︷︸

Op=1

wrrwwrww→W3 = 9 ∗ (1− β) + 12∗
1

9 ∗ β = 8

wwwww
︸ ︷︷ ︸

Op=5

rrw→W4 = 8 ∗ (1− β) + 52∗
5

8 ∗ β = 7

rrrrrrr
︸ ︷︷ ︸

Op=7

→ W5 = 7 ∗ (1− β) + 72∗
7

7 ∗ β = 11

Window length after executing the ASW approach

W2=9

︷ ︸︸ ︷

rwrrwwrww

W3=8

︷ ︸︸ ︷

wwwwwrrw

W4=7

︷ ︸︸ ︷

rrrrrrr

W5=11

︷ ︸︸ ︷

rwrrrwwrrwr

Figure 4: Example of the Adaptive Sliding Window withβ = 0.10.

By using this mechanism, we compute the number
of similar operations and define the length of the next
window of future events. Thus, it limits how many fu-
ture events will be analyzed. Then, we consider the
window to anticipate data transfers, bringing informa-
tion locally and, therefore, reducing future access costs.

Without the adaptive mechanism, we should set a
fixed length for the sliding window, which is only possi-
ble experimentally (requiring the evaluation of a range
of values for the length). Besides that, a fixed length
might be good for part of the application execution,
while it would reduce the performance in other situa-
tions (time instants). Therefore, the length needs to be
dynamically adapted according to the instantaneous be-
havior of the process (we consider one specific adap-
tive window per process). Moreover, using the adaptive
mechanism, the window fits the process behavior over
time, making it more flexible and efficient.

4.3 The Proposed Heuristic

Let P = {p0, p1, . . . , ph−1} be the set of all pro-
cesses previously scheduled on grid sites,F =
{f0, f1, . . . , fz−1} be the set of files to be accessed,
andO = {r, w, d} (wherer is read,w is write andd
represents idle moments) represent the set of types of
operations. Let TR model the series of process behav-
ior, where each element tr∈ TR describes an operation

op over a filef , executed by processp.
Thus, we anticipate data access operations over TR

by using an adaptive sliding window ASW→ [ty, tx]
(consideringx > y). This sliding window models the
number of future events (process behavior) considered
when optimizing process data-access operations.

The mechanism of anticipation aims at transferring
files before they are requested by jobs in execution.
This mechanism reduces the access cost due to files are
requested beforehand and they are locally replicated.
Consequently, all this scenario reduces the total execu-
tion time of applications. In Figure 5, a file will be re-
quested att1, and it was totally transferred in advance.
On the other hand, in Figure 6, the file is requested in
t1, however the transfer was not completed and, in this
case, the heuristic still needs to transfer the spare data.
In this last scenario, the total cost ist2 − t1.

Figure 5: The file is completely transferred

Figure 6: The file is partially transferred

As previously presented in Table 5, every trace line
(event) corresponds to a quintuple tr∈ TR. Thus, the
proposed heuristic (Algorithm 5) considers the histor-
ical process behavior, represented by TR, and a given
sliding window ASW of future operations to optimize
data accesses on distributed environments. The antic-
ipation of future operations supports the minimization
of communication/synchronization costs related to file
transfers and consistency.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 36

In this way, consider a processp which executes op-
erations over a filef . Now, letp be at the current exe-
cution or time instanttc and there is a window of events
up to the time instanttf , wheretf > tc. The proposed
heuristic evaluates if filef can be retrieved (i.e. to find
the latest version of a replicaf ′) to the local site where
it is needed. If so, transfer costs and access delays are
reduced and the process performance is improved. In
this circumstance, there are two ways of retrievingf ,
both imply costΓ (Equation 5):

1. if tc+Γ ≤ tf , then we can completely retrieve file
f , which reduces the process execution time, inΓ
units, to access it;

2. if tc + Γ > tf , then we can reducetf − tc time
units in overall process execution.

The proposed heuristic is presented in Algorithm 5
and in other auxiliary procedures as follows (procedures
listed in Algorithms 1, 2, 3 and 4).

The methodRetrieve(f) (Algorithm 1) estab-
lishes a new local copy (replication) of the remote file
f and assesses the copy removal option (for data mi-
gration purposes). The methodRead(tr) (Algorithm 2)
receives a quintuple tr and, if filef is invalid then it
applies the methodRetrieve(f) and finally reads it.
The methodWrite(tr) works similarly (Algorithm 3).
The methodInvalidate(f) (Algorithm 4) receives
a file and updates all replicas asinvalid.

Algorithm 1 Retrieve(f)

Require:
Thef file.

Ensure:
f ′ replica file retrieved from nearest site.

1: S ← sites subset where there aref copies
2: for each s ∈ S do
3: Λ(f) =

∑

p∈P

∑

j rcost(fj) + wcost(fj)
4: end for
5: returnf ′

Every grid sites ∈ S (where the environment is
represented by the graphG(S,L)) has an associated set
of processes which were previously scheduled accord-
ing to any policy. The methodgetNextProcess(s)
(Algorithm 5, line3) returns a processp scheduled on
site s. Every grid sites contains the historical traces
of processes (TR, line4). The pseudocode in between
lines5 and13 performs operations tr∈ TR, considering
the possible types: read, write or idle. From line14 to
44, the heuristic assesses the feasibility of replication,

Algorithm 2 Read(tr)

Require:
Quintuple{pid,inode,amt,time,op}.

Ensure:
Readingamt from file referenced byinode.

1: if f is “invalid" then
2: Retrieve(f)
3: end if
4: reads

Algorithm 3 Write (tr)

Require:
Quintuple{pid,inode,amt,time,op}.

Ensure:
Writing amt to the file referenced byinode.

1: if f is “invalid" then
2: Retrieve(f)
3: end if
4: writes

Algorithm 4 Invalidate(f)

Require:
Thef file.

Ensure:
The subsetS of outdatedf replicas.

1: S ← site subset where there aref copies.
2: for each s ∈ S do
3: update copycs of f as “invalid" in sites.
4: end for
5: returnS.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 37

Algorithm 5 DAP Heuristic

Require:
Set of processP = {p0, p1, . . . , ph−1};
Set of filesF = {f0, f1, . . . , fz−1};
Set of quintuples TR= {tr0, tr1, . . . , tru−1};
initialASW = 100; ASW> 1; β = 0.10.

Ensure:
Set of file replicasF ′.

1: for each p ∈ P do
2: p← getNextProcess()
3: for each tr ∈ TR do
4: if p = getProcess(tr) then
5: if getOperation(tr) = “Read" then
6: Read(tr)
7: else ifgetOperation(tr) = “Write" then
8: Invalidate(f)
9: Write(tr)

10: else
11: Sleep(tr.time)
12: end if
13: else if tr.index ≤ u then
14: j ← tr.index
15: ASW← initialASW
16: k ← 1; Op← 0; diff ← true
17: prevOp← getOperation(tr)
18: while k < ASW AND j < |TR| do
19: if p = getProcess(trj) then
20: if getOperation(trj) = “Read" then
21: if f is invalidateOR f is not localAND

none bringing the datathen
22: Retrieve(f)
23: end if
24: else
25: if f is invalidateOR f is not localthen
26: Retrieve(f)
27: end if
28: end if
29: k ← k + 1
30: currentOp← getOperation(tr)
31: if prevOp= currentOPAND diff then
32: Op← Op+ 1
33: prevOp← currentOp
34: else
35: diff ← false
36: end if
37: end if
38: j ← j + 1
39: end while
40: initialASW← ASW× (1− β) + Op2×

Op
ASW × β

41: if initialASW < 2 then
42: initialASW← 2
43: end if
44: else
45: Sleep(tr.time)
46: end if
47: end for
48: end for

migration, consistency and retrieval of files, according
to the historical events in sliding window. Lines32 to
34 compute the number of similar operations in the cur-
rent window.

Line 41 computes the next window length and line
43 is a special case when window length is less than
2. This special case is a restriction which denies the
absence of further updates in order to avoid shorter-
length windows (which could risk the adaptive ap-
proach). Line46 corresponds to the situation in which
site s is not responsible by processp and there is no
event in the sliding window, therefore,s remains idle
for a period oftime.

4.4 Complexity evaluation

In order to understand the complexity of the proposed
heuristic, we focused on the dominant computations
in the Algorithm 1. The outer loop (line1) is re-
peated at mostP times, therefore, its time complexity
is O(|P |). The loop at line3 is execute, in worst case,
|TR| times. Further, for each iteration of the inner loop
(line 18), lines from19 to 38 have the time complexity
of O(|TR|). We concluded that the total time complex-
ity of the heuristic algorithm isO(P ×TR2). Thus, our
heuristic algorithm is low-order polynomial and can be
run quickly for various grid environments with several
sites.

5 Experiments

Grid computing researches are based on two types of
experiments: real and simulations [11]. Experiments in
real environments are usually more reliable and confirm
proposed approaches in practice. However, applications
may run for long periods and, furthermore, they need
to be correctly and functionally implemented. Most
likely failures occur during those executions, which in-
fluence the results accuracy. Other workloads, imposed
on the environment, may also interfere in experiments.
Finally, it is very difficult to have fully dedicated en-
vironments to avoid those interferences, mainly when
considering the inherently large scale of grid comput-
ing scenarios.

Simulations approximate real experiments by mod-
eling (using equations) those environments and their it-
erations (computers, processes, operations, etc.). The
advantages of simulations over real experiments are: no
need of building real systems; no limits of experimen-
tal scenarios; full control of the environment and repro-
ducibility of experiments.

Due to the advantages of simulation, this paper
adopts the OptorSim simulator, which is part of the Eu-

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 38

ropean DataGrid EDG Project [5]. This simulator was
originally developed to model the dynamic effects of
data replication, and it is used to model the LCG (Large
Hadron Collide Computing Grid), also considered by
other works [22, 4, 10].

OptorSim models grid environments by using sites
interconnected through communication links (Figure
7). Every grid site contains at least one computing el-
ement (CE, or computer), and one storage element, or
both. Every grid site executes a local replica optimizer
(RO) to take replication decisions and there is a single
global resource broker (RB) to decide on job schedul-
ing. OptorSim models jobs to access a set of files,
which may be replicated on grid sites, according to the
RO. A replica catalog (RC) maps logical names to physi-
cal files and a replica manager (RM) handles replications
and also registers them in the catalog. Figure 7 presents
all components of the OptorSim simulator.

Figure 7: Simulated Data Grid architecture

This simulator allows users to specify the grid topol-
ogy by providing parameters forCE’s and communica-
tion links. In this work, we consider a topology gener-
ated by BRITE [25], a complex-network topology gen-
erator which provides bandwidth and latency informa-
tion based on well-accepted models. Topology gener-
ators are widely used to model large-scale network en-
vironments [25], such as the Internet. BRITE was con-
sidered due to its flexibility, adaptability and interoper-
ability [25]. The BRITE output file contains commu-
nication links with their associated bandwidths and la-
tencies which are used, by OptorSim, to model the grid
environment.

OptorSim requires the definition of a job list to be
associated to a set of files. Jobs may access a subset
of those files, according to an access pattern. The sim-

ulator also has four algorithms to take job scheduling
decisions:Random, QueueLength, AccessCost
andQueueAccessCost. Random randomly assigns
a job to a CE, similarly to Legion scheduling [9].
QueueLength assigns jobs to the shortest-queueCE,
what may represents the idler resource.AccessCost
estimates the access time for all files required by a job,
then, the job is assigned to theCE with the lowest es-
timated cost. The last algorithm operates similarly to
the latter, but it also considers queue length (hybrid ap-
proach).

In addition to the scheduling algorithm, Op-
torSim provides five access optimization ap-
proaches: 1) In SimpleOptimiser, no
replication is performed, files are remotely ac-
cessed; 2) DeleteOldestFileOptimiser
replicates files when jobs need them, remov-
ing the least-recently-used (LRU) replicas; 3)
DeleteLeastAccessedFileOptimiser
replicates files when jobs need them, remov-
ing the least-frequently-used (LFU) replicas; 4)
EcoModelOptimiserBinomial considers
an economic model to determine replications.
In this approach, file replicas are removed ac-
cording to a Binomial estimation function; 5)
EcoModelOptimiserZipf considers an eco-
nomic model to replicate files. Replicas are re-
moved according to a Zipf estimation function.
We employed the approaches LRU, LFU and
EcoModelOptimiserZipf in the experiments
(Section 5.4) in order to compare them with the
heuristic proposed in Section 4.3.

OptorSim provides performance metrics for its en-
tities. For grid sites, OptorSim provides: number of re-
mote reads; number of local reads; percentage of time
that everyCE has been active; number of file transfers
that were routed through a site; and the total time (in
seconds) consumed to run all jobs submitted to a site.
For storage elements, OptorSim provides: capacity and
usage, in MB, of theSE. OptorSim also provides the
following metrics for computing elements: job execu-
tion time, in milliseconds; job execution time added to
the queuing time; number of remote file reads of aCE;
number of jobs currently executed by aCE; number of
local file reads of aCE; percentage of time that aCEwas
running jobs; list of the files accessed by jobs running
on a specificCE; and, finally, the total time (in seconds)
to execute all jobs.

5.1 OptorSim Extensions

Some extensions were necessary to adapt OptorSim to
meet our needs. Those extensions provide support for:

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 39

1) trace files; 2) write operations, and 3) adaptive slid-
ing window of historical operations.

OptorSim provides different file access pattern
approaches: 1)SequentialAccessGenerator,
where files are sequentially accessed; 2) In
RandomAccessGenerator, files are ac-
cessed using a uniform distribution; 3) In
RandomWalkUnitaryAccessGenerator, files
are accessed using a unitary random walk distribution;
4) RandomWalkGaussianAccessGenerator,
where files are accessed using a Gaus-
sian random walk distribution; and 5) In
RandomZipfAccessGenerator, files are ac-
cessed using a Zipf random distribution. Those access
patterns dynamically generate the job behavior, what
did not meet our needs to have historical operations.
That motivated us to develop a new approach: 6)
a trace-based file access approach, where events
represent process operations (behavior). Those events
provide the following information for every operation:
process identification (pid), interval in between con-
secutive access operations (time), file identification
(inode), operation type (op) and volume of data
(amt). Table 5 presents an example of a trace file.

Moreover, the original OptorSim provides only read
operations, thus, we also needed to extend it to incorpo-
rate write operations. This extension was based on the
cost (Equation 3) to write data and propagate it to file
replicas, as presented in Algorithms 3 and 4.

Finally, we developed an adaptive sliding window
strategy to provide future events (operations) based on
historical information, as previously presented in Equa-
tion 9. Experiments have confirmed that the adaptive
sliding window heavily impacts the heuristic perfor-
mance (Section 5.4).

5.2 Environment Parametrization

A 128-site grid was considered in experiments. Every
grid site was composed of oneSE where the capac-
ity was modeled by an exponential probability function
with average100GB (parameterΩ described in Sec-
tion 3). Communication links were modeled by us-
ing the BRITE topology generator which considers the
Barabasi model for Autonomous System [25]. In ad-
dition, BRITE adopts a Heavy-Tail distribution func-
tion to define the addition of nodes and bandwidth (the
minimum bandwidth was10 Mbits/s and the maximum
1, 024 Mbits/s). An exponential distribution function
was considered to model communication delays (with
average0.5 seconds).

Experiments were configured with128 jobs (one per
grid site). More jobs may be considered, however when

a set of jobs runs in a specific grid site, the behavior of
each job contributes to the data access behavior issued
by that grid site. Then, by having one job per site, we
can indeed represent the data access patterns of several
individual jobs allocated into the same grid site.

A uniform distribution function (average10) was
used to determine the number of files accessed by every
job (i.e. the set of files accessed by a job). Files in the
OptorSim have fixed size and can be model by follow-
ing the chunk representation in the GFS [17]. The be-
havior of every job is assigned to the simulator by using
a configuration file, which may be synthetic or obtained
by using an interception approach (Section 4.1 and Ta-
ble 5). All jobs have the same probability to run in ev-
eryCE of the environment. An exponential distribution
function was adopted to model the job inter-arrival time
(average1, 500 ms).

Processing capacities were obtained by using the
benchmark SPEC CINT 2000, which is a standard way
of measuring CPU performance. It generates a perfor-
mance measurement based on a reference machine (Sun
Ultra 10) [2]. For example, a Pentium IV has a perfor-
mance of0.5 CINT 2000. In this work, everyCE is ho-
mogeneous and has a processing power of1.0k CINT
2000 (or1, 000 CINT 2000). The CPU homogeneity
does not influence in the data access operations which
are the main focus of this paper.

We consider the same job scheduling algo-
rithm in every experimental scenario, which is the
QueueAccessCost (Section 5) and the same trace
file to describe the data access pattern of files (Section
5.1).

5.3 Intrusion Analysis when Capturing Information

We evaluated costs involved in acquiring the necessary
application knowledge (operations, also called events)
to generate trace files and, therefore, assessed the pro-
posed approach. The same cost involved in obtaining
such information would be necessary in a real envi-
ronment. Two acquiring approaches were considered:
Ptrace [32] and the DLSym [21] under two bench-
marks: Nbench [24] and Bonnie [6]. Nbench
probes the CPU capacity in terms of float-point oper-
ations as well as the memory subsystem.Bonnie per-
forms read-and-write operations on files. Experiments
were executed30 times on aIntel Core i7 CPU
2.67GHz, 8GB RAM and 250GB HD. We have
evaluated the execution time of such benchmarks with
and without acquiring mechanisms. Table 6 presents
results which confirm that the intrusion is lower than
12% in the worst case of Ptrace and1.5% for DLSym.
Each value in Table 6 corresponds to the benchmark

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 40

execution time and its standard deviation, respectively.
This confirms that the second approach, this is DLSym,
would better suit on a real environment, that is why we
selected it.

Table 6: Information capture approach evaluation

Bench Time(s) Ptrace DLSym

Nbench 272.81 309.69 276.78

±5.99 ±20.26 ±5.46

Bonnie 10.41 11.97 10.47

±0.03 ±0.07 ±0.04

NbenchImpact 11.91% 1.43%

Bonnie Impact 13.03% 0.57%

5.4 Results

This section presents experimental results which are or-
ganized according to the previously described environ-
ment: 128-site grid. Charts present bars which corre-
spond to the average of30 executions (this number of
executions is based on the Central Limit Theorem [29],
which supports the obtainment of a significative statis-
tical measurement).

Experiments are categorized according to the per-
centage of read-and-write operations. For example,
Figure 9 presents an environment with5% of the writ-
ing operations, i.e., the trace file has5% of events clas-
sified asw (Table 5).

We evaluated three optimization techniques: LRU,
LFU and the Economic Model (ECO). All those tech-
niques are available in the OptorSim simulator. We
also compared the results of such techniques against
the heuristic proposed is this paper. The DAP heuris-
tic is evaluated under different values of parameterβ:
{0.05, 0.10, 0.15}.

In Figure 8, the simulated environment has100%
of reading operations and10 files are accessed by jobs.
Thex-axis corresponds to parameterβ considered by
the heuristic and they-axis represents the average ex-
ecution time of jobs (in seconds). As shown in Figure
8, the heuristic was capable of reducing the job execu-
tion time in one order of magnitude, when compared to
other data replication techniques.

Figure 8: Environment with100% of reading operations

Figure 9: Environment with5% of writing operations

In Figure 9, the environments deal with5% of writ-
ing and95% of reading operations and10 files are ac-
cessed by jobs. The heuristic reduced the execution
time in one order of magnitude, but, whenβ = 0.15,
the results are similar to the other techniques.

Figure 10: Environment with95% of writing operations

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 41

In Figure 10, the simulated environments present
95% of writing and5% of reading operations and10
files are accessed by jobs. The heuristic has reduced
job execution times in around40%. Whenβ = 0.15,
the heuristic results were worse than other replication
techniques.

We also compared the results of the adaptive heuris-
tic to the ones obtained in the initial paper [19]. From
that, we concluded that this heuristic presents similar
execution times to the environments under100% of
reading operations, and this new approach was10% bet-
ter for the environment under5% of writing operations
and15% better for the environment under95% of writ-
ing operations, what confirms the need for an adaptive
window.

These results confirm improvements in application
performance and suggest the adoption of the adaptive
sliding window length. We observed that the adap-
tation of the sliding window is better when consider-
ing β ∈ [0.05, 0.10]. In the considered scenario, we
experimentally confirmed thatβ ∈ [0.05, 0.10] gives
more relevance to the current window,Wt, according
to Equation 9, and when increasingβ, more relevance
is given to Op. This fact, allow us to conclude that as
β gets lower, the adjustment of the window length is
improved.

The reduction of access costs was obtained due to
the adaptation of the sliding window length (i.e., the
window now follows the dynamic behavior of pro-
cesses), which updates the number of future events
considered when taking decisions on data replication,
migration and consistency. We also observed that
the greater the differences in access patterns (different
types of operations – read, write and idle – interposed),
the unstabler the application performance is.

6 Conclusions

This paper has presented a history-based data access op-
timization approach for grid computing environments.
Our main objective is to minimize the application exe-
cution time by optimizing data accesses and, therefore,
improve decisions on replication, migration and consis-
tency. From that, we proposed an adaptive sliding win-
dow length which aims at providing the dynamic be-
havior of application operations to our data access opti-
mization heuristic.

The proposed approach also considers concepts of
monitoring and intercepting system calls to capture ap-
plications operations and compose processes histories
(i.e. the trace files obtained by intercepting calls). We
kept such histories due to we believe that it is very im-
portant to understand, estimate and/or predict processes

behavior as a way to optimize read-and-write opera-
tions, which was cleared confirmed. In addition, we
defined an analytical optimization model for the Data
Access Problem (DAP), which was considered to study
approaches for minimizing the overall application exe-
cution times.

Simulations were conducted to study the efficiency
of our heuristic using the adaptive sliding window
length, under a wide range of environments and sys-
tem configurations (frequency of read-and-write op-
erations). Experimental results confirm that our ap-
proach outperforms other commonly considered ones
(e.g., LRU, LFU and Economic Model) in approxi-
mately50% when dealing with grid environments. Be-
sides using historical information, the results motivate
further work in designing and implementing on-line
prediction mechanisms to take autonomic decisions on
data replication, migration and consistency.

Acknowledgments

This paper is supported by CNPq-Universal (National
Counsel of Technological and Scientific Development),
under grant no. 470739/2008-8, CAPES (Coordina-
tion of Improvement of Higher Education) and FUN-
DECT (Foundation to Support the Education, Science
and Technology Development of Mato Grosso do Sul)
no. 23/200.402/2008 from Brazil. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and do not neces-
sarily reflect the views of CNPq, CAPES or FUNDECT.

References

[1] The Earth System Grid–ESG Project.
www.earthsystemgrid.org, 2005.

[2] SPEC’s CPU Benchmark. See the definition of
CINT2000 at http://www.spec.org/, Mar 2010.

[3] Abramovici, A., Althouse, W. E., Drever, R. W. P.,
Gürsel, Y., Kawamura, S., Raab, F. J., Shoe-
maker, D., Sievers, L., Spero, R. E., Thorne,
K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E.,
and Zucker, M. E. LIGO: The Laser Interfer-
ometer Gravitational-Wave Observatory.Science,
256(5055):325–333, 1992.

[4] AL-Mistarihi, H. H. E. and Yong, C. H. On fair-
ness, optimizing replica selection in data grids.
IEEE Trans. Parallel Distrib. Syst., 20(8):1102–
1111, 2009.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 42

[5] Bell, W. H., Cameron, D. G., Millar, A. P.,
Capozza, L., Stockinger, K., and Zini, F. Op-
torsim: A Grid Simulator for Studying Dynamic
Data Replication Strategies.International Jour-
nal of High Performance Computing Applications,
17(4):403–416, 2003.

[6] Bray, T. Bonnie benchmark.
http://www.textuality.com/bonnie/, Jun 2009.

[7] Buyya, R. High Performance Cluster Computing
– Architecture and Systems, volume 1. Prentice
Hall, 1999.

[8] Chang, R.-S. and Chang, J.-S. Adaptable replica
consistency service for data grids. InProc. 3th

Int. Conf. on Information Technology: New Gen-
erations, pages 646–651, April 2006.

[9] Chapin, S. J., Katramatos, D., Karpovich, J., and
Grimshaw, A. S. The Legion resource manage-
ment system. In Feitelson, D. G. and Rudolph,
L., editors,Job Scheduling Strategies for Paral-
lel Processing, pages 162–178. Springer Verlag,
1999.

[10] Chervenak, A. L., Schuler, R., Ripeanu, M.,
Amer, M. A., Bharathi, S., Foster, I., Iamnitchi,
A., and Kesselman, C. The globus replica loca-
tion service: Design and experience.IEEE Trans.
Parallel Distrib. Syst., 20(9):1260–1272, 2009.

[11] Dang, N. N. and Lim, S. B. Combination of repli-
cation and scheduling in data grids.International
Journal of Computer Science and Network Secu-
rity, 7(3):304–308, Mar 2007.

[12] Deelman, E., Blythe, J., Gil, Y., Kesselman, C.,
Mehta, G., Vahi, K., Blackburn, K., Lazzarini, A.,
Arbree, A., Cavanaugh, R., and Koranda, S. Map-
ping Abstract Complex Workflows onto Grid En-
vironments.Journal of Grid Computing, 1(1):25–
39, March 2003.

[13] Dorigo, M. and Di Caro, G. The ant colony opti-
mization meta-heuristic. In Corne, D., Dorigo, M.,
and Glover, F., editors,New Ideas in Optimization,
pages 11–32. McGraw-Hill, London, 1999.

[14] Elghirani, A., Subrata, R., and Zomaya, A. Y.
Intelligent scheduling and replication in data-
grids: a synergistic approach. InProc. 7th

IEEE Int.Symposium on Cluster Computing and
the Grid, pages 179–182, Washington, DC, USA,
2007.

[15] Feng, J. and Humphrey, M. Eliminating Replica
Selection - Using Multiple Replicas to Acceler-
ate Data Transfer on Grids. InProc. 10th Int.
Conf. of Parallel and Distributed Systems, page
359, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[16] Garey, M. R. and Johnson, D. S.Computers and
Intractability : A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[17] Ghemawat, S., Gobioff, H., and Leung, S.-T. The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29–43, 2003.

[18] Goldberg, D. E. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1989.

[19] Ishii, R. P. and de Mello, R. F. A history-based
heuristic to optimize data access in distributed en-
vironments. In21st IASTED International Con-
ference Parallell and Distributed Computing and
Systems (PDCS2009), Cambridge, MA, Nov. 2-4
2009.

[20] Jacobson, V., Leres, C., and McCanne, S. TCP-
Dump Man Pages. Available at: Linux Systems,
calling the man command for tcpdump, Mar 2010.

[21] Jung, C., Woo, D.-K., Kim, K., and Lim, S.-
S. Performance characterization of prelinking
and preloadingfor embedded systems. InProc.
7th ACM & IEEE Int. Conf. on Embedded Soft-
ware, pages 213–220, New York, NY, USA, 2007.
ACM.

[22] Kim, J., Chandra, A., and Weissman, J. B. Using
data accessibility for resource selection in large-
scale distributed systems.IEEE Trans. Parallel
Distrib. Syst., 20(6):788–801, 2009.

[23] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.
Optimization by simulated annealing.Science,
Number 4598, 13 May 1983, 220, 4598:671–680,
1983.

[24] Mayer, U. F. Linux/unix nbench.
http://www.tux.org/˜mayer/linux/bmark.html,
Mar 2010.

[25] Medina, A., Lakhina, A., Matta, I., and By-
ers, J. Brite: an approach to universal topol-
ogy generation. InProc. 9th Int. Symposium on

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

Renato P. Ishii and Rodrigo F. de Mello An Adaptive and Historical Approach to Optimize Data Access in Grid Computing Environments 43

Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 346–353,
2001.

[26] Oldfield, R. and Kotz, D. Improving data access
for computational grid applications.Cluster Com-
puting, 9(1):79–99, January 2006.

[27] Oliker, L., Biswas, R., Shan, H., and Smith, W.
Scheduling in heterogeneous grid environments:
The effects of data migration. InProc. 12th Int.
Conf. on Advances in Computing & Communica-
tions, Ahmedabad, INDIA, Jan 2004.

[28] Rahman, R. M., Barker, K., and Alhajj, R. Replica
selection in grid environment: a data-mining ap-
proach. InProc. Symposium on Applied Comput-
ing, pages 695–700, New York, NY, USA, 2005.
ACM.

[29] Schefler, W. C., editor.Statistics: concepts and
applications. Benjamin-Cummings Publishing
Co., Inc., Redwood City, CA, USA, 1988.

[30] Semenov, M. A. and Terkel, D. A. Analysis of
convergence of an evolutionary algorithm with
self-adaptation using a stochastic lyapunov func-
tion. Evol. Comput., 11(4):363–379, 2003.

[31] SMART. Self-Monitoring, Analysis and
Reporting Technology. Available at:
http://en.wikipedia.org.wiki/s.m.a.r.t., 2010.

[32] Spillane, R. P., Wright, C. P., Sivathanu, G., and
Zadok, E. Rapid file system development us-
ing ptrace. InProc. Workshop on Experimental
Computer Science, page 22, New York, NY, USA,
2007. ACM.

[33] Stockinger, H. Defining the Grid: a snapshot on
the current view.The Journal of Supercomputing,
42:3–17, 2007.

[34] Sun, Y. and Xu, Z. Grid replication coherence
protocol. InProc. 18th Int. Symposium on Par-
allel and Distributed Processing, pages 232–239,
April 2004.

[35] Voß, S. Meta-heuristics: The state of the art. In
ECAI ’00: Proceedings of the Workshop on Lo-
cal Search for Planning and Scheduling-Revised
Papers, pages 1–23, London, UK, 2001. Springer-
Verlag.

[36] Wang, C.-M., Hsu, C.-C., Chen, H.-M., and Wu,
J.-J. Efficient multi-source data transfer in data

grids. In Proc. 6th IEEE Int. Symposium on
Cluster Computing and the Grid, pages 421–424,
Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[37] Ware, H. and Frederick, F. VMstat Man Pages.
Available at: Linux Systems, calling the man com-
mand for vmstat, Mar 2010.

INFOCOMP, v. 10, no. 2, p. 26-43, June of 2011

INTERPRETOR: A Software Architecture for the Interpretation of

Large and Noisy Data Sets

APKAR SALATIAN

School of Information Technology and Communications

American University of Nigeria

Lamido Zubairu Way, Yola By-Pass

PMB 2250, Adamawa State, Nigeria

apkar.salatian@aun.edu.ng

Abstract. In many domains there is a need to interpret the high volumes of noisy data. In this paper

we propose and describe a new software architecture called INTERPRETOR for summarising and in-

terpreting voluminous high frequency noisy data. INTERPRETOR consists of 3 modules: Filter which

processes noise; Abstraction which abstracts features from the filtered data; and Interpretation which

takes the abstractions and provides an interpretation of the data. In this seminal article we also show how

INTERPRETOR has successfully been applied to 2 case studies.

Keywords: oftware architecture, filtering, abstraction, interpretation.

(Received February 11st, 2011 / Accepted May 2nd, 2011)

1 Introduction

In many domains there is a need to interpret high fre-

quency noisy data. Interpretation of such data may

typically involve pre-processing of the data to remove

outliers, inconsistencies or noise. Rather than reason-

ing quantitatively on a point to point basis which is

computationally expensive, this filtered data would be

processed to derive abstractions which would be inter-

preted and the results reported. Such a common ap-

proach lends itself to the development of a software ar-

chitecture.

Abstractly, software architecture involves the de-

scription of elements from which systems are built, in-

teractions among those elements, patterns that guide

their composition, and constraints on these patterns. In

general, a particular system is defined in terms of a

collection of components and interactions among these

components. Such a system may in turn be used as a

(composite) element in a larger system design. Indeed,

a good software architecture will involve reuse of estab-

lished engineering knowledge [19].

In this seminal paper we propose and describe the

INTERPRETOR software architecture for interpreting

and summarising high frequency noisy data sets. IN-

TERPRETOR was inspired by the software architecture

of ASSOCIATE [18] for interpreting Intensive Care

Unit monitor data and ABSTRACTOR [16] for inter-

preting building sensor data - both systems have com-

mon features which facilitates a generic architecture.

INTERPRETOR is based on the pipe and filter soft-

ware architecture and consists of 3 consecutive pro-

cesses: Filter which takes the original data and removes

outliers, inconsistencies and noise; Abstraction which

takes the filtered data and derives abstractions; and In-

terpretation which takes the abstractions and provides

an interpretation and summarisation of the original data.

The structure of this paper is as follows. Sec-

tion 2 discusses related work. Section 3 describes the

INTERPRETOR software architecture to interpret and

summarise high frequency noisy data Section 4 de-

scribes how the INTERPRETOR software architecture

has been applied to 2 case studies. Final conclusions

are given in section 5.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 45

2 Related Work

A common architecture used to interpret high frequency

data is the blackboard as used by ([1],[10], [14]). A

blackboard system consists of a set of independent

modules, called Knowledge Sources (KSs) that con-

tain the domain-specific knowledge in the system, and

a blackboard which is a shared data structure to which

all the KSs have access. When a KS is activated it ex-

amines the current contents of the blackboard and ap-

plies its knowledge either to create a new hypothesis

and write it on the blackboard, or to modify an exist-

ing one [13]. INTERPRETOR’s architecture is sim-

ilar to that of the blackboard in that individual tasks

are performed by separate processes. However since

the knowledge of blackboards are distributed, prob-

lems would arise with the co-ordination of knowledge

sources which have competing obligations.

Another approach for interpreting high frequency

and noisy data is the service-oriented architecture

(SOA) used by ([4], [8], [20]). The SOA consists

of components which can handle numerous distributed

agents to allow the interpretation of data. Due to the

architecture of SOA, extra functionality in the form of

security for message passing between agents has had to

be incorporated. Since INTERPRETOR is not a dis-

tributed system, there is no requirement for these extra

services.

Another approach is a multi-layered architecture

([7], [21]). A multi-layered system is organized hierar-

chically where each layer provides service to the layer

above it and serves as a client to the layer below it. The

authors of [7] proposed a five layered generic and scal-

able architecture which uses components, middleware

and agent technologies. Though a demonstrator was

developed as a proof that the proposed conceptual soft-

ware architecture is feasible in practice, there was no

actual data or results to support their design. In contrast

our proposed software architecture has been proven to

work effectively.

Another approach is to have a multi-agent archi-

tecture ([2], [3], [12]). An agent is an autonomous

computational process that inhabits an Agent Platform.

An Agent platform provides the physical infrastructure

in which agents are deployed and consists of the ma-

chines, operating systems, agent management compo-

nents, the agents themselves and any additional sup-

port software. Agents typically offer one or more com-

putational services that can be published as a service

description. Agents typically communicate with each

other to fulfill a task. Again, since INTERPRETOR is

not a distributed system, there is no requirement for ex-

tra services which a multi-agent system would require.

A non-hierarchical architecture is SIMON [5]. SI-

MON (Signal Interpretation and MONitoring) is a sys-

tem for monitoring neonates in the ICU. SIMON con-

sists of a number of modules implemented as indepen-

dent UNIX processes, communicating with each other

through an inter-process communication (IPC) message

protocol. The problem with such an architecture is the

scheduling of the various modules. Care must be taken

that the shared memory does not get corrupted by si-

multaneous writes. Another problem of SIMON is that

it is solely an event driven architecture - it functions

with discrete and infrequently determined input. IN-

TERPRETOR deals with continuous and discrete data

and does not have scheduling issues.

Another non-hierarchical approach is to use sequen-

tial processes. VIE-NET [11] a monitoring and therapy

planning system for the artificial ventilation of newborn

infants and resembles a em pipe and filter architecture

where by a component reads streams of data on its in-

puts and produces streams of data on its outputs for

another component to process. VIE-NET is made up

of four sequential modules: Data Selection which fil-

ters out context-relevant data for further analysis; Data

Validation which arrives at reliable measurements by

detecting faulty data; Data Abstraction which trans-

forms quantitative data of the observable system into

qualitative values; and Data Interpretation and Therapy

Recommendation which performs patient state assess-

ments and associated therapy advise. INTERPRETOR

strongly resembles VIE-NET except that INTERPRE-

TOR does not perform data validation (though it could

be performed as part of the Interpretation module) nor

does it generate therapy recommendations because it is

a generic architecture

3 Software Architecture

Figure 1 shows the Context Diagram of the INTER-

PRETOR system. The INTERPRETOR system takes

high frequency noisy data and other relevant data to

assist in interpretation from various input sources and

presents to various output sources an interpretation of

the original data.

Figure 2 shows the data flow in the INTERPRETOR

system of Figure 1. Data is initially filtered to get rid of

noise; rather than reasoning on a point to point basis,

the resulting data stream is then converted by a second

process into abstractions - this is a form of data com-

pression. These abstractions are interpreted by a third

process to provide an assessment of the original data.

We, therefore, derive the overall software architec-

ture of the INTERPRETOR System in form of a Struc-

ture Chart as shown in Figure 3.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 46

Figure 1: Context Diagram of the INTERPRETOR System

Figure 2: Data Flow Diagram of the INTERPRETOR System

Figure 3: Overall Software Architecture of the INTERPRETOR Sys-

tem

It can be seen that INTERPRETOR is a data flow ar-

chitecture. The architecture is decomposed into 3 pro-

cesses which can be changed or replaced independently

of the others - this makes INTERPRETOR a loosely

coupled system. Indeed, each process of the INTER-

PRETOR performs one task or achieves a single objec-

tive - this makes the INTERPRETOR a highly cohesive

system.

INTERPRETOR can be considered a pipe and fil-

ter architectural style because it provides a structure

for systems that process a stream of data. Each pro-

cessing step is encapsulated in a filter component (pro-

cess) which reads streams of data on input and produces

streams of data on output. A local incremental trans-

formation to input stream is made and the output be-

gins before input is consumed. Data is passed through

pipes between adjacent filters - they are the conduits for

streams and transmit outputs from one filter to input of

another. The advantage of this approach is the overall

behavior is a simple composition of behavior of indi-

vidual filters. The architecture facilitates reuse so any

two filters can be connected if they agree on that data

format that is transmitted. There is ease of maintenance

because any filter can be changed or replaced depend-

ing on the application.

We hope to extend our INTERPRETOR design ar-

chitecture, such that we have a generic design pat-

tern for voluminous and high frequency noisy data,

whereby, the data is passed through 3 consecutive pro-

cesses: Filter Data which takes the original data and

removes outliers, inconsistencies or noise; Abstraction

which takes the filtered data and abstracts features from

the filtered data; and Interpretation which uses the ab-

stractions and generates an interpretation of the original

data.

4 Applications of INTERPRETOR

We will demonstrate the application of the INTERPRE-

TOR software architecture to 2 case studies: Interpret-

ing Intensive Care Unit (ICU) monitor data and inter-

preting building monitor data.

4.1 Case Study 1 - Interpreting ICU Monitor Data

The ICU bedside monitors confront the medical staff

with large amounts of continuous noisy data - this is

emphasised when there are many cardiovascular param-

eters such as the heart rate and blood pressure being

recorded simultaneously. The frequency of the data can

be higher than 1 value every second which creates infor-

mation overload for medical staff who need to interpret

the data to evaluate the state of the patient.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 47

A system called ASSOCIATE [15] has been devel-

oped using the the INTERPRETOR software architec-

ture to interpret the ICU monitor data. We shall de-

scribe how ASSOCIATE implemented each of the mod-

ules of the the INTERPRETOR software architecture.

4.1.1 Filter Module

Figure 4: Algorithm for Filter Data Module

Filtering is the process of removing certain noise

like clinically insignificant events from the physiolog-

ical parameters. Clinically insignificant events which

can not be removed at this stage will be dealt with by

the Interpretation process.

After various investigations of filtering techniques,

a median filter was chosen. The median filter involves

a moving window which is centered on a point xn and

if the window is of size 2k+1 the window contains the

points xn−k to xn+k. By always choosing the median

value in the window as the filtered value, it will remove

transient features lasting shorter than k without distor-

tion of the base line signal; features lasting more than

that will remain. A summary of the algorithm for apply-

ing the median filter to our physiological data is shown

in Figure 4.

4.1.2 Abstraction Module

Given continuous data (up to one value every second),

it is computationally expensive to reason with each data

value on a point to point basis - this data needs to be

reduced by performing abstraction. Abstraction is the

classification of filtered data generated by the filtering

process into temporal intervals (trends) in which data

is steady, increasing and decreasing. One is also inter-

ested in the rate of change e.g rapidly increasing, slowly

decreasing etc. One must decide the beginning and end

of an interval.

Our algorithm for identifying trends involves fol-

lowing two consecutive sub-processes called temporal

Figure 5: Algorithm for Abstraction Module

interpolation and temporal inferencing. Temporal in-

terpolation takes the cleaned data and generates simple

intervals between consecutive data point. Temporal in-

ferencing takes these simple intervals and tries to gener-

ate trends - this is achieved using 4 variables: diff which

is the variance allowed to derive steady trends, g1 and

g2 which are gradient values used to derive increasing

and decreasing trends and dur which is used to merge

3 intervals based on the duration of the middle interval.

Temporal Inferencing rules to merge 2 meeting inter-

vals (∆H2) and 3 meeting intervals (∆H3) use the 4

variables to try to merge intervals into larger intervals

until no more merging can take place. The algorithm

for abstraction is summarised in 5. For further discus-

sion of the algorithm the reader is advised to read [17].

4.1.3 Interpretation Module

Interpretation is based on defining a trend template for

each type of event we wish to identify - examples of

trend templates are shown in Figure 6. A given trend

template will specify criteria which apply both within

intervals and between intervals. The two relationships

of interest between intervals are: meeting where the end

time of one interval is the same as the start time of the

other; and overlapping where there exists a time which

is common to both intervals.

The algorithm for interpretation involves applying

the templates to the temporal intervals. Clinically in-

significant event and clinical condition templates ini-

tially have the status absent and therapy templates ini-

tially have the status working. The reasoning engine

assesses the status of the templates (i.e hypothesised

or confirmed) by evaluating the expressions located

in the HypothesiseConditions and ConfirmConditions

slots with the data. Actions to be performed when the

templates are hypothesised or confirmed are provided

in the HypothesiseActions and ConfirmActions slots. If

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 48

we have a template which has a hypothesised status over

a number of adjacent segments which are subsequently

confirmed then in retrospect we change these hypothe-

sised states to confirmed. This is a way of confirming

our initial beliefs. All segments with clinically signifi-

cant templates that have confirmed states represent the

interpretation.

Trend templates encompass three types of knowl-

edge: temporal, differential and taxonomical. Temporal

knowledge allows temporal reasoning; interval-based

and point-based reasoning. Interval-based temporal

reasoning is achieved using the still_developing and to-

gether functions. Given a clinical condition which is de-

scribed in terms of overlapping intervals, the still_devel

oping function operates on the uncertain period be-

tween the hypothesised state and the confirmed state of

the clinical condition. Here the still_developing func-

tion is satisfied if there is the correct temporal pro-

gression from the hypothesised state to the confirmed

state. Similarly the together function operates on over-

lapping temporal intervals which make up clinically in-

significant events. Here the together function is sat-

isfied if the overall changes in all the individual pa-

rameters that make up the event all share a common

time interval. Though defined differently, the together

and still_developing functions take into account the ex-

pected changes of the individual parameters that make

up specific events do not occur at exactly the same time.

Point-based temporal reasoning is used to determine

the outcome of therapy. It is known that clinicians ex-

pect changes in parameters to be achieved by a lower

and upper temporal bound represented as time points in

the future. ASSOCIATE expresses point based tempo-

ral reasoning within temporal intervals. When therapy

is administered at a specific point in time, we compare a

(future) interval which contains the therapy’s temporal

bound (lower and upper) with the interval which con-

tained the time of administration. We are interested

in whether parameters have increased, decreased or re-

mained the same in the future after the time of adminis-

tration.

Since several clinical conditions may be described

by the same patterns, differential knowledge can be

used to eliminate possibilities and hence prevent unnec-

essary reasoning. Information such as the patient record

which contains the patient’s history can be used as dif-

ferential knowledge.

Also within the trend templates there is taxonomical

knowledge - since several clinical conditions have simi-

lar attributes, this enables us to represent them as a hier-

archy of classes and subclasses. Such a representation

allows more abstract clinical conditions to be identified

Figure 6: Possible templates for clinical conditions, insignificant

events and therapies

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 49

- if a specific instance of a clinical conditions cannot be

identified then the more general class of clinical condi-

tion to which it belongs is more likely to describe the

data. For further discussion of the algorithm the reader

is advised to read [15].

4.1.4 Results

ASSOCIATE has been tested on three datasets from an

adult ICU (here each set covers 24 hours and contains

measurements of heart rate, mean blood pressure and

central venous pressure) and six datasets from a neona-

tal ICU (here each set covers about 60 hours and con-

tains measurements of heart rate, mean blood pressure,

partial pressure of oxygen and partial pressure of car-

bon dioxide). The data sets were taken in 1995 as part

of a research project and the results were validated by a

consultant aneasthetist and a consultant neonatologist.

Overall, ASSOCIATE has a false-positive rate of

28.9% and a false-negative rate of 0.3% in identify-

ing clinically insignificant events, a false-positive rate

of 10.7% and a false-negative rate of 0.15% in identi-

fying clinical conditions and a false-positive rate of 0%

and a false-negative rate of 87.9% in determining the

outcome of therapy. Since all have a true positive rate

which is higher than its false positive rate, ASSOCIATE

can be seen as a conservative system [9].

As an example, consider a three day data set taken

from an ICU from from 00:01 on 22 April 1995 to 23:59

on 24 April 1995; the frequency of the signal is one data

item per minute. No prior knowledge of events that oc-

curred within this data set was known to the expert or

the tester. Figure 7 depicts the physiological data from

ICU patient monitors and Figure 8 depicts a graphical

summary of the temporal intervals generated for each

parameter by the Abstraction Module. Note that in the

graphs HR represents the Heart Rate, BP represents the

Blood Pressure, PO represents the Partial Pressure of

Oxygen and TCO represents the Partial Pressure of Car-

bon Dioxide.

All clinically insignificant events were correctly

identified and removed.

For the clinical condition interpretation, the expert

agrees that ASSOCIATE identified all 11 episodes of

respiratory problems in the data. Of 2 of these episodes,

namely those identified from 11:44 on 23/04/95 to

12:04 on 23/04/95 and from 13:57 on 23/04/95 to

14:32 on 23/04/95 may have been pneumothoraxes.

However, ASSOCIATE incorrectly identifies respira-

tory problems on 5 occasions. ASSOCIATE also incor-

rectly identifies a pulmonary haemorrhage and a pneu-

mothorax at the same time, though the expert agrees

that there is a respiratory problem at this time.

Figure 7: Original Physiological Data from ICU Patient Monitor

Figure 8: Graphical Summary generated by the Abstraction Module

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 50

ASSOCIATE identified 3 separate episodes of

shock of which the expert agreed with 2 of them. The

expert also agrees in ASSOCIATE’s identifications of

episodes of tachycardia and hypercarbia. However, a

few of the episodes of hypoxaemia were incorrectly

identified due to noisy data.

The expert agreed that ASSOCIATE recognised all

clinical conditions in the data set i.e no clinical condi-

tions were missed.

For the therapy interpretation, 6 therapies were ad-

ministered. Of the 5 that worked ASSOCIATE cor-

rectly identifies 2 of them as working. ASSOCIATE

correctly identifies the therapy that did not work. The

incorrect results were because of noisy data and approx-

imate times of administration.

4.2 Case Study 2 - Interpreting Building Sensor

Data

Building operators are confronted with large volumes

of continuous data from multiple environmental sen-

sors which require interpretation. The ABSTRAC-

TOR ([18], [16]) system used the INTERPRETOR soft-

ware architecture to summarise historical building sen-

sor data for interpretation and building performance as-

sessment. We shall describe how ABSTRACTOR im-

plemented each of the modules of the INTERPRETOR

software architecture.

4.2.1 Filter Module

Figure 9: Algorithm for Filter Data Module

Initially data needs to be filtered to get rid of non-

significant events in environmental monitoring data.

Due to the nature and frequency of the data, an aver-

age filter was chosen - here all the very short duration

spikes from the outdoor temperature data were removed

whilst revealing the short duration trends hidden in the

raw data. The algorithm for the filter module is given in

Figure 9.

4.2.2 Abstraction Module

This module is exactly the same as the agglomerative

approach used for case study 1 - for a discussion of this

algorithm applied to building monitor data the reader is

advised to read [20].

4.2.3 Interpretation Module

Given overlapping trends it is proposed, in the spirit of

[6] they are split into global segments. A change in the

direction of change (slope) of one (or more) channels

or a change in the rate of change of one (or more) chan-

nels contributes to a split in the trends creating a global

segment. A global segment can be considered as being

a set of intervals - one for each channel.

Figure 10: Example of rules to apply to global segments

The algorithm for interpretation involves applying

rules to the global segments. Examples of rules for

identifying faults are shown in Figure 10 - here a fault

is declared when the heat-flux does not have the same

trend as the difference in internal and external temper-

ature (t1-t0). If rules are true over adjacent global seg-

ments then one can determine when the fault started and

ended.

4.2.4 Results

ABSTRACTOR has been tested on over 8 days (121

79 minutes) worth of continuous data (see Figure 11a).

The data was the heat-flux into a wall and the differ-

ence in internal and external temperature (ti-t0) mea-

surements; the sampling frequency of the signals is one

data item every 15 minutes. No prior knowledge of

events that occurred within this data set was known to

the expert or the tester. The application of the average

filter (k=10 filter provides a running five and a quar-

ter hour running average) is shown in the middle graph

11(b) and the intervals generated are shown in the bot-

tom graph 11(c).

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 51

Figure 11: Output of ABSTRACTOR

Overall, ABSTRACTOR has a sensitivity of 56%,

specificity of 64%, predictive value of 43%, a false pos-

itive rate of 57% and a false negative rate of 24%. These

results mean that when a fault is present ABSTRAC-

TOR is detecting it only 56% of the time but when

there is no fault it will correctly identify this 64% of the

time. Whilst it would seem that ABSTRACTOR is only

slightly better than tossing a coin to decide the presence

or absence of a fault it needs to be remembered that the

actual fault conditions were derived from an expert’s

manual abstraction of the raw data which is dependent

on the expert’s attitude and experience. A direct com-

parison with the raw data is meaningless because the

data is at intervals much shorter than the trends. If AB-

STRACTOR were to be incorporated in its present state

into a control system it would generate a high number

of false alarms (57%) but would fail to detect a fault

only 24% of the time. These results are indicating that

ABSTRACTOR is a more liberal system than a random

system [9].

5 Conclusions

The interpretation of high frequency and noisy data is

non-trivial. The INTERPRETOR software architecture

is designed in such a way to allow the interpretation of

high frequency and noisy data and the results of IN-

TERPRETOR are encouraging. We have shown that

INTERPRETOR can be applied to different domains

which have the same issues associated with the interpre-

tation of voluminous and noisy data. Our future work

will be to develop a tool for our software architecture

which should lend itself for reuse and then validate it

with further case studies.

In summary, INTERPRETOR reasons with multiple

signals in an intuitive way. Although it is not perfect, it

is a step forward in the development of systems for the

interpretation of voluminous high frequency and noisy

data.

References

[1] Beigl, M., Beuster, M., Rohr, D., Riedel, T.,

Decker, C., and Krohn, A. S2b2: Blackboard for

transparent data and control access in heteroge-

neous sensing systems. pages 126–129, 2007.

[2] Bellifemine, F., Caire, G., Poggi, A., and Rimassa,

G. Jade: A software framework for developing

multi-agent applications. lessons learned. Infor-

mation and Software Technology, 50(1-2):10–21,

2008.

[3] Carrascosa, C., Bajo, J., Julian, V., Corchado,

J. M., and Botti, V. Hybrid multi-agent architec-

ture as a real-time problem-solving model. Expert

Systems with Applications, 34(1):2–17, 2008.

[4] Crawford, C. H., Bate, G. P., Cherbakov, L., Hol-

ley, K., and Tsocanos, C. Toward an on demand

service-oriented architecture. IBM Systems Jour-

nal, 44(1):81–107, 2005.

[5] Dawant, B. M., Uckun, S., Manders, E. J., and

Lindstrom, D. P. Soda: Service oriented device

architecturethe simon project - model-based sig-

nal acquisition, analysis, and interpretation in in-

telligent patient monitoring. IEEE Engineering In

Medicine and Biology, 12(4):82–91, 1993.

[6] DeCoste, D. Dynamic across-time measurement

interpretation. Artificial Intelligence, 51:273–341,

1991.

[7] Decruyenaere, J., DeTurck, F., Vanhastel, S., Van-

dermeulen, F., P Demeester, P., and deMoor, G.

On the design of a generic and scalable multilayer

software architecture for data flow management in

the intensive care unit. Journal of Methods of In-

formation in Medicine, 3:79–88, 2010.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Apkar Salatian INTERPRETOR: A Software Architecture for the Interpretation of Large and Noisy Data Sets 52

[8] deDeugd, S., Carroll, R., Kelly, K. E., Millett, B.,

and Ricker, J. Soda: Service oriented device archi-

tecture. IEEE Pervasive Computing, 5(3):94–96,

2006.

[9] Fawcett, T. Roc graphs: Notes and practical con-

siderations for data mining researchers. Technical

Report HPL-2003-4, Intelligent Enterprise Tech-

nologies Laboratory, HP Labs Palo Alto, January

2003.

[10] Hayes-Roth, B., Washington, R., Ash, D., Hewett,

R., Collinot, A., Vina, A., and Seiver, A.

Guardian: A prototype intelligent agent for

intensive-care monitoring. Technical Report KSL

91-42, Knowledge Systems Lab Report, Depart-

ment of Computer Science, Stanford University,

June 1991.

[11] Miksch, S., Horn, W., Popow, C., and Paky, F.

Context-sensitive data validation and data abstrac-

tion for knowledge-based monitoring. Technical

Report TR-94-04, Austrian Research Institute for

Artificial Intelligence, 1994.

[12] Mistry, M. and Shah, D. Implementation of multi-

agents system in health care domain. pages 100–

104, January 2011.

[13] Rich, E. Artificial Intelligence. 1988.

[14] Rudenko, D. and Borisov, A. An overview of

blackboard architecture application for real tasks.

volume 31, pages 50–57, 2007.

[15] Salatian, A. Interpreting historical icu data using

associational and temporal reasoning. volume 4,

pages 442–450, 2003.

[16] Salatian, A. A software architecture for deci-

sion support of building sensor data. International

Journal of Smart Home, 4(4):27–34, 2010.

[17] Salatian, A. and Hunter, J. R. W. Deriving trends

in historical and real-time continuously sampled

medical data. Journal of Intelligent Information

Systems, 13:47–74, 1999.

[18] Salatian, A. and Oriogun, P. A software architec-

ture for summarising and interpreting icu monitor

data. International Journal of Software Engineer-

ing, 4(1):3–14, 2011.

[19] Shaw, M. and Garlan, D. Software Architecture:

Perspectives on an Emerging Discipline. New Jer-

sey, 1996.

[20] VanHoecke, S., DeTurck, F., Danneels, C., De-

Proft, K., Taveirne, K., and Decruyenaere, J.

Platform for intelligent agent subscription in icu.

2006.

[21] Yang, M., Wang, S., Abdelal, A., Jiang, Y., and

Kim, Y. An improved multi-layered architecture

and its rotational scheme for large-scale wireless

sensor networks. Las Vegas, NV, USA, pages 855–

859, Janaury 2007.

INFOCOMP, v. 10, no. 2, p. 44-52, June of 2011

Universidade Federal de Lavras
INFOCOMP Journal of Computer Science

Publication guidelines (July of 2011)

1. INFOCOMP publishes original scientific and technological papers in English. The
papers should be related to Computer Science.

2. The papers should be submitted in PDF format without authors’ informations using
the JEMS system (https://submissoes.sbc.org.br/infocomp) of the Brazilian Com-
puter Society (SBC). Login and password are necessary and they can be obtained
online in the JEMS system.

3. The papers should follow the INFOCOMP format: Paper Letter (21.5x28.0cm), 1.1
line spacing, Times New Roman 10, justified text, with superior, inferior, left and
right margins of 2.5 cm. The number of pages should not exceed 12. Papers with
more than 12 pages may be accepted after analysis by the editorial board.

4. The first page should contain title, authors (only in the final version), abstract and
keywords. Afterwards, it should contain the following text centralized: “(Received
January 1st, 2005 / Accepted December 31st, 2005)” for posterior edition with the
correct dates. These informations should not exceed one page and should be in one
column. The title should be in font size 14.

5. The authors’ names (only in the final and accepted version) should be sided hor-
izontally, identified by a superscripted number. The affiliation and the electronic
address of each author should be written right below the names.

6. The text of the paper should be formatted in two columns, separated by 0.5cm,
with numerated sections and subsections. Examples are: 1. Introduction, 1.1.
Terminology. Figures and tables may occupy the page width, if necessary. The
figure and table titles should be numerated and centralized below them.

7. The references should be numerated and listed in alphabetical order. Ex: [5]
Hougardy, S. Even pairs and the strong perfect graph conjecture, Discrete Math.
v.154, p.277-288, 1996. Citations should be made based on the number of the ref-
erence. “In [5], it was proved that...” is an example of citation.

8. Footnotes may be accepted, when strongly necessary, for explanations that cannot
be included in the text, such as: (a) name of the research institution; (b) support
organizations and other financial supports; (c) reference to the publication as part
of MSc or PhD thesis; (d) personal communication.

9. The authors give the right of publishing and formatting the articles upon submission.

10. Non compliance with these rules will result in the non acceptance of the paper.

11. Publications in the INFOCOMP are free of charge.

