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Abstract. Brain tumor remain one of the most life-threatening forms of cancer, and early and accurate
diagnosis is crucial for effective treatment planning and improving patient outcomes. Magnetic Reso-
nance Imaging (MRI) serves as a primary modality for brain tumor detection; however, manual interpre-
tation of these scans is often time-consuming and subject to inter-observer variability. Recent advances in
Machine Learning (ML) and Deep Learning (DL) offer promising tools to automate and enhance tumor
detection and segmentation in medical images. This research paper presents a comprehensive study on
the application of ML and DL techniques for brain tumor detection, focusing on both classification and
segmentation tasks. Various algorithms, including traditional ML classifiers and state-of-the-art Con-
volutional Neural Networks (CNNs), were evaluated on publicly available datasets. The proposed deep
learning models demonstrated superior performance in identifying tumor regions with high accuracy and
robustness. Furthermore, the paper discusses the challenges associated with data preprocessing, model
interpretability, and real-time deployment, particularly in the context of medical science. The results
underscore the potential of integrating ML/DL-based systems into clinical workflows to support radiol-
ogists and enhance diagnostic efficiency.
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Introduction

Brain tumors constitute a major global health challenge,
affecting thousands of individuals each year across all
age groups. These tumors, which may be benign or
malignant, can significantly impact the central nervous
system by disrupting normal brain function. Early and
accurate detection of brain tumors is crucial, as it di-
rectly influences treatment options, clinical outcomes,
and survival rates. Delayed diagnosis often leads to ad-
vanced stages of the disease, where treatment becomes
more complex and prognosis worsens. Magnetic Res-
onance Imaging (MRI) is widely regarded as the gold
standard imaging modality for brain tumor detection
due to its non-invasive nature and superior contrast res-
olution of soft tissues. MRI provides detailed informa-
tion about tumor size, location, and tissue character-

istics, which are vital for diagnosis and surgical plan-
ning. However, the traditional process of manually an-
alyzing MRI scans is highly dependent on the exper-
tise of radiologists. This manual assessment is not only
time-consuming but also subject to intra- and interob-
server variability, which can lead to inconsistent diag-
nostic decisions. Given the increasing volume of med-
ical imaging data and the growing demand for timely
diagnosis, there is a pressing need for automated and re-
liable methods to assist clinicians in the diagnostic pro-
cess. In this context, Machine Learning (ML) and Deep
Learning (DL) technologies have emerged as power-
ful tools capable of transforming medical image analy-
sis. Traditional ML techniques, such as Support Vector
Machines (SVM), Random Forests (RF), and k-Nearest
Neighbors (k-NN), have been applied to brain tumor de-
tection tasks, primarily relying on manually extracted
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features from MRI scans. These features typically in-
clude texture, shape, intensity, and morphological char-
acteristics. While traditional ML methods have demon-
strated promising results, they often require significant
domain expertise for effective feature engineering and
may struggle to capture the complex patterns present in
medical images. Deep Learning, particularly through
the use of Convolutional Neural Networks (CNNs), has
revolutionized the field of computer vision and is now
being extensively applied to medical imaging. CNNs
can automatically learn hierarchical feature representa-
tions directly from raw image data, enabling them to
model intricate spatial and contextual information. This
capability has led to substantial improvements in the ac-
curacy and robustness of tumor classification and seg-
mentation tasks. Furthermore, advanced DL architec-
tures such as UNet and its variants have proven highly
effective for precise tumor segmentation, facilitating
accurate delineation of tumor boundaries critical for
treatment planning. Despite these advancements, sev-
eral challenges remain in the practical deployment of
ML and DL models for brain tumor detection. One ma-
jor limitation is the scarcity of large, high-quality an-
notated datasets, which are essential for training deep
neural networks. The variability in imaging protocols
across different institutions and scanners also affects
model generalizability. Moreover, the "black-box" na-
ture of deep learning models raises concerns about in-
terpretability and clinical trust. Clinicians require not
only accurate predictions but also understandable ex-
planations of model decisions to confidently integrate
Al systems into their diagnostic workflows. Another
important consideration is the computational demand
of deep learning models, which can hinder their de-
ployment in real-time clinical settings. To address this,
recent research has explored the use of edge comput-
ing and cloudbased solutions to enable efficient pro-
cessing and rapid inference. Edge computing, in par-
ticular, offers the advantage of performing Al computa-
tions close to the data source, reducing latency and al-
leviating privacy concerns associated with transmitting
sensitive patient data over networks. Such approaches
are particularly valuable in telemedicine applications
and resource-constrained environments, where access
to specialized radiological expertise may be limited.
This paper presents a comprehensive study on the ap-
plication of ML and DL techniques for brain tumor de-
tection using MRI data. We systematically evaluate the
performance of various traditional ML classifiers and
modern DL architectures on publicly available datasets.
In addition to comparing model accuracy and robust-
ness, we examine practical issues related to data pre-

processing, model interpretability, and computational
efficiency. We also discuss the potential of integrating
these Aldriven systems into clinical practice. Our find-
ings aim to advance the development of effective, scal-
able, and trustworthy brain tumor detection solutions
that can enhance diagnostic accuracy and support clini-
cians in delivering better patient care.

1.1 Aim and Objective

e To design and implement ML and DL models
for classifying and segmenting brain tumors from
MRI data.

e To compare the performance of traditional ML
classifiers and modern CNN-based DL architec-
tures using standard evaluation metrics.

e To explore practical considerations for deploy-
ing Al-based tumor detection systems, including
model interpretability, computational efficiency,
and potential integration with telemedicine plat-
forms.

1.2 Paper Organization

e Section II presents a review of related work in
the field of brain tumor detection using Machine
Learning and Deep Learning techniques.

e Section III describes the proposed methodology,
including data preprocessing, feature extraction,
model architectures, and training procedures.

e Section IV details the experimental setup and eval-
uation metrics, followed by the presentation and
discussion of results.

e Section V highlights the practical considerations
and challenges associated with deploying Al-
based brain tumor detection systems.

e Section VI concludes the paper and outlines direc-
tions for future research.

2 Review of Existing Works

The application of Machine Learning (ML) and Deep
Learning (DL) techniques in brain tumor detection and
segmentation has been an active area of research in re-
cent years. Numerous studies have explored the poten-
tial of these methods to enhance diagnostic accuracy
and reduce the workload of radiologists.

Early research focused primarily on traditional ML
techniques, where handcrafted features such as texture,
intensity, and shape were extracted from MRI images
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to classify brain tumors. Support Vector Machines
(SVM), Random Forests (RF), k-Nearest Neighbors (k-
NN), and Decision Trees have been widely used in this
context. For example, Zacharaki et al. [?] employed
SVMs combined with texture and morphometric fea-
tures to classify glioma types, achieving promising re-
sults. However, the performance of traditional ML ap-
proaches is heavily dependent on the quality and rel-
evance of the extracted features, which often requires
extensive domain knowledge and manual intervention.

The advent of Deep Learning, particularly Convo-
lutional Neural Networks (CNNs), has significantly ad-
vanced the field of medical image analysis. CNNs
can automatically learn complex feature representa-
tions from raw image data, enabling superior perfor-
mance in both classification and segmentation tasks.
Pereira et al. [?] introduced a deep CNN architecture for
brain tumor segmentation on MRI images, demonstrat-
ing substantial improvements over traditional ML ap-
proaches. Similarly, Hossain et al. [?] utilized a CNN-
based model for multi-class classification of brain tu-
mors, achieving high accuracy and robustness across
different tumor types.

Another important contribution is the U-Net archi-
tecture proposed by Ronneberger et al. [?], which has
become a standard for biomedical image segmentation,
including brain tumor segmentation. The U-Net and its
variants are capable of producing highly accurate pixel-
wise segmentations, which are critical for delineating
tumor boundaries in clinical practice. Isensee et al. Fur-
ther improved upon this with nnU-Net, an automated
framework that adapts U-Net configurations to specific
biomedical segmentation tasks.

Several public datasets, such as the Brain Tumor
Segmentation (BraTS) Challenge datasets, have facil-
itated benchmarking and comparison of different algo-
rithms. Studies leveraging the BraTS datasets consis-
tently report that DL-based methods outperform classi-
cal ML techniques in terms of segmentation accuracy
and generalization.

Despite these advancements, several challenges per-
sist. The limited availability of large, annotated datasets
remains a significant bottleneck for training robust DL
models. Variability in imaging protocols across differ-
ent institutions can affect model generalizability. Fur-
thermore, the interpretability of DL models is still an
area of active research, as clinicians require transparent
and explainable Al systems to build trust in automated
diagnostic tools.

Recent works have also started exploring the de-
ployment of brain tumor detection models in real-time
and resource-constrained environments. The integra-

tion of edge computing and cloud-based solutions is
being investigated to facilitate scalable and efficient de-
ployment of these Al systems in clinical practice and
telemedicine platforms.

In summary, existing research demonstrates that
DL models, particularly CNN-based architectures, offer
significant advantages over traditional ML techniques
for brain tumor detection and segmentation. However,
addressing challenges related to data availability, model
interpretability, and clinical integration remains crucial
for the successful translation of these technologies into
routine healthcare.

2.1 Literature Gap

Some of the existing approaches have endured limita-
tions which led to further implications beyond the cur-
rent studies:

e Most traditional Machine Learning approaches
rely on manual feature extraction, which limits
model performance and scalability.

e Deep Learning models require large, annotated
datasets, which are still scarce for brain tumor de-
tection.

e Lack of interpretability in existing Deep Learning
models reduces their clinical trust and adoption.

e Limited research on real-time, edge-computing-
based deployment of brain tumor detection sys-
tems for telemedicine applications.

e Current models lack robustness to variations in
MRI scanners, imaging protocols, and patient de-
mographics.

3 Proposed Methodology

The methodology proposed in this study focuses on
developing an automated framework for the accurate
detection and segmentation of brain tumors using ad-
vanced Machine Learning (ML) and Deep Learning
(DL) techniques. The primary data source for this work
is magnetic resonance imaging (MRI), which provides
high-resolution, multimodal images of the brain and is
widely used in clinical diagnostics.

The overall process begins with the acquisition
of MRI datasets, followed by a series of preprocess-
ing steps designed to enhance image quality, normal-
ize variations across scans, and augment the dataset
to improve model robustness. Unlike traditional ap-
proaches that rely heavily on manual feature engineer-
ing, the proposed framework leverages Convolutional

INFOCOMRP, v. 24, no. 1, p. pp-pp, June, 2025.



Appasaheb Balasaheb Patil

Brain tumor detection using machine learning and deep learning 4

Neural Networks (CNNs) to automatically extract com-
plex spatial and contextual features from raw MRI data.
For tumor segmentation, architectures such as U-
Net are utilized to produce precise pixel-level delin-
eations of tumor regions, which are critical for treat-
ment planning. For tumor classification, deep CNN
models are trained to distinguish between different tu-
mor positions and healthy brain tissue. The models are
optimized and evaluated using standard performance
metrics, with special attention given to ensuring gen-
eralizability across different imaging conditions.

Additionally, the study explores practical consider-
ations for real-world deployment, including computa-
tional efficiency and model interpretability, to support
the integration of such systems into clinical practice and
telemedicine platforms.

This comprehensive methodology is designed to ad-
vance the development of reliable, scalable, and clin-
ically useful Al-based tools for brain tumor detection.
The complete overview via flow representation is pro-
vided in Figure 1:

MRI Image Input

!

Data Processesing
— Normalization

- Resizing

- Augumentation

v

Feature Extraction
Traditional ML:
Texture, Shape
DL Models:
CNN, U-Neet

Model Evaluation
- Accuracy

- Precision / Recall
— Dice Coefficient

Figure 1: Proposed framework for brain tumor
detection and segmentation.

The above diagram illustrates the overall workflow of

the proposed methodology for brain tumor detection
using machine learning and deep learning techniques.
The process begins with the acquisition of MRI im-
ages, which serve as the primary data source for anal-
ysis. These images undergo a series of preprocessing
steps to enhance quality and ensure consistency across
the dataset. Following preprocessing, the system per-
forms feature extraction through two complementary
approaches: traditional machine learning techniques
extract handcrafted features such as texture and shape,
while deep learning models automatically learn hierar-
chical feature representations. The extracted features
are then used to train both classical classifiers (such
as SVM and Random Forest) and deep learning mod-
els (such as CNN and UNet) depending on the task a
whether it is classification or segmentation. The trained
models are rigorously evaluated using various perfor-
mance metrics, including accuracy, precision, recall,
and the Dice coefficient, to ensure their robustness and
clinical relevance. This structured workflow is designed
to develop an automated, efficient, and accurate system
that can assist clinicians in the early detection and pre-
cise localization of brain tumors.

3.1 MRI Image Input
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Figure 2: Proposed framework for brain tumor
detection and segmentation.
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The process begins with the acquisition of brain MRI
scans, which provide detailed anatomical information
necessary for tumor detection and segmentation. MRI
is the preferred imaging modality for brain tumors due
to its superior soft-tissue contrast and non-invasive na-
ture.

Publicly available datasets, such as BraTS, are used
to obtain multimodal MRI images (T1, Tlc, T2, and
FLAIR), which offer complementary information about
the tumor and surrounding tissues. This diverse imag-
ing input ensures that the system can capture various
tumor characteristics during the learning process.

3.2 Data Preprocessing

Preprocessing is a critical step that prepares raw MRI
images for effective analysis by ML and DL models.
The following sub-steps are performed:

e Normalization: Intensity normalization is applied
to reduce scanner-related variations and ensure
consistent intensity ranges across all images.

e Resizing: All MRI slices are resized to a standard
dimension (e.g., 128 x128 or 256 x256 pixels) to
match the input requirements of deep learning ar-
chitectures.

e Augmentation: Data augmentation techniques,
such as rotation, flipping, zooming, and transla-
tion, are used to artificially expand the training
dataset and improve model generalization.

e Noise Reduction: Filters such as Gaussian
smoothing may be applied to reduce image noise,
improving the signal-to-noise ratio and making tu-
mor structures more prominent.

Effective preprocessing helps improve the quality of
input data, enhances model performance, and reduces
the risk of overfitting.

Count of Brain Tumor Images

1000 -

800 -

800 -

400 -

No of Brain Tumor Images

200 -

i
tumarnous non-tumorous

Data

Figure 3: Original MRI Scan and Non-Tumorous Part
of Brain

Original Image Cropped Image

Figure 4: Original MRI Scan and Cropped Tumorous
Part of Brain

o Cropped Image
Original Image

Figure 5: Original MRI Non-Tumorous Part of Brain
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3.3 Data Preprocessing

Preprocessing is a crucial step in preparing MRI im-
ages for effective training of machine learning (ML)
and deep learning (DL) models. Since MRI data is ac-
quired from multiple sources with varying imaging pro-
tocols, preprocessing ensures consistency, enhances im-
age quality, and increases the robustness of the model.

The four key preprocessing steps 4 Normalization,
Resizing, Augmentation, and Noise Reduction 4 are de-
scribed in detail below with their mathematical formu-
lations.

3.3.1 Normalization

MRI images lack a standardized intensity scale. Nor-
malization ensures that intensity values are consistent
across all images, which stabilizes training and im-
proves convergence.

This transformation ensures that the resulting image
has a mean of 0 and a standard deviation of 1, allowing
CNNs to learn faster and more reliably.

3.3.2 Normalization

MRI images lack a standardized intensity scale. Nor-
malization ensures that intensity values are consistent
across all images, which stabilizes training and im-
proves convergence.

Z-score Normalization Formula:

I(z,y) — p
g

Inorm(xay) = (1)

Where:
e X is the original pixel intensity,
e i is the mean intensity of the image,
e 0 is the standard deviation.

This transformation results in images with zero
mean and unit variance, allowing CNNs to learn faster
and more reliably.

3.3.3 Resizing

To maintain consistent input dimensions required by
CNN models, all MRI slices are resized. This is es-
pecially important when using architectures like U-Net
or ResNet, which expect fixed input sizes.

Resizing using Bilinear Interpolation:

Let an image be resized from H x W to H' x W'
Each new pixel value I'(2/,y’) is calculated using the
weighted average of its neighboring pixel values:

1 1
I y)=> 3 wy-Ix+iy+j) @

i=0 j=0

Where w;; are the bilinear weights based on the
fractional position of (z’,y’) relative to the original
grid.

3.3.4 Data Augmentation

Augmentation improves model generalization by intro-
ducing variability. This is crucial for medical datasets,
which are often limited in size.

Examples of Common Transformations:

e Rotation: (2/,y') = [Z?;z _(;Z;n@o} [ﬂ

e Scaling: 2’ =s, -z, ¥y =5,y

e Translation: 2’ =2 +7T,, y =y+1T,

These transformations are ran-
domly  applied  within set ranges (e.g.,

A+15° forrotation, 0.91.1 forscaling)duringtrainingtopreventover

3.3.5 Noise Reduction

Noise reduction helps enhance tumor visibility by re-
moving random intensity fluctuations. One widely used
method is Gaussian filtering.

Gaussian Filter Formula:

1 2 2
Glz,y) = —— exp (—m +y> 3)

2no 202

Each pixel in the image is convolved with a Gaus-
sian kernel:

k k
Lonootn(,9) = Y Y Iw+iy+j) @)

i=—k j=—k

(e.g., 3A3 or 5A5) to smooth high-frequency noise
while preserving edges. Median filtering is also effec-
tive, especially for salt-and-pepper noise, by replacing
each pixel with the median of its surrounding values.

3.4 Feature Extraction and Model Training

The success of any brain tumor detection system using
machine learning (ML) and deep learning (DL) largely
depends on the quality and relevance of the features ex-
tracted from MRI data, and the ability of the model to
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learn meaningful patterns from these features. This sec-
tion presents a comprehensive overview of the two crit-
ical phases in the proposed methodology a Feature Ex-
traction and Model Training a explaining their theoreti-
cal basis, practical implementation, and integration into
a full ML/DL pipeline.

3.4.1 Feature Extraction

Feature extraction refers to the process of transforming
input data (in this case, MRI images) into a set of mea-
surable and informative representations that effectively
characterize the presence and structure of brain tumors.
In this work, a hybrid approach is adopted that com-
bines handcrafted feature extraction methods from tra-
ditional machine learning with automated feature learn-
ing through deep neural networks. This hybridization
leverages both domain-specific knowledge and the ab-
straction power of data-driven models.

Handcrafted Feature Extraction (Traditional ML)
In traditional machine learning pipelines, image fea-
tures are manually engineered based on known charac-
teristics of brain tumors. These features fall into three
main categories:

e Texture Features:

— Gray Level Co-occurrence Matrix
(GLCM): Captures the frequency of pixel
intensity co-occurrence at specific orienta-
tions and distances. From GLCM, metrics
like contrast, homogeneity, energy, and
correlation are computed.

— Local Binary Patterns (LBP): Describes lo-
cal texture by comparing each pixel to its sur-
rounding neighbours and encoding the result
as a binary number.

— Gabor Filters: Multi-scale,  multi-
orientation filters that model visual per-
ception and are effective in texture analysis.

e Shape Features:

— Area and Perimeter
— Compactness

— Eccentricity and Solidity
o Statistical and Intensity Features:

— First-order statistics such as mean, median,
standard deviation, skewness, and kurtosis of
intensity values in the tumor region.

— Histogram of Oriented Gradients (HOG) for
capturing structural gradients.

Once extracted, these features are normalized and
fed into classical classifiers such as Support Vector
Machines (SVM), Random Forests (RF), or k-Nearest
Neighbors (k-NN).

Automated Feature Learning (Deep Learning)
While handcrafted features require prior knowledge and
manual intervention, deep learning models automati-
cally learn hierarchical feature representations directly
from the data. This is especially beneficial in medical
imaging, where important patterns are often complex
and multi-dimensional.

The most widely used architecture in brain tumor
detection is the Convolutional Neural Network (CNN).
CNNs are composed of multiple layers, including con-
volutional, pooling, and fully connected layers, that
progressively learn spatial hierarchies.

3.4.1.1 CNN Architecture Overview

A typical CNN for brain tumor detection consists of
the following layers:

1. Input Layer: MRI images, usually grayscale (1
channel) or RGB (3 channels), are passed in as ten-
SOrS.

2. Convolutional Layers: Extract local patterns us-
ing learnable filters.

3. Activation Functions:
(commonly ReLU).

Introduce non-linearity

4. Pooling Layers: Downsample feature maps to re-
duce dimensionality.

5. Fully Connected Layers: Perform high-level rea-
soning.

6. Output Layer: Uses Softmax or Sigmoid activa-
tion for classification.

3.4.2 Convolution Operation

At the heart of a CNN is the convolutional layer, where
small learnable kernels (filters) slide across the image
to compute dot products between the filter weights and
the input patch. This operation captures spatial features
such as edges, shapes, and textures, which are funda-
mental to tumor localization and classification.
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Mathematical Formulation of Convolution The
kernel slides over the entire image, producing a new
feature map that highlights specific visual features like
edges, corners, or texture. The convolution operation is
given by:

S(i,j) = (I=K)(i,§) = > > _ I(i+m, j+n)-K(m,n)

&)
Where:

e [ is the input image,
e K is the kernel/filter,

e S(i,7) is the resulting feature map.

3.4.3 Activation Functions

After convolution, an activation function is applied to
introduce non-linearity, allowing the network to learn
complex mappings.

e ReLU (Rectified Linear Unit):
f(z) = max(0, z)

It accelerates convergence and avoids the van-
ishing gradient problem by allowing gradients to
propagate through positive activations.

3.4.4 Pooling Layers

Pooling layers reduce spatial dimensions and computa-
tional complexity, and help control overfitting.

e Max Pooling: Selects the maximum value from
each patch of the feature map.

e Average Pooling: Computes the average value in
each patch.

For a pooling window of size p x p, the output re-
duces the feature map size by a factor of p. For exam-
ple, a 32 x 32 input becomes 16 x 16 if p = 2.

3.4.5 Batch Normalization

Batch Normalization (BN) is applied after convolution
and before activation to stabilize and accelerate train-
ing by standardizing layer inputs. BN reduces internal
covariate shift and allows for higher learning rates.

T — KB
2
\OL + €

T =

;Y= +p (6)

3.4.6 Fully Connected Layers

At the end of the network, convolutional features are
flattened and passed to Fully Connected (FC) layers,
which perform the final classification. These layers
combine all learned features to assign class scores.

y =o(Wx+b) (N

3.4.7 Output Layer

e Sigmoid: Used for binary classification (tumor vs.
no tumor).
1

- l1+e®

o(x)

3.5 Model Training

Once features are extracted a either handcrafted or au-
tomatically learned & the next stage is model training.
This involves teaching the algorithm to map features to
correct labels (e.g., tumor presence, tumor type, or seg-
mentation masks) by minimizing a defined loss function
over a training dataset.

3.5.1 Training with Traditional ML Models

Traditional classifiers such as Support Vector Machines
(SVM), Random Forest (RF), and k-Nearest Neighbors
(k-NN) use handcrafted features as input. These algo-
rithms follow different strategies:

e SVM: Constructs an optimal hyperplane in feature
space that maximizes the margin between classes.
A common kernel function is the Radial Basis
Function (RBF):

K(z,2) = exp (—llz — /|12

e Random Forest: An ensemble of decision trees
that aggregates predictions from multiple trees
trained on different data subsets to improve gen-
eralization.

e k-NN: A non-parametric method that classifies
based on the majority label among the %k nearest
training samples in the feature space.

These models are typically trained using cross-
validation to avoid overfitting and to select optimal hy-
perparameters such as regularization strength, number
of neighbors, or tree depth.
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3.5.2 Training Deep Learning Models

For deep learning models, training involves optimizing
millions of parameters through backpropagation and
stochastic gradient descent (SGD) or variants such as
the Adam optimizer. The key components of the train-
ing pipeline are outlined below:

Loss Functions

o C(lassification: Cross-Entropy Loss is widely used
for multi-class or binary classification. The loss is
defined as:

c
Leg=—Y yilog(i)) ®)

i=1

where C'is the number of classes, y; is the ground
truth label, and g; is the predicted probability.

e Segmentation: Dice Loss is effective for evaluat-
ing spatial overlap between predicted and ground
truth masks:

2. |PNG|

Lpie=1-"——+1
|P| + G|

©))

where P and G denote the predicted and ground
truth masks respectively.

Regularization Regularization techniques are ap-
plied to reduce overfitting and improve the generaliza-
tion of deep models:

e Dropout: Randomly deactivates a percentage of
neurons during training.

e Batch Normalization: Normalizes layer inputs to
stabilize learning.

e L2 Regularization: Adds a penalty term to the
loss function based on the squared weights:

Liotal = Liask + A Z w?

Epochs and Batching Training proceeds in epochs
(complete passes over the training set). The dataset is
divided into mini-batches (typically 8264 samples per
batch) to:

e Increase training speed
e Improve gradient estimation

e Enhance convergence

Hardware Considerations Due to the large num-
ber of matrix operations in convolutional layers, train-
ing deep neural networks requires GPU accelera-
tion. Modern frameworks like TensorFlow and Py-
Torch support parallel processing on NVIDIA GPUs us-
ing CUDA.

Transfer Learning To improve performance on
small medical datasets, transfer learning is used. Pre-
trained models such as ResNet or VGG, originally
trained on large-scale datasets like ImageNet, are
fine-tuned on brain MRI data. This:

e Reduces training time
e Enhances performance

e Leverages prior visual knowledge

3.5.3 Training Deep Learning Models

For deep learning models, training involves optimizing
millions of parameters through backpropagation and
Stochastic Gradient Descent (SGD) or its variants such
as the Adam optimizer. The training process consists of
the following key components:

e Loss Functions:

— Classification: Cross-Entropy Loss is com-
monly used to evaluate the difference be-
tween predicted probabilities and true labels.

c
Leg == yilog(i)
i=1
where y; is the true label and y; is the pre-
dicted probability.

— Segmentation: Dice Loss or Jaccard Loss
measures the overlap between predicted and
ground truth masks, which is essential for
evaluating segmentation accuracy.

2.|PNG]

Lpice =1 — ———— "
|P|+ ]G]

e Regularization:

— Dropout: Randomly deactivates neurons dur-
ing training to prevent overfitting.

— Batch Normalization: Normalizes activa-
tions across mini-batches to stabilize and
speed up learning.

— L2 Regularization: Penalizes large weights
to encourage simpler models.
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¢ Epochs and Batching:

— Training proceeds in epochsicomplete
passes through the training dataset.

— Data is split into mini-batches (e.g., 32464
samples per batch) to speed up learning and
improve gradient estimation.

¢ Hardware:

— Training deep networks is computationally
intensive and typically requires GPU acceler-
ation to handle large-scale matrix operations
in convolutional layers.

e Transfer Learning:

— Pre-trained models such as ResNet or
VGGaoriginally trained on large datasets like
ImageNetaare fine-tuned on medical images.

— This reduces training time and improves per-
formance, particularly when dealing with
limited domain-specific data.
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Figure 6: MRI Scans of Non-Tumorous Brains
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Figure 7: MRI Scans of Tumorous Brains
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Figure 8: Model Training (Frozen CNN-(i)
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Figure 9: Model Training (Frozen CNN-(ii)
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Figure 10: Model Training (Frozen CNN-(i)
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Figure 11: Model Training (Frozen CNN-(ii)

4 Model Evaluation

The evaluation of machine learning and deep learning
models is a crucial phase in determining their effective-
ness and reliability, especially in critical fields such as
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medical diagnosis. In the context of brain tumor de-
tection using MRI images, model evaluation not only
validates learning performance but also ensures that the
predictions are medically meaningful and trustworthy.
The performance of a model is typically assessed us-
ing a combination of statistical metrics that measure its
accuracy, precision, sensitivity, and overall predictive
quality.

4.1 Classification Model Evaluation

A

For classification-based tasks & such as determining
whether a tumor is present or categorizing the tumor
type 4 evaluation is performed using metrics derived
from the confusion matrix. These metrics include:

e Accuracy: Proportion of correctly classified in-
stances among the total instances. While a general
performance indicator, it may be misleading in im-
balanced datasets.

e Precision: Ratio of true positive predictions to
all positive predictions. High precision indicates
fewer false positives, which is important in medi-
cal applications to avoid unnecessary alarms.

e Recall (Sensitivity): Measures the model’s abil-
ity to correctly identify all actual positive cases. It
is vital in tumor detection to minimize false nega-
tives.

e F1-Score: Harmonic mean of precision and recall:

Fl—9 Precision - Recall

" Precision + Recall

It balances precision and recall, especially useful
in imbalanced datasets.

e AUC-ROC Curve: Plots the true positive rate
against the false positive rate across thresholds,
capturing the model’s discriminative ability. A
higher AUC indicates better performance.

Together, these metrics provide a multidimensional
understanding of the modelds diagnostic capabilities.

4.2 Segmentation Model Evaluation

For tumor segmentation 4 identifying the exact bound-
aries of a tumor in MRI scans 2 spatial similarity met-
rics are used:

e Dice Similarity Coefficient (DSC): Measures
the overlap between predicted and ground truth
masks:

2|P NG|

DSC = ———-
|P| + |G|

where P is the predicted mask and G is the ground
truth.

e Jaccard Index (IoU): Measures the intersection
over union of predicted and actual regions:

IPNG

IoU = ———
T IPUG

It provides a stricter comparison than Dice.

e Hausdorff Distance: Computes the maximum
distance between the boundaries of the predicted
and ground truth regions. It captures the worst-
case discrepancy and is critical when tumor
boundary accuracy is required.

e Volumetric Overlap Error (VOE): Quantifies
the difference in volume between predicted and ac-
tual tumor regions. Lower VOE values indicate
better tumor volume estimation, aiding treatment
planning.

Each metric contributes unique insights into model
performance. In practical medical applications, a com-
bination of these metrics is used to ensure accuracy, re-
liability, and alignment with clinical standards.
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Figure 12: Model Training (Frozen CNN)

Table 1; Comparative analysis among proposed and existing methodobogy in Brain
Tumar Detection in terms of accuracy Rates

MODEL Acenracy (%)
SVM (Suppart Vector Machine) T2AK}
Random Forest (RF) TLR
Cussom CNN Madel 7411
U-Met (or Cascaded U-Net Model) 74,06
Proposed S0

Table 1: - Comparative analysis among proposed
and existing methodology in Brain Tumor Detection
in terms of accuracy Rates

viability of the proposed model than the other exist-
ing models in terms of Accuracy, Precision, recall and
on the basis of F1-score rates.
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Table 2 Comparative analysis among proposed and existing methodology in Brain
Tumor Detection in terms of accuracy Rates

MODEL Accuracy (%)
5VM T1.00
Rundom Forest T2.02
Custom CNN Model 74,11
U-Nes T4.06
Proposed 99.04

Table 2: - Comparative analysis among proposed
and existing methodology in FER in terms of
accuracy rates

Comparison of Model Accuracies in Brain Tumor

Bl

a0

20

o
Mioadal M

Figure 13: Comparative analysis among proposed and
existing methodology for FER in terms of accuracy
rates

Detection

Rardar Custorm CHN U-hat Proposed
Forest Muode

The table 1 and figure 9 represented in the section
deliberates that the proposed model has outperformed
the existing approaches carried out in terms of FER, us-
ing the DL methods such as CNN mode . It compares
the accuracy of an existing model and a proposed model
for brain tumor detection. While the existing model
achieves an accuracy of 65.97significant improvement
with an accuracy of 99.04performance and reliability
of the newly developed approach.

Table 3: Comparative analysis among propased and existing methodology for
FER in terms of Train and Test Accuracy

MODEL Train Accuracy  Test Accuracy
S¥YM 098 0,58
Random Forest 098 095
Cuestom CNN Model 093 061
U-Net 0.9% 0.63
Proposed 099 099

Table 3: - Comparative analysis among proposed
and existing methodology for FER in terms of Train
and Test Accuracy

1x0

100

Exlsting madel Propessd

Figure 14: Comparative analysis among proposed and
existing methodology for FER in terms of accuracy
rates

Figure 10 and the table 2 clearly depicts that the pro-
posed model have outperformed the existing model in
terms of the accuracy rates where the existing model
used the CNN as a primitive approach in case of FER.
It illustrates a clear comparison between the existing
model and the proposed model in terms of accuracy
for brain tumor detection. The existing model achieves
a moderate accuracy of 65.97proposed model demon-
strates a significant enhancement with an accuracy of
99.04substantial improvement underscores the superior
effectiveness of the proposed approach. Table 3 Com-
parative analysis among proposed and existing method-
ology in FER.

Comparative analysis among proposed and existing methadology in FER

MODEL Accuracy (%)

Enxisting model 6547
Propesed b4

Table 4: - Comparative analysis among proposed and
existing methodology in FER

Comparative analysis among proposed and
existing methodology
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Figure 15: Comparative analysis among proposed and
existing methodology
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Comparative analysis among proposed and

12
S R

Figure 16: Comparative analysis among proposed and
existing methodology
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5 Conclusion

The detection and classification of brain tumors are crit-
ical tasks in medical diagnosis, often requiring accurate
and timely assessment to ensure effective treatment.
This research has explored and compared various tra-
ditional machine learning and deep learning techniques
for brain tumor detection, highlighting their respective
strengths and limitations.

While traditional models such as SVM and Ran-
dom Forest have demonstrated moderate accuracy,
deep learning modelsaparticularly Convolutional Neu-
ral Networks (CNNs)ahave shown significant improve-
ments in performance due to their ability to automati-
cally extract and learn complex features from MRI im-
ages.

The proposed hybrid deep learning model in this
study achieved a remarkably high accuracy of 99.04%,
substantially outperforming existing models. This val-
idates the effectiveness of integrating optimized CNN
architectures with robust preprocessing and training
strategies. Such approaches not only enhance detection
accuracy but also reduce reliance on manual feature en-
gineering, leading to more scalable and automated di-
agnostic tools.

Overall, the integration of deep learning into med-
ical imaging holds immense promise for early and re-
liable brain tumor detection. However, real-world de-
ployment still demands further validation on diverse
datasets, clinical trials, and interpretability improve-
ments. Future research should aim to enhance general-
ization, address data scarcity with augmentation or syn-
thetic data generation, and ensure that these Al-driven
tools can be safely.
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