A Comprehensive Analysis of Virtual Reality Applications in Healthcare
Main Article Content
Abstract
Abstract. Virtual reality (VR) has revolutionized the healthcare sector by introducing new methods of
diagnosis, treatment, and medical training. This article presents a comprehensive analysis of VR applications
in healthcare, exploring its advantages, challenges, and impacts. The review includes case
studies and relevant literature, highlighting areas such as rehabilitation, surgical training, and exposure
therapies. The results indicate that VR can enhance the effectiveness of treatments and the quality of
medical training, offering immersive experiences that benefit both patients and healthcare professionals.
Despite the promising advantages, challenges such as cost and specialized training remain. Future research
should focus on developing more accessible solutions and expanding VR applications in medicine
to ensure broader patient access to this revolutionary technology.
Article Details
Upon receipt of accepted manuscripts, authors will be invited to complete a copyright license to publish the paper. At least the corresponding author must send the copyright form signed for publication. It is a condition of publication that authors grant an exclusive licence to the the INFOCOMP Journal of Computer Science. This ensures that requests from third parties to reproduce articles are handled efficiently and consistently and will also allow the article to be as widely disseminated as possible. In assigning the copyright license, authors may use their own material in other publications and ensure that the INFOCOMP Journal of Computer Science is acknowledged as the original publication place.
References
Rizzo, A. S. and Kim, G. J. A swot analysis of
the field of virtual reality rehabilitation and therapy.
Presence: Teleoperators and Virtual Environments,
(2):119–146, 2005.
de Sousa, A. L., OKey, O. D., Rosa, R. L., Saadi,
M., and Rodriguez, D. Z. Unified approach to
video-based ai inference tasks in augmented reality
systems assisted by mobile edge computing.
In 2023 International Conference on Software,
Telecommunications and Computer Networks
(SoftCOM), pages 1–5. IEEE, 2023.
Saadi, M., Bajpai, A., and Rodríguez, D. Z. Traditional
and modern techniques for visible light
positioning systems. In Applications of 5G and
Beyond in Smart Cities, pages 169–198. CRC
Press, 2023.
Omole, O. J., Rosa, R. L., and Rodriguez, D. Z.
Soybean disease detection by deep learning algorithms.
In 2023 International Conference
on Software, Telecommunications and Computer
Networks (SoftCOM), pages 1–5. IEEE, 2023.
dos Santos, M. R., Batista, A. P., Rosa, R. L.,
Saadi, M., Melgarejo, D. C., and Rodríguez,
D. Z. Asqm: Audio streaming quality metric
based on network impairments and user preferences.
IEEE Transactions on Consumer Electronics,
(3):408–420, 2023.
Bohil, C. J., Alicea, B., and Biocca, F. A. Virtual
reality in neuroscience research and therapy.
Nature Reviews Neuroscience, 12(12):752–762,
Adasme, P., Viveros, A., Ayub, M. S., Soto, I.,
Firoozabadi, A. D., and Rodríguez, D. Z. A
multiple linear regression approach to optimize
the worst user capacity and power allocation in
a wireless network. In 2023 South American
Conference On Visible Light Communications
(SACVLC), pages 6–11. IEEE, 2023.
Zegarra Rodríguez, D., Daniel Okey, O., Maidin,
S. S., Umoren Udo, E., and Kleinschmidt, J. H.
Attentive transformer deep learning algorithm
for intrusion detection on iot systems using automatic
xplainable feature selection. Plos one,
(10):e0286652, 2023.
Barbosa, R., Ogobuchi, O. D., Joy, O. O., Saadi,
M., Rosa, R. L., Al Otaibi, S., and Rodríguez,
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 11
D. Z. Iot based real-time traffic monitoring
system using images sensors by sparse deep
learning algorithm. Computer Communications,
:321–330, 2023.
Freeman, D., Reeve, S., Robinson, A., Ehlers,
A., Clark, D., Spanlang, B., and Slater, M. Virtual
reality in the assessment, understanding, and
treatment of mental health disorders. Psychological
Medicine, 47(14):2393–2400, 2017.
Okey, O. D., Udo, E. U., Rosa, R. L., Rodríguez,
D. Z., and Kleinschmidt, J. H. Investigating chatgpt
and cybersecurity: A perspective on topic
modeling and sentiment analysis. Computers &
Security, 135:103476, 2023.
Teodoro, A. A., Silva, D. H., Rosa, R. L., Saadi,
M., Wuttisittikulkij, L., Mumtaz, R. A., and Rodriguez,
D. Z. A skin cancer classification approach
using gan and roi-based attention mechanism.
Journal of Signal Processing Systems,
(2):211–224, 2023.
Teodoro, A. A., Silva, D. H., Saadi, M., Okey,
O. D., Rosa, R. L., Otaibi, S. A., and Rodríguez,
D. Z. An analysis of image features extracted by
cnns to design classification models for covid-19
and non-covid-19. Journal of signal processing
systems, pages 1–13, 2023.
Li, L., Yu, F., Shi, D., Shi, J., and Tian, Z. Virtual
reality technology for pain management: A
systematic review. Technology and Health Care,
(1):1–11, 2020.
de Sousa, A. L., OKey, O. D., Rosa, R. L., Saadi,
M., and Rodriguez, D. Z. A novel resource
allocation in software-defined networks for iot
application. In 2023 International Conference
on Software, Telecommunications and Computer
Networks (SoftCOM), pages 1–5. IEEE, 2023.
Dos Santos, M. R., Rodriguez, D. Z., and Rosa,
R. L. A novel qoe indicator for mobile networks
based on twitter opinion ranking. In 2023 International
Conference on Software, Telecommunications
and Computer Networks (SoftCOM),
pages 1–6. IEEE, 2023.
Marques, S. A., Rodriguez, D. Z., and Rosa,
R. L. Use of chatgpt as configuration support
tool and network analysis. In 2023 International
Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages
–6. IEEE, 2023.
Ribeiro, D. A., Melgarejo, D. C., Saadi, M.,
Rosa, R. L., and Rodríguez, D. Z. A novel deep
deterministic policy gradient model applied to
intelligent transportation system security problems
in 5g and 6g network scenarios. Physical
Communication, 56:101938, 2023.
Mendonça, R. V., Silva, J. C., Rosa, R. L.,
Saadi, M., Rodriguez, D. Z., and Farouk, A. A
lightweight intelligent intrusion detection system
for industrial internet of things using deep learning
algorithms. Expert Systems, 39(5):e12917,
Wiederhold, B. K. and Wiederhold, M. D. Virtual
reality therapy for anxiety disorders: Advances
in evaluation and treatment. American
Psychological Association,Washington, DC,
Okey, O. D., Maidin, S. S., Adasme, P.,
Lopes Rosa, R., Saadi, M., Carrillo Melgarejo,
D., and Zegarra Rodríguez, D. Boostedenml: Efficient
technique for detecting cyberattacks in iot
systems using boosted ensemble machine learning.
Sensors, 22(19):7409, 2022.
Carrillo, D., Kalalas, C., Raussi, P., Michalopoulos,
D. S., Rodríguez, D. Z., Kokkoniemi-
Tarkkanen, H., Ahola, K., Nardelli, P. H.,
Fraidenraich, G., and Popovski, P. Boosting 5g
on smart grid communication: A smart ran slicing
approach. IEEE Wireless Communications,
(5):170–178, 2022.
Saadi, M., Bajpai, A., Rodriguez, D. Z., and
Wuttisittikulkij, L. Investigating the role of channel
state information for mimo based visible light
communication system. In 2022 37th International
Technical Conference on Circuits/Systems,
Computers and Communications (ITC-CSCC),
pages 1–4. IEEE, 2022.
Rodríguez, D. Z., Carrillo, D., Ramírez, M. A.,
Nardelli, P. H., and Möller, S. Incorporating
wireless communication parameters into the
e-model algorithm. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
:956–968, 2021.
Carrillo, D., Duc Nguyen, L., Nardelli, P. H.,
Pournaras, E., Morita, P., Rodríguez, D. Z.,
Dzaferagic, M., Siljak, H., Jung, A., Hébert-
Dufresne, L., et al. Containing future epidemics
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 12
with trustworthy federated systems for ubiquitous
warning and response. Frontiers in Communications
and Networks, 2:621264, 2021.
França, R. N., Ribeiro, D. A., Rosa, R. L.,
and Rodriguez, D. Z. Iris image quality assessment
based on iso/iec 29794-6: 2015 standard/
avaliação da qualidade da imagem da íris
com base na norma iso/iec 29794-6: 2015.
Brazilian Journal of Development, 6(7):50471–
, 2020.
Carvalho Barbosa, R., Shoaib Ayub, M.,
Lopes Rosa, R., Zegarra Rodríguez, D., andWuttisittikulkij,
L. Lightweight pvidnet: A priority
vehicles detection network model based on
deep learning for intelligent traffic lights. Sensors,
(21):6218, 2020.
Rosa, R. L., De Silva, M. J., Silva, D. H., Ayub,
M. S., Carrillo, D., Nardelli, P. H., and Rodriguez,
D. Z. Event detection system based on
user behavior changes in online social networks:
Case of the covid-19 pandemic. Ieee Access,
:158806–158825, 2020.
Rodriguez, D. Z. and Junior, L. C. B. Determining
a non-intrusive voice quality model using
machine learning and signal analysis in time. INFOCOMP
Journal of Computer Science, 18(2),
Rodriguez, D. Z., de Oliveira, F. M., Nunes,
P. H., and de Morais, R. M. A. Wearable devices:
Concepts and applications. INFOCOMP
Journal of Computer Science, 18(2), 2019.
Dantas Nunes, R., Lopes Rosa, R., and Zegarra
Rodríguez, D. Performance improvement
of a non-intrusive voice quality metric in lossy
networks. IET Communications, 13(20):3401–
, 2019.
Barbosa, R. C., Rosa, R. L., da Silva, K.
C. N., and Rodriguez, D. Z. Ct-fastnet: Detecção
de covid-19 a partir de tomografias computadorizadas
(tc) de tórax usando inteligência
artificial. Brazilian Journal of Development,
(7):50315–50330, 2020.
Vieira, S. T., Rosa, R. L., and Rodríguez, D. Z. A
speech quality classifier based on tree-cnn algorithm
that considers network degradations. Journal
of Communications Software and Systems,
(2):180–187, 2020.
Jordane da Silva, M., Carrillo Melgarejo, D.,
Lopes Rosa, R., and Zegarra Rodríguez, D.
Speech quality classifier model based on dbn
that considers atmospheric phenomena. Journal
of Communications Software and Systems,
(1):75–84, 2020.
Silva, D. H., Rosa, R. L., and Rodriguez, D. Z.
Sentimental analysis of soccer games messages
from social networks using user’s profiles. INFOCOMP
Journal of Computer Science, 19(1),
Silva, D. H., Ribeiro, D. A., Ramírez, M. A.,
Rosa, R. L., Chaudhary, S., and Rodríguez, D. Z.
Selection of beamforming in 5g mimo scenarios
using machine learning approach. In 2022 19th
International Conference on Electrical Engineering/
Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON),
pages 1–4. IEEE, 2022.
Melgarejo, D. C., Pokorny, J., Seda, P.,
Narayanan, A., Nardelli, P. H., Rasti, M., Hosek,
J., Seda, M., Rodríguez, D. Z., Koucheryavy, Y.,
et al. Optimizing flying base station connectivity
by ran slicing and reinforcement learning. IEEE
Access, 10:53746–53760, 2022.
Ayub, M. S., Adasme, P., Melgarejo, D. C., Rosa,
R. L., and Rodríguez, D. Z. Intelligent hello
dissemination model for fanet routing protocols.
IEEE Access, 10:46513–46525, 2022.
Lasmar, E. L., de Paula, F. O., Rosa, R. L.,
Abrahão, J. I., and Rodríguez, D. Z. Rsrs:
Ridesharing recommendation system based on
social networks to improve the user’s qoe. IEEE
Transactions on Intelligent Transportation Systems,
(12):4728–4740, 2019.
da Silva, M. J., Begazo, D. C., and Rodríguez,
D. Z. Evaluation of speech quality degradation
due to atmospheric phenomena. In 2019 International
Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages
–6. IEEE, 2019.
Militani, D., Vieira, S., Valadão, E., Neles, K.,
Rosa, R., and Rodríguez, D. Z. A machine learning
model to resource allocation service for access
point on wireless network. In 2019 international
conference on software, telecommunications
and computer networks (SoftCOM), pages
–6. IEEE, 2019.
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 13
Fonseca, D., da Silva, K. C. N., Rosa, R. L., and
Rodríguez, D. Z. Monitoring and classification
of emotions in elderly people. In 2019 International
Conference on Software, Telecommunications
and Computer Networks (SoftCOM), pages
–6. IEEE, 2019.
Rezaie, V., Parnianifard, A., Rodriguez, D.,
Mumtaz, S., andWuttisittikulkij, L. Speech emotion
recognition using anfis and pso-optimization
with word2vec. J Neuro Spine, 1(1):41–56,
Ogobuchi, O. D., Vieira, S. T., Saadi, M., Rosa,
R. L., and Rodríguez, D. Z. Intelligent network
planning tool for location optimization of unmanned
aerial vehicle base stations using geographical
images. Journal of Electronic Imaging,
(6):061822–061822, 2022.
Teodoro, A. A., Gomes, O. S., Saadi, M.,
Silva, B. A., Rosa, R. L., and Rodríguez, D. Z.
An fpga-based performance evaluation of artificial
neural network architecture algorithm
for iot. Wireless Personal Communications,
(2):1085–1116, 2022.
Okey, O. D., Melgarejo, D. C., Saadi, M., Rosa,
R. L., Kleinschmidt, J. H., and Rodríguez, D. Z.
Transfer learning approach to ids on cloud iot
devices using optimized cnn. IEEE Access,
:1023–1038, 2023.
Rodriguez, D. Z. and AMARAL, F. C. S. Review
on the analysis of qoe applied in serious virtual
reality games. INFOCOMP Journal of Computer
Science, 22(2), 2023.
Melgarejo, D. C., Da Costa Filho, L. Q. R.,
De Medeiros, Á. A. M., Neto, C. L., Figueiredo,
F. L., and Rodríguez, D. Z. Dynamic algorithm
for interference mitigation between cells in networks
operating in the 250 mhz band. IEEE Access,
:33803–33815, 2022.
Chaudhary, S., Wuttisittikulkij, L., Saadi, M.,
Sharma, A., Al Otaibi, S., Nebhen, J., Rodriguez,
D. Z., Kumar, S., Sharma, V., Phanomchoeng,
G., et al. Coherent detection-based photonic
radar for autonomous vehicles under diverse
weather conditions. PLoS one, 16(11):e0259438,
Ayub, M. S., Adasme, P., Soto, I., and Rodriguez,
D. Z. Reconfigurable intelligent surfaces
enabling future wireless communication.
In 2021 Third South American Colloquium on
Visible Light Communications (SACVLC), pages
–5. IEEE, 2021.
Mendonça, R. V., Teodoro, A. A., Rosa, R. L.,
Saadi, M., Melgarejo, D. C., Nardelli, P. H.,
and Rodríguez, D. Z. Intrusion detection system
based on fast hierarchical deep convolutional
neural network. IEEE Access, 9:61024–61034,
Carrillo, D., Nguyen, L. D., Nardelli, P. H.,
Pournaras, E., Morita, P., Rodríguez, D. Z.,
Dzaferagic, M., Siljak, H., Jung, A., Hébert-
Dufresne, L., et al. Corrigendum: Containing
future epidemics with trustworthy federated
systems for ubiquitous warning and response.
Frontiers in Communications and Networks,
:721971, 2021.
PINTO, G. E., Rosa, R. L., and Rodriguez,
D. Z. Applications for 5g networks. INFOCOMP
Journal of Computer Science, 20(1), 2021.
Silva, J. C., Saadi, M., Wuttisittikulkij, L., Militani,
D. R., Rosa, R. L., Rodríguez, D. Z., and
Al Otaibi, S. Light-field imaging reconstruction
using deep learning enabling intelligent autonomous
transportation system. IEEE Transactions
on Intelligent Transportation Systems,
(2):1587–1595, 2021.
Ribeiro, D. A., Silva, J. C., Lopes Rosa, R.,
Saadi, M., Mumtaz, S., Wuttisittikulkij, L., Zegarra
Rodriguez, D., and Al Otaibi, S. Light
field image quality enhancement by a lightweight
deformable deep learning framework for intelligent
transportation systems. Electronics,
(10):1136, 2021.
Ribeiro, B. E. S. et al. The effectiveness of
virtual reality in children with chronic nondegenerative
encephalopathy: An integrative review.
Journal of Pediatric Rehabilitation, 2024.
Silva Junior, M. A. et al. Virtual reality as an
alternative and effective tool in health rehabilitation:
review study. Brazilian Journal of Development,
Amorim, G. D. et al. Virtual reality as a pain
relief tool for children undergoing chemotherapy
treatments. Journal of Pediatric Oncology Nursing,
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 14
Duarte, P. H. M. et al. Virtual reality as a support
tool for physiotherapeutic conduct. Archives of
Physical Medicine and Rehabilitation, 2018.
Ávila, J. L. S. et al. Immersive virtual reality for
stroke rehabilitation: systematic review of case
reports. Journal of Stroke and Cerebrovascular
Diseases, 2024.
Lorenzo, S. M. et al. Virtual reality as an intervention
in down syndrome: A perspective on
health education interface. Journal of Developmental
and Behavioral Pediatrics, 2015.
Bastos Araújo, L. et al. Virtual reality as an alternative
and effective tool in health rehabilitation:
review study. Brazilian Journal of Development,
Cameirão, M. et al. Virtual reality for post-stroke
rehabilitation. Journal of NeuroEngineering and
Rehabilitation, 2010.
Alaker, M. et al. Virtual reality in surgical training.
International Journal of Surgery, 2016.
Rothbaum, B. O., Hodges, L. F., Ready, D.,
Graap, K., and Alarcon, R. D. Virtual reality exposure
therapy for vietnam veterans with posttraumatic
stress disorder. Journal of Clinical
Psychiatry, 62(8):617–622, 2001.
Hoffman, H. G., Patterson, D. R., and Carrougher,
G. J. Use of virtual reality for adjunctive
treatment of adult burn pain during physical therapy:
a controlled study. The Clinical Journal of
Pain, 16(3):244–250, 2004.
Smith, J. et al. The impact of virtual reality on
stroke rehabilitation: A systematic review. Journal
of Rehabilitation Research and Development,
(4):785–794, 2018.
Kwakkel, G., Kollen, B. J., and Wagenaar, R. C.
Therapy impact on functional recovery in stroke
rehabilitation: a critical review of the literature.
Physiotherapy, 90(3):149–168, 2004.
Coster,W. J., Haley, S. M., Jette, A. M., Tao,W.,
and Ni, P. Measuring patient-reported outcomes
after discharge from inpatient rehabilitation settings.
Archives of Physical Medicine and Rehabilitation,
(5):857–865, 2015.
Lazarus, C., Logemann, J. A., Huang, C. F., and
Rademaker, A.W. Effects of two types of tongue
strengthening exercises in young normals. Folia
Phoniatrica et Logopaedica, 55(4):199–205,
Cumming, T. B., Marshall, R. S., and Lazar,
R. M. Stroke, cognitive deficits, and rehabilitation:
still an incomplete picture. International
Journal of Stroke, 8(1):38–45, 2012.
Hackett, M. L., Yapa, C., Parag, V., and Anderson,
C. S. Frequency of depression after stroke:
a systematic review of observational studies.
Stroke, 36(6):1330–1340, 2014.
Laver, K. E., George, S., Thomas, S., Deutsch,
J. E., and Crotty, M. Virtual reality for stroke
rehabilitation. Cochrane Database of Systematic
Reviews, 11, 2017.
Luque-Moreno, C., Ferragut-Garcias, A.,
Rodríguez-Blanco, C., Heredia-Rizo, A. M.,
Kiper, P., and Oliva-Pascual-Vaca, A decade
of progress using virtual reality for poststroke
lower extremity rehabilitation: Systematic
review of the intervention methods. BioMed
Research International, 2015.
Weiss, P. L., Keshner, E. A., and Levin, M. F.
Virtual reality and physical rehabilitation: a new
toy or a new research and rehabilitation tool?
Journal of NeuroEngineering and Rehabilitation,
(1):8, 2004.
Levac, D. E., Huber, M. E., and Sternad, D.
Learning and transfer of complex motor skills in
virtual reality: a perspective review. Journal of
NeuroEngineering and Rehabilitation, 12(1):38,
Mirelman, A., Bonato, P., and Deutsch, J. E. Effects
of training with a robot-virtual reality system
compared with a robot alone on the gait
of individuals after stroke. Stroke, 42(5):1385–
, 2011.
Subramanian, S. K., Massie, C. L., Malcolm,
M. P., and Levin, M. F. Does provision of extrinsic
feedback result in improved motor learning
in the upper limb poststroke? a systematic
review of the evidence. Neurorehabilitation and
Neural Repair, 24(2):113–124, 2013.
Cano Porras, D., Siemonsma, P., Inzelberg, R.,
Zeilig, G., and Plotnik, M. Advantages of virtual
reality in the rehabilitation of balance and gait:
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 15
Systematic review. Neurology, 90(22):1017–
, 2018.
Johnson, R. and Jones, L. Virtual reality training
in surgical education: A systematic review. Surgical
Education Today, 22(2):120–129, 2019.
Pillai, V., Berry, J., and Godwin, B. A review of
simulation-based training in urology and the role
of non-technical skills. Current Urology Reports,
(5):29, 2021.
John, N. W., Phillips, N. I., Crowe, J. A., and
Stevenson, N. Training in clinical procedures using
virtual reality. In Virtual Reality in Medicine,
pages 183–210. Springer, Berlin, Heidelberg,
De, K., Ponnappa-Brenner, G., and Öchsner, G.
Virtual and augmented reality in medical education
and training. In Augmented Reality in Educational
Settings. Brill, 2018.
Pellegrino, A. J., Sebajang, H., and Dubrowski,
A. The value of low-cost simulation in laparoscopic
surgical skill development. Canadian
Journal of Surgery, 63(6):E537–E543, 2020.
Strother, L., House, J., Henrichs, B., Fitzgerald,
R., and Patlan, M. Virtual reality surgical simulation
in general surgery residency training: the
transformational technology. Surgical Innovation,
(4):397–404, 2012.
Seymour, N. E., Gallagher, A. G., Roman, S. A.,
O’Brien, M. K., Bansal, V. K., Andersen, D. K.,
and Satava, R. M. Virtual reality training improves
operating room performance: results of
a randomized, double-blinded study. Annals of
Surgery, 236(4):458–463, 2002.
Barsom, E. Z., Graafland, M., and Schijven,
M. P. Systematic review on the effectiveness of
augmented reality applications in medical training.
Surgical Endoscopy, 30(10):4174–4183,
Gurusamy, K. S., Aggarwal, R., Palanivelu,
L., and Davidson, B. R. Virtual reality training
for surgical trainees in laparoscopic surgery.
Cochrane Database of Systematic Reviews, (1),
Ahlberg, G., Enochsson, L., Gallagher, A. G.,
Hedman, L., Hogman, C., McClusky, D. A.,
et al. Proficiency-based virtual reality training
significantly reduces the error rate for residents
during their first 10 laparoscopic cholecystectomies.
American Journal of Surgery,
(6):797–804, 2007.
Panait, L., Rafiq, A., and Bell, R. L. The role of
haptic feedback in laparoscopic simulation training.
Journal of Surgical Research, 156(2):312–
, 2009.
Khan, R., Plahouras, J., Johnston, B. C., Scaffidi,
M. A., Grover, S. C., and Walsh, C. M. Virtual
reality simulation training in endoscopy: a
cochrane review and meta-analysis. Endoscopy
International Open, 8(6):E843–E853, 2020.
Khalaf, K., El-Khalaf, T., and Moore, R. The use
of artificial intelligence in the management of
health care workers in hospitals. Future Health
Journal, 5(1):19–25, 2018.
Brown, M. and Garcia, A. Virtual reality exposure
therapy for ptsd: A review of current research.
Journal of Anxiety Disorders, 65:102–
, 2020.
Gerardi, M., Rothbaum, B. O., Ressler, K.,
Heekin, M., and Rizzo, A. Virtual reality exposure
therapy using a virtual iraq: case report.
Journal of Traumatic Stress, 21(2):209–
, 2008.
Botella, C., Serrano, B., Baños, R. M., and
García-Palacios, A. Virtual reality exposurebased
therapy for the treatment of post-traumatic
stress disorder: A review of its efficacy, the adequacy
of the treatment protocol, and its acceptability.
Neuropsychiatric Disease and Treatment,
:2533–2545, 2015.
Reger, G. M., Gahm, G. A., Rizzo, A. S., and
Swanson, R. A. Initial feasibility study: virtual
reality and biofeedback for combat-related
ptsd. Cyberpsychology, Behavior, and Social
Networking, 14(1-2):38–40, 2011.
Maples-Keller, J. L., Bunnell, B. E., Kim, S. J.,
and Rothbaum, B. O. The use of virtual reality
technology in the treatment of anxiety and other
psychiatric disorders. Harvard Review of Psychiatry,
(3):103–113, 2017.
Difede, J., Cukor, J., Jayasinghe, N., Patt, I.,
Jedel, S., Spielman, L., and Giosan, C. Virtual
reality exposure therapy for the treatment of
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
A Comprehensive Analysis of VR in Healthcare 16
posttraumatic stress disorder following september
, 2001. Journal of Clinical Psychiatry,
(11):1639–1647, 2007.
Bouchard, S., Bernier, F., Boivin, , Morin, B.,
and Robillard, G. Using biofeedback while immersed
in a stressful videogame increases the effectiveness
of stress management skills in soldiers.
PLoS ONE, 7(4):e36169, 2017.
Gonçalves, R., Pedrozo, A. L., Coutinho, E.
S. F., Figueira, I., and Ventura, P. Efficacy
of virtual reality exposure therapy in the treatment
of ptsd: A systematic review. PLoS ONE,
(12):e48469, 2012.
Parsons, T. D. and Rizzo, A. A. Affective outcomes
of virtual reality exposure therapy for anxiety
and specific phobias: A meta-analysis. Journal
of Behavior Therapy and Experimental Psychiatry,
(3):250–261, 2008.
Garcia-Palacios, A., Hoffman, H. G., Carlin, A.,
Furness, T. A., and Botella, C. Virtual reality
in the treatment of spider phobia: a controlled
study. Behaviour Research and Therapy,
(9):983–993, 2002.
Baños, R. M., Botella, C., García-Palacios, A.,
Villa, H., Perpiñá, C., and Alcañiz, M. Presence
and emotions in virtual environments: The influence
of stereoscopy. CyberPsychology & Behavior,
(4):329–335, 2002.
Hoffman, H. G., Chambers, G. T., Meyer III,
W. J., Arceneaux, L. L., Russell, W. J., Seibel,
E. J., et al. Virtual reality as an adjunctive nonpharmacologic
analgesic for acute burn pain during
medical procedures. Annals of Behavioral
Medicine, 41(2):183–191, 2011.
Hoffman, H. G., Doctor, J. N., Patterson, D. R.,
Carrougher, G. J., and Furness, T. A. Virtual reality
as an adjunctive pain control during burn
wound care in adolescent patients. Pain, 85(1-
:305–309, 2000.
Llorens, R., Noé, E., Colomer, C., and Alcañiz,
M. Effectiveness, usability, and cost-benefit of
a virtual reality-based telerehabilitation program
for balance recovery after stroke: a randomized
controlled trial. Archives of Physical Medicine
and Rehabilitation, 96(3):418–425, 2015.
Gromala, D., Tong, X., Choo, A., Karamnejad,
M., and Shaw, C. D. The virtual meditative
walk: Virtual reality therapy for chronic pain
management. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems, pages 521–524, 2015.
Li, A., Montaño, Z., Chen, V. J., and Gold, J. I.
Virtual reality and pain management: current
trends and future directions. Pain Management,
(2):147–157, 2011.
Malloy, K. M. and Milling, L. S. The effectiveness
of virtual reality distraction for pain reduction:
a systematic review. Clinical Psychology
Review, 30(8):1011–1018, 2010.
Jones, T., Moore, T., and Choo, J. The impact
of virtual reality on chronic pain. PloS One,
(12):e0167523, 2016.
Keefe, F. J., Huling, D. A., Coggins, M. J.,
Keefe, D. F., Rosenthal, M. Z., Herr, N. R., and
Kane, L. R. Virtual reality for persistent pain: a
new direction for behavioral pain management.
Pain, 153(11):2163–2166, 2012.