
MDA Based Multiplatform Mobile Application Modeling with
Platform Compliant User Interfaces

L’ UBOŠ STARÁČEK1

VALENTINO VRANIĆ2

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies

Slovak University of Technology in Bratislava
Bratislava, Slovakia

1lubostar1@gmail.com
2vranic@stuba.sk

Abstract. Applications for mobile devices (mobile applications) represent a specific segment of the soft-
ware market in which development of applications for multiple platforms is far more articulated issue
than in applications intended for common computers. While multiplatform mobile application develop-
ment tools, such as Marmalade, MoSync or Xamarin, generate quite usable (software) platform specific
code out of its general representation developed upon something that might be considered as a super-
platform, the user interface exhibits peculiarities that have to be addressed manually. Otherwise, the user
interface will probably fail to meet the given platform compliance criteria that may result in worsening
user acceptance of the application or even in not being accepted to the application marketplace at all. In
this paper, an approach to design multiplatform mobile application at model level that employs OMG’s
MDA (Model Driven Architecture) to generate platform compliant user interfaces while still taking ad-
vantage of multiplatform tools to develop application logic is proposed. Navigation in mobile application
user interfaces is modeled using UML state machine diagrams. A model-to-model transformation for the
Android platform has been created and applied to a real application model.

Keywords: mobile applications; user interface; multiplatform; UML; MDA; state machine diagrams;
software product lines.

(Received August 28th, 2014 / Accepted January 22th, 2015)

1 Introduction

Applications for mobile devices—commonly known as
mobile applications—represent a specific segment of
the software market in which development of the ap-
plications for multiple platforms is far more articulated
issue than in applications intended for common com-
puters. The notion of platform is usually being related
to operating systems and software frameworks, which
are very diverse on mobile devices, but it can comprise
mobile device hardware properties, too. In other words,
we can distinguish between software and hardware plat-
form. Some software platforms are capable of running

on different hardware platforms.
The migration to another platform is sometimes

achieved by adapting the application, but if the need to
run the application on several platforms is known from
the beginning, it’s possible to proceed deliberately and
employ appropriate techniques to what is called multi-
platform1 mobile application development.

Hardware platform variability, such as display res-
olution or the very presence of some hardware compo-
nents like camera, keyboard, GPS, gyroscope, or even
SIM card, seems to be well managed by application

1also known as cross-platform

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

lubostar1@gmail.com
vranic@stuba.sk

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 35

code. Software platform variability comprises dealing
with application logic and user interface. Nowadays
there is a huge expansion of quite different multiplat-
form development tools. They differ in the technology
approach, e.g. web-to-native wrappers, runtime exe-
cution environment, source code translators, supported
platforms, or target audience [5, 10].

While multiplatform mobile application develop-
ment tools, such as Marmalade, MoSync or Xamarin,
generate quite usable (software) platform specific code
out of its general representation developed upon some-
thing that might be considered as a superplatform, the
user interface exhibits peculiarities that have to be ad-
dressed manually. Otherwise, the user interface will
probably fail to meet the given platform compliance cri-
teria that may result in worsening user acceptance of the
application or even in not being accepted to the appli-
cation marketplace at all.

In this paper, an approach to design multiplatform
mobile application at model level that employs OMG’s
MDA (Model Driven Architecture) to generate platform
compliant user interfaces while still taking advantage of
multiplatform tools to develop application logic is pro-
posed. The rest of the paper is structured as follows.
Section 2 presents the outline and context of the ap-
proach. Section 3 describes in details the role of MDA
in the approach. Section 4 deals with navigation model-
ing in user interfaces. Section 5 brings some evaluation
results. Section 6 discusses related work. Finally, Sec-
tion 7 concludes the paper and proposes further work.

2 Multiplatform Mobile Application Modeling:
The Approach Overview

The multiplatform mobile application development
tools allow to develop mobile applications for multiple
platforms simultaneously. Thanks to these tools it is
possible to design improved multiplatform mobile ap-
plication architecture. This architecture employs one
multiplatform application core on all platforms in com-
bination with the platform specific user interface. This
architecture, depicted in Figure 1, requires a minimum
of source code and can fulfill requirements on adapta-
tion of the user interface according to conventions that
user interfaces must adhere to in order to be platform
compliant.

The approach to multiplatform mobile application
modeling proposed in this paper is depicted in Figure 2.
The first step consists of designing a platform indepen-
dent model (PIM) of the multiplatform mobile appli-
cation being developed including navigation. In the
next step, this PIM is processed by the corresponding
model-to-model (M2M) transformations resulting in a

Figure 1: Architecture of multiplatform mobile application (adopted
from [17]).

platform specific model (PSM) generated for each tar-
get platform.

PIM
M2M

transformation

for each

target platform

M2M

transformation

for multiplatform

core

User interface
PSM (for each
target platform)

Application
logic PSM

(for multiplatform
core)

modeling

Figure 2: An overview of the approach to multiplatform mobile ap-
plication modeling.

The approach fits into a broader context as depicted
in Figure 3. This assumes model-to-text transforma-
tions for each target platform to generate user interface
source code on one hand, including navigation, while
on the other hand, this code has to be merged with
the platform specific code generated from the multiplat-
form application logic implementation by the appropri-
ate mobile application multiplatform tool.

The following two sections explain the details of
user interface and application logic structural modeling
in the context of MDA (Sect. 3) and modeling the navi-
gation aspect of user interfaces Sect. 4.

3 Employing MDA to Achieve Platform Com-
pliant User Interfaces

This section presents the details of employing MDA to
achieve platform compliant user interfaces. The pos-

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 36

M2T

transformation

for multiplatform

core

UserPinterface
code

(forPnative
userPinterface

library)

Application
logicPcode

(for
multiplatform

SDK)

deployment

Multiplatform
application

development
tool

Android
application

iOS
application

Win.PPhone
application

other
platform

application

finalization

and

merging
Multiplatform
application

code

deployment

deployment

deployment

Application
logicPPSM

(forPmultiplatform
core)

UserPinterface
PSM

(forPeachPtargetP
platform)

M2T

transformation

for each

target platform

finalization

and

merging

coding

Figure 3: The context of the approach.

sibility to apply MDA to application logic modeling is
embraced, too.

3.1 MDA

MDA (Model Driven Architecture), an Object Man-
agement Group standard, targets multiplatform model
driven application development in general. MDA starts
with a platform independent model (PIM) which is be-
ing adapted to the target platform through a series of
transformations that result in creating one or more plat-
form specific models (PSM).

Multiplatform mobile application development
tools enable to implement platform specific user inter-
faces that meet the given platform compliance criteria
by providing access to native user interface libraries.
However, this means that the user interface for each
platform has to be implemented separately. Here, we
employ MDA to design the user interface once for mul-
tiple platforms and then to generate the corresponding
platform specific models.

At the platform independent model level, the appli-
cation is modeled without any platform specific proper-
ties. The application elements are relieved of the tech-
nical details of their realization. The PIM elements are
marked with stereotypes from the UML profile that de-
fines their basic semantics. The elements can be further
configured by adding special attributes to them bear-
ing the arg stereotype. Marking elements with stereo-

types and providing them with the arg stereotyped at-
tributes defines (partly) how these elements are to be
transformed into a PSM by an M2M transformation.

QVT (Query/View/Transformation) is a standard
defined by the Object Management Group for model
transformations. The approach proposed here employs
Eclipse M2M Operational QVT implementation.

An M2M transformation has to be designed for each
target mobile platform including the transformation for
the multiplatform development tool being used in the
implementation phase since each tool is different.

3.2 UML Profile

The UML profile designed for the purposes of the ap-
proach to multiplatform mobile application design pro-
posed here contains stereotypes applicable to the in-
stances of the Class UML metaclass (Figs. 4 and 5) and
to the Property UML metaclass (Figure 6).

For example, one of the stereotypes applicable to
the Class metaclass is ui View. The classes in PIM that
model the base user interface usage should be marked
with this stereotype. In the M2M transformation for
the Android platform, all the classes marked as ui View
would be transformed into the classes that extend the
Android Activity class with the addition of the cor-
responding methods like onCreate(), onResume(), on-
Pause(), etc. In the iOS transformation, the transfor-
mation would end up with the UIViewController class,
while in Windows Phone transformation the PhoneAp-
plicationPage class would be employed.

One of the stereotypes applicable to the Property
metaclass is ui ListView. This stereotype represents
a list of items that appear in the user interface and it
should be applied to the property of some class that rep-
resents a user interface (e.g. ui View). On Android, this
would be represented by an instance of the ListView
class. On iOS, UITableView would be used, while on
Windows Phone ListBox would be employed.

All the elements marked with the stereotypes re-
lated to the user interface would be adapted to the corre-
sponding target platform. Thus, these user interface el-
ements are to be transformed by the Android, iOS, Win-
dows Phone, or some other platform transformation.
The elements that are part of the multiplatform core li-
brary (services) need not be adapted, so they would be
transformed only by the multiplatform transformation.
The multiplatform core library consists of services such
as database service, navigation service, internal storage
service, and so on. These services have their respective
stereotypes, e.g. database Service, navigation Service,
or internalStorage Service.

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 37

«Stereotype»
ui View

«Stereotype»
ui MapView

«Stereotype»
ui MultiView

«Stereotype»
ui MultiVIewItem

«Stereotype»
ui MainMenuView

«metaclass»
Class

«Stereotype»
ui ListViewItem

Figure 4: The UML profile with stereotypes applicable to the Class UML metaclass instances that constitute the user interface.

«metaclass»
Class

«Stereotype»
navigation Service

«Stereotype»
internalStorage Service

«Stereotype»
soap Service

«Stereotype»
database Service

«Stereotype»
camera Service

«Stereotype»
contactList Service

«Stereotype»
facebook Service

«Stereotype»
mediaPlayer Service

«Stereotype»
telephony Service

«Stereotype»
sms Service

Figure 5: The UML profile with stereotypes applicable to the Class UML metaclass instances that constitute multiplatform services.

3.3 Element Configuration

Some user interface elements could be transformed
into PSM in several ways. Consider the ui MultiView
stereotype, which represents an element that includes
multiple views. On the Windows Phone platform, this
element would be transformed into an element called
Panorama View. This element may contain a main
menu, but it doesn’t have to since on the Android and
iOS platforms the main menu should never be a part of
a ui MultiView element. To be able to deal with this
situation, the ui MultiView element should be config-
urable. The configuration is performed by adding arg
stereotyped attributes into the component. Thus, if a
Panorama View should include a main menu on the
Windows Phone platform, then a MainMenu type at-

tribute named true bearing a arg stereotype would be
added into the PIM element marked with the ui Mul-
tiView stereotype that would subsequently have to be
handled in the Windows Phone PSM transformation.

Services at the PSM level may offer more function-
ality than needed for the given purpose. Therefore,
these services should be configurable, too. Service con-
figuration should be performed in the same way as user
interface element configuration: by adding arg stereo-
typed attributes into corresponding elements. Consider
the navigation service that may use the GPS module
and/or network connection to achieve navigation. Each
navigation method would have its own arg stereotyped
attribute that would indicate the presence of the given
navigation method at the implementation level. Thus,

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 38

«Stereotype»
uikListView

«Stereotype»
uikButton

«Stereotype»
uikTextView

«Stereotype»
uikTextArea

«Stereotype»
uikEditText

«Stereotype»
uikImageView

«Stereotype»
uikRadioButton

«Stereotype»
uikRatingBar

«metaclass»
Property

«Stereotype»
arg

«Stereotype»
SeekBar

Figure 6: The UML profile with stereotypes applicable to the Property UML metaclass instances.

for example, adding the GPSLocation type attribute
named true bearing the arg stereotype to the naviga-
tion Service element will indicate that the getLocation()
method should be implemented and that it would return
the location given by the GPS module.

3.4 User Interface Stereotypes

All defined user interface stereotypes are listed here.
These are the stereotypes applicable to the Class UML
metaclass instances that form the user interface and
what they are used to denote:

• ui View—the base view of the user interface hier-
archy, already described in this section

• ui MapView—the view that contains a map, each
major mobile platform vendor (Google, Apple,
Microsoft) has its own implementation of maps

• ui MultiView—the view that contains multiple
views, displays one view simultaneously and can
switch between these views; on some platforms,
various realization options are possible for this el-
ement (e.g. sliding views with or without text
page indicator or tabbed views on Android etc.),
so a special argument that would enable switching
these options would be needed

• ui MultiViewItem—a view that is contained in ui
MultiView element, should be connected with the
corresponding ui MultiView element using aggre-
gation

• ui MainMenuView—very similar to ui View; the
only reason for defining this stereotype is that on
Windows Phone the main menu may be a part of

the ui MultiView element, but on Android and iOS
it can’t

• ui ListViewItem—a view that is forming a single
item of a list displayed by ListView; it should be
connected with the corresponding element that in-
cludes ui ListView with aggregation; if the cor-
responding element contains several ui ListView
fields, then ui ListViewItem element should con-
tain a special attribute that would identify the cor-
responding ui ListView instance (e.g. «arg»list1
ListViewID)

These are the stereotypes applicable to the Property
UML metaclass instances and what they are used to de-
note:

• ui ListView—view that shows items in a scrolling
list, may be horizontal or vertical; displayed items
are represented by a ui ListViewItem element

• ui Button—a standard button view

• ui TextView—a standard text view

• ui TextArea—a text view that contains multiple
lines of text

• ui SeekBar—a visual progress indicator in the op-
eration while the user can touch the thumb and
drag left or right to set the current progress level

• ui RatingBar—an extension of ui SeekBar that
shows a rating in stars

• ui RadioButton—a standard radio button

• ui ImageView—a view that displays an image
INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 39

• ui EditText—an extension of TextView that is ed-
itable by the user

• arg—a special attribute

All the instances to which any of the stereotypes listed
is applied, except for the arg stereotype, are user inter-
face elements.

These are the stereotypes applicable to the Class
UML metaclass instances that represent service ele-
ments and are part of the multiplatform core of the mo-
bile application being developed, as well, as what are
these stereotypes used to denote:

• camera Service—a service that handles the mobile
device camera

• contactList Service—a service that handles access
to the contacts stored in the mobile device

• facebook Service—an access to the Facebook API

• mediaPlayer Service—handle playing of au-
dio/video media files

• soap Service—a service element that would im-
plement web services using SOAP protocol

• internalStorage Service Handle data stored in in-
ternal storage of a mobile device

• sms Service—handle SMS managing (e.g. read,
write, send, delete, etc.)

• navigation Service—handle a GPS module and
navigation generally (e.g. navigation by network)

• database Service—a service element that would
implement access to the database

• telephony Service—handle telephony services
(e.g. making a call, getting signal strength, etc.)

Consider an example of a PIM depicted in Figure 7
that models a simple application displaying location co-
ordinates of a mobile device containing a label and the
closing button. Suppose this PIM has to be transformed
into an Android PSM by the Android M2M transforma-
tion. The user location is obtained by navigation Ser-
vice mentioned earlier in this section.

After processing this PIM by the Android QVT
transformation created for the purposes of the approach
proposed here, the Android PSM would be generated as
depicted in Figure 8.

A snippet of the Android QVT transformation that is
responsible for the transformation of the given example
is depicted in Figure 9.

modeltype UML uses "http://www.eclipse.org/uml2/2.0.0/UML";
transformation Android_PSM_transformation
(in model : UML, out model1 : UML);

main() {
-- map all model elements
 model.rootObjects()[Model]->map Model();
}

mapping Model::Model() : Model {
-- concatenate "Android" to model name
 name := self.name + 'Android';
-- query all model elements of type "Class" with stereotype
-- that starts with "ui View" string and process them with
-- UIView mapping
 ownedType += self.getOwnedTypes()[Class]

->select(c|c.getAppliedStereotypes()
 ->exists(s|s.name.startsWith("ui View")))

->map UIView();
}

mapping Class::UIView() : Class {
 name := self.name + 'Activity';
 ownedAttribute += self.attribute

->map attributes(); -- map all attributes
 ownedOperation += object Operation{

name := 'onCreate';
}; -- add "onCreate" method

 ownedOperation += object Operation{
name := 'onDestroy';

}; -- add "onDestroy" method
}

mapping Property::attributes() : Property {
 name := self.name;
-- resolving type of attributes by stereotypes
 if(self->exists(c|c.getAppliedStereotypes()

->exists(s|s.name.startsWith("ui Button"))))
then {

type := object Class{
name := "Button";

};
 } endif;

 if(self->exists(c|c.getAppliedStereotypes()

->exists(s|s.name.startsWith("ui TextView"))))
then {

type := object Class{
name := "TextView";

};
 } endif;
}

Figure 9: A snippet of the Android QVT transformation.

The M2M transformation should preserve the
stereotypes. This is important for the code generation,
which itself is out of the scope of this work.

The M2M transformation should also preserve the
elements that represent multiplatform services, even
though they are not transformed by it. The purpose of
this is to make possible for the developer to observe
how platform specific elements are connected to the el-
ements contained in the multiplatform core. Also, with
this, the developer would be able to run a mobile plat-
form M2M transformation on the PIM first, and then
a multiplatform tool M2M transformation on the PSM
obtained from that mobile platform M2M transforma-
tion. This process would produce a complete PSM. For

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 40

Figure 7: An example of a PIM.

Figure 8: An Android PSM.

example, one might run the Android M2M transforma-
tion on the PIM, and then run the multiplatform tool
M2M transformation on the obtained Android PSM re-
sulting in a complete PSM.

4 Mobile Application Navigation Model

In the previous section we focused mainly on the mo-
bile application structure. A very important aspect of
the mobile application user interface design is navi-
gation. Navigation can successfully be modeled us-
ing UML state machine diagrams [4] and we employ
this approach to model navigation in mobile application
user interfaces.

In the navigation model, each ui View element is
modeled as a state of the state machine diagram where
names of the states and the corresponding ui View ele-
ments must match. A state machine diagram transition
represents the user interface element instance that ini-
tiates navigation change between ui Views connected
with this transition. Therefore, ui Views must contain
all the given user interface element instances that are
represented as transitions coming out of the state that
represents the given ui View element.

The transition syntax in UML state machine dia-
grams is [11]:

event[guard expression]/action

User interface elements are mapped onto transitions by
setting an event of the given transition to be the same as
the name of the user interface element.

Each user interface element can handle multiple in-
put events that can initiate different navigation changes.

Therefore, navigation model has to include the informa-
tion about which input event (onClick, onLongCLick,
onKeyPressed, etc.) initiates the given navigation
change. The user interface elements in the navigation
model would not initiate other actions than navigation
changes, thus input event can be put into the navigation
model as an action of given state machine diagram tran-
sition that represents the given user interface element.

On different platform user interface elements may
initiate different navigation changes by their input
event, which makes navigation model platform specific.
This opens two possibilities: to make one navigation
model for each target platform or to express all naviga-
tion transitions in one model and distinguish their plat-
form adherence with tagging. Assuming that the most
of the navigation transitions would be shared between
target platforms, the second possibility is more appro-
priate. A platform specific transition would be tagged
by setting a precondition in the guard expression in it
as:

platform==<target_platform>

To sum up, a transition in the navigation model would
be described as:

user interface element’s name[target
platform]/input event

Figure 10 shows an example of the navigation
model. This example includes two states named Main-
MenuView1 and MainMenuItemView1. Therefore, the
PIM should contain the elements with these names.
Such an element must be able to contain and display

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 41

user interface elements, thus an appropriate stereotype,
like ui View, ui MainMenuView, or similar, has to be
applied to it. There is a transition from the MainMenu-
View1 state to the MainMenuItemView1 state. This
transition is specified as:

btn_menu_item1[platform==iOS]/onClick

Therefore, MainMenuView1 should contain a user
interface element named btn_menu_item1 that—
when clicked—would initiate displaying MainMenu-
ItemView1 on the iOS platform.

NavigationModelExample

btn_menu_item1[platform==iOS]/onClick
Effect

btn_menu_item1[platform==iOS]/onClick
Effect

MainMenuView1

MainMenuItemView1

Figure 10: A user interface navigation model.

5 Evaluation

The approach to mobile application modeling pro-
posed here was demonstrated on several—so to say—
fabricated examples in previous sections. However, the
approach was also applied to a real mobile application
case. This application is a generalized version of a real
application developed by the iNeed developer team.2

The original application was intended to be an “ency-
clopedia” of beer and breweries located in Slovakia and
Czech Republic. For the purposes of this work, the ap-
plication was adjusted to be able to cover any products
and its user interface was simplified.

The Android M2M transformation proved its usabil-
ity and ability to generate arbitrary PSM from PIM,
which speaks in favor of the possibility to define M2M
transformations for any mobile platform. In the An-
droid M2M transformation, an element with the ui Mul-
tiView stereotype produced multiple elements that form
ui MultiView on the Android platform. Also, all other
elements specific to the Android platform were trans-
formed into their corresponding platform specific form.
Without the proposed approach, this would have to be
performed manually.

Extending the proposed approach to a new platform
requires designing and implementing the corresponding

2http://ineed.sk/

M2M transformation for this platform. However, if the
platform is not supported by the multiplatform develop-
ment tool that is intended to be employed in the imple-
mentation phase, there are two possible solutions. The
first one is to change the multiplatform development
tool to one that would support all required platforms.
Since changing the tool may require adaptation of ex-
isting M2M transformations, this option may be too ex-
pensive, but if such M2M transformations are available,
this possibility is recommended.

The other possibility is to write an M2M transfor-
mation that would generate the application model on a
new platform in its native API. This would require:

• the M2M transformation to change the architecture
of the application in PSM from multiplatform to
single platform, so it would transform services to
a platform specific form

• to use its integrated development environment
(e.g., Xcode for iOS) in the implementation phase

6 Related Work

A multiplatform mobile application designed accord-
ing to our approach can be considered to be a soft-
ware product line. Although common software product
lines represent different software products with shared
components among them and with some product spe-
cific components, the software product line here is con-
stituted by one product adapted to multiple platforms.
However, there are shared components in the multiplat-
form core library and product specific components that
represent the user interface. Several authors have ad-
dressed the software product line approach in mobile
application domain [1, 8, 14, 16]. One of the mostly
discussed topics is how high heterogeneity in mobile
platforms may lead to a significant increase of software
variability. Improved multiplatform mobile application
architecture that employs the software product line ap-
proach also brings advantages like decrease in time to
market, increase in productivity, and quality improve-
ment [15].

Dolog and Nejdl [4] proposed an approach for gen-
erating navigation sequences in web based systems. In
this paper, Dolog’s idea of navigation modeling us-
ing UML state machine diagrams has been applied and
adapted to the domain of mobile applications. Specif-
ically, it was necessary to design methods for marking
target platform and add the event type into state ma-
chine diagram transitions (described in Sect. 4).

Myllymaki et al. explored variability and common-
ality management in the spirit of software product line
as a solution for device fragmentation on the Symbian

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

http://ineed.sk/

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 42

mobile platform [9]. They employ software product
lines as an additional layer of abstraction to cover var-
ious hardware properties of mobile devices on single
platform, while our approach employs software product
lines to deal with the heterogeneity of mobile platforms
since device fragmentation is successfully managed by
application code.

Balagtas-Fernandez et al. [3, 2] provided a tool
called Mobia Modeler that allows the development of
fully functional software applications for mobile plat-
forms by employing MDA. Mobia Modeler has a user
friendly user interface, which make developing process
more intuitive and it also prevents users from perform-
ing invalid actions. The tools employs MDA with code
generation techniques (XMLT) to improve time to mar-
ket and development complexity.

Porubän et al. [12, 13] reported they created the
Graphical User Interface Interaction Language using
their annotation based parser generator that signifi-
cantly simplifies development of domain-specific lan-
guages. This could be seen as an alternative to graphical
modeling employed in our approach.

7 Conclusion and Further Work

In this paper, an MDA based approach to multiplatform
mobile application modeling with platform compliant
user interfaces has been proposed. The approach ad-
dresses the problem of inadequate support for platform
specific user interface features in existing multiplatform
mobile application development approaches.

The approach employs MDA’s platform indepen-
dent models (PIM) to express a multiplatform user in-
terface along with a part or whole application logic (op-
tional). Platform independent models are marked with
general user interface and application logic stereotypes
contained in the UML profile for modeling multiplat-
form mobile application proposed in this paper.

Both user interface and application logic elements
can be configured by adding the corresponding at-
tributes bearing the arg stereotype. By this, the UML
profile for modeling multiplatform mobile application
remains relatively stable.

Navigation represents an important aspect of user
interface modeling. For this, state machine diagram
based approach known from web modeling [4] has been
applied.

Each target platform has to be covered by the cor-
responding model-to-model transformation that trans-
forms a platform independent model to a platform spe-
cific one (PSM). For this, QVT can be used and it was
actually used to demonstrate the approach: a model-to-
model (M2M) transformation for the Android platform

was developed.
The approach is presented on examples. Further-

more, it was successfully applied to create a plat-
form independent model of a real mobile application to
which the proposed Android M2M transformation has
been applied to get the corresponding platform specific
model. This has proved the applicability and usability
of the Android platform M2M transformation. The sit-
uation with a missing M2M transformation for a given
platform has also been evaluated (see Sect. 5).

The context in which this approach to multiplatform
application modeling is proposed—presented in Fig-
ure 3 (Section 2)—embraces code generation by model-
to-text MDA transformations. This is certainly one
way to extend the approach. Another area we would
like to target is providing a common user interface to
mobile devices participating in complex event process-
ing [7, 6].

Acknowledgments

The work reported here was supported by the Scientific
Grant Agency of Slovak Republic (VEGA) under the
grant No. VG 1/1221/12.

This contribution/publication is also a partial re-
sult of the Research & Development Operational Pro-
gramme for the project Research of Methods for Ac-
quisition, Analysis and Personalized Conveying of In-
formation and Knowledge, ITMS 26240220039, co-
funded by the ERDF.

References

[1] Alves, V. Identifying variations in mobile devices.
Journal of Object Technology, 4(3):51–56, Apr.
2005.

[2] Balagtas-Fernandez, F., Tafelmayer, M., and
Hussmann, H. Mobia Modeler: Easing the cre-
ation process of mobile applications for non-
technical users. In Proceedings of 15th Interna-
tional Conference on Intelligent User Interfaces,
IUI ’10, pages 269–272, Hong Kong, China,
2010. ACM.

[3] Balagtas-Fernandez, F. T. and Hussmann, H.
Model-driven development of mobile applica-
tions. In Proceedings of 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering, ASE ’08, pages 509–512, L’Aquila, Italy,
2008. IEEE Computer Society.

[4] Dolog, P. and Nejdl, W. Using UML and XMI
for generating adaptive navigation sequences in

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

Staráček and Vranić MDA Based Multiplatform Mobile Application Modeling with Platform Compliant User Interfaces 43

web-based systems. In Proceedings of 6th In-
ternational Conference on the Unified Modeling
Language, UML 2003, volume LNCS 2863, San
Francisco, USA, Oct. 2003. Springer.

[5] Jones, S., Voskoglou, C., Vakulenko, M., Mea-
som, V., Constantinou, A., and Kapetanakis, M.
Cross-platform developer tools 2012. Technical
report, Vision Mobile, Feb. 2012.

[6] Lang, J., Jantošovič, M., and Polášek, I. Re-
usability in complex event pattern monitoring. In
Proceedings of 10th Jubilee International Sym-
posium on Aplied Machine Intelligence and In-
formatics, SAMI 2012, Herl’any, Slovakia, 2012.
IEEE.

[7] Lang, J. and Janík, J. Reactive distributed sys-
tem modeling supported by complex event pro-
cessing. In Proceedings of 3rd Eastern Euro-
pean Regional Conference on the Engineering of
Computer Based Systems, ECBS-EERC 2013, Bu-
dapest, Hungary, 2013. IEEE Computer Society.

[8] Muthig, D., John, I., Anastasopoulos, M., Forster,
T., Dorr, J., and Schmid, K. GoPhone—a software
product line in the mobile phone domain. Techni-
cal report, Fraunhofer IESE, 2004.

[9] Myllymaki, T., Koskimies, K., and Mikkonen, T.
On the structure of a software product-line for
mobile software. In Software Infrastructures for
Component-Based Applications on Consumer De-
vices (in conjunction with EDOC 2002, pages 85–
91, Sept. 2002.

[10] Ohrt, J. and Turau, V. Cross-platform develop-
ment tools for smartphone applications. Com-
puter, 45(9):72–79, 2012.

[11] OMG. OMG Unified Modeling Language (OMG
UML), superstructure, version 2.4.1. Technical re-
port, 2011.

[12] Porubän, J., Forgáč, M., Sabo, M., and Běhálek,
M. Annotation based parser generator. Computer
Science and Information Systems Journal (Com-
SIS), 7(2):291–307, 2010.

[13] Porubän, J., Sabo, M., Kollár, J., and Mernik,
M. Abstract syntax driven language develop-
ment: Defining language semantics through as-
pects. In Proceedings of International Workshop
on Formalization of Modeling Languages (FML
’10), ECOOP 2010, pages 6–10, Maribor, Slove-
nia, 2010. ACM.

[14] Rosa, R. E. V. and Lucena, V. F., Jr. Smart com-
position of reusable software components in mo-
bile application product lines. In Proceedings of
2nd International Workshop on Product Line Ap-
proaches in Software Engineering, PLEASE ’11,
pages 45–49, Waikiki, Honolulu, HI, USA, 2011.
ACM.

[15] SEI. Software product line overview. http://
www.sei.cmu.edu/productlines/.

[16] White, J. and Schmidt, D. C. Model-driven
product-line architectures for mobile devices. In
Proceedings of 17th Annual Conference of the
International Federation of Automatic Control,
Seoul, Korea, 2008.

[17] Xamarin Inc. Building cross platform ap-
plications. http://docs.xamarin.com/
printpdf/18634, 2012.

INFOCOMP, v. 13, no. 2, p. 34-43, December 2014.

http://www.sei.cmu.edu/productlines/
http://www.sei.cmu.edu/productlines/
http://docs.xamarin.com/printpdf/18634
http://docs.xamarin.com/printpdf/18634

	Introduction
	Multiplatform Mobile Application Modeling: The Approach Overview
	Employing MDA to Achieve Platform Compliant User Interfaces
	MDA
	UML Profile
	Element Configuration
	User Interface Stereotypes

	Mobile Application Navigation Model
	Evaluation
	Related Work
	Conclusion and Further Work

