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Abstract. Estimation of different parameters for object-oriented systems development such as effort,
quality, and risk is of major concern in software development life cycle. Majority of the approaches
available in literature for estimation are based on regression analysis and neural network techniques.
Also it is observed that numerous software metrics are being used as input for estimation. In this study,
object-oriented metrics have been considered to provide requisite input data to design the models for
prediction of maintainability using three artificial intelligence (AI) techniques such as neural network,
Neuro-Genetic (hybrid approach of neural network and genetic algorithm) and Neuro-PSO (hybrid ap-
proach of neural network and Particle Swarm Optimization). These three AI techniques are applied to
predict maintainability on two case studies such as User Interface System (UIMS) and Quality Evalua-
tion System (QUES). The performance of all three AI techniques were evaluated based on the various
parameters available in literature such as mean absolute error (MAE) and mean Absolute Relative Error
(MARE). Experimental results show that the hybrid technique utilizing Neuro-PSO technique achieved
better result for prediction of maintainability when compared with the other two.
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1 Introduction

Maximum amount of cost is always associated with any
software product over its lifetime during software main-
tenance period. One of the approaches for controlling
maintenance costs is to utilize software metrics during
the development phase [2]. A number of metrics are
available in literature to evaluate the quality of software
[6][1][13]. In practice, reliability and maintainability
play a major role to meet quality. Reliability is gener-
ally measured in terms of the number of faults found in
the developed software during a particular time period.
Maintainability is typically measured in terms of effort
given for change. Change effort can mean either the av-
erage effort to make a change to a class or component

or connector or configuration, or the total effort spent
on changing these elements.

Metrics-based maintainability prediction helps to
reduce future maintenance efforts by enabling devel-
opers, identifying the determinants of software qual-
ity, and improving quality of design or coding. It also
provides managers with information for more effective
planning of valuable resources [19]. In order to pre-
dict the maintainability of a different elements (Ob-
ject, Class, Method, etc.), several statistical methods
are available in literature. But less importance has been
given on use of machine learning techniques. Artifi-
cial intelligence techniques, a subset of machine learn-
ing methods have the ability to measure the properties
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of a class of object-oriented software, that human be-
ings recognize as intelligent behavior. These methods
are able to approximate the non-linear function with
more precision. Hence they can be applied for pre-
dicting maintainability in order to achieve better accu-
racy. In this paper, ANN with gradient descent learning
method [3], hybrid approach of neural network and par-
ticle swarm optimization such as Neuro-PSO [18], and
hybrid approach of ANN and genetic algorithm such
as Neuro-genetic (Neuro-GA) [5] techniques are used
for maintainability prediction on two commercial soft-
ware product such as User Interface System (UIMS)
and Quality Evaluation System (QUES). To train these
models, object-oriented software metrics are consid-
ered as input data.

The remainder of the paper is organized as follows:
Section 2 shows the related work in the field of software
maintainability estimation and object-oriented metrics.
Section 3 highlights on research background related
to this study. Section 4 briefs about the methodolo-
gies used to estimate the maintainability. Section 5
highlights on the results for maintainability prediction,
achieved by applying ANN, Neuro-GA, and Neuro-
PSO techniques. Section 6 represents a comparison on
the performance of the designed models based on the
different performance parameters. In Section 7 threats
to validity have been discussed and Section 8 concludes
the paper with scope for future work.

2 Related work

It is observed in literature that software metrics are used
in design of prediction models which serve the purpose
of computing the prediction rate in terms of accuracy
such as fault, effort, re-work, and maintainability.

In this work, the use of software metrics for main-
tainability prediction has been emphasis. Table 1 shows
the summary of literature review on maintainability;
where it describes the applicability of numerous soft-
ware metrics available in literature in designing respec-
tive prediction models. Table 1 also shows the differ-
ent prediction models used in literature for predicting
maintainability.

From Table 1, we interpreted that many of the au-
thors have used statistical methods such as regression
based analysis and their different deviations in predict-
ing the maintainability. But keen observation reveals
that very less work has been carried out on application
of neural network models for designing their respec-
tive prediction models. Neural network models over
the years have seen an explosion of interest, and ap-
plicability across a wide range of problem domain. In-
deed, these models can be mainly used to solve prob-

Table 1: Summary of Empirical Literature on Maintainability

Author Software Metrics used Prediction model
Li and Henry
(1993) [13]

CK metrics, Li and
Henry metrics, and Size
Metrics.

Regression based models.

Paul Oman et
al. (1994)
[15]

Halstead‘s metrics, mc-
cabe metrics

Regression based models.

Don Coleman
et al. (1994)
[7]

Halstead‘s metrics. Hierarchical multidimensional as-
sessment model, polynomial re-
gression models, aggregate com-
plexity measure, principal compo-
nents analysis, and factor analysis.

Don Coleman
et al. (1995)
[8]

Halstead‘s metrics. Hierarchical multidimensional as-
sessment model, polynomial re-
gression models, Estimating main-
tainability via entropy, principal
components analysis, and factor
analysis.

Binkley et al.
(1998)[4]

CDM and design quality
metrics.

Regression based models.

Bandi et al.
(2003) [2]

Interface metrics and de-
sign quality metrics.

variance, correlation, and regres-
sion based models.

Van Koten et
al. (2006)
[17]

CK metrics, Li and
Henry metrics, and Size
Metrics.

Bayesian Network, regression tree,
backward elimination and stepwise
selection.

Yuming Zhou
and Hareton
Leung (2007)
[19]

CK metrics, Li and
Henry metrics, and Size
Metrics.

Multivariate linear regression,
artificial neural network, regression
tree, support vector regression and
multivariate adaptive regression
splines.

Zhou et al.
(2008) [20]

Design quality metrics. Regression based models.

lems related to prediction and classification and act as
efficient predictors of dependent as well as independent
variables due to its special modeling technique where
in they posses the ability to model complex functions.
In this paper, software metrics have been considered
for predicting maintainability by applying three artifi-
cial intelligence techniques, based on neural network
applications.

3 Research background

The following subsections highlight on the data set used
for predicting maintainability. Data normalization and
cross-validation methods have been considered to ob-
tain better accuracy, and then dependent and indepen-
dent variables are chosen for models to be applied for
maintainability estimation.

3.1 Metrics set

Metrics suites are defined for different goals such as
effort estimation, fault prediction, and maintainabil-
ity. In this paper, different object-oriented metrics
have been considered for predicting maintainability of
object-oriented software. Maintainability is measured
as the number of changes made to the code during a
maintenance period. A line change can be an ‘addition’

INFOCOMP, v. 13, no. 2, p. 10-21, December 2014.



Kumar and Rath Hybrid neural network approach for predicting maintainability of object-oriented software 12
Table 2: Definition of the metrics used [13]

Metric Description
Weighted method per class (WMC). Sum of the complexities of all class methods.
Depth of inheritance tree (DIT). Maximum length from the node to the root of the tree.
Number of children (NOC). Number of immediate sub-classes subordinate to a class in the class

hierarchy.
Response for class (RFC). A set of methods that can potentially be executed in response to a mes-

sage received by an object of that class.
Lack of cohesion among methods
(LCOM).

Measures the dissimilarity of methods in a class via instanced variables.

Message-passing coupling (MPC). The number of send statements defined in a given class.
Data abstraction coupling (DAC). The number of abstract data types defined in a given class.
Number of methods (NOM ). The number of methods implemented within a given class.
SIZE1. The number of semicolons in a given class.
SIZE2. Total number of attributes and local methods in a given class.

or ‘deletion’ of lines of code in a class [13]. The metrics
selected in this study are tabulated in Table 2.

3.2 Effectiveness of metrics

Once the maintenance data values are determined, an
attempt is made to establish a relationship between
the maintainability and the metrics. Hence in this ap-
proach, change is considered as a dependent variable
and each of the software metrics as an independent vari-
able while developing the relation. Maintainability is
thus assumed to be a function of WMC, DIT, NOC,
RFC, LCOM, MPC, DAC, NOM, SIZE1, and SIZE2,
and is represented as:

Maintainability = f(WMC,DIT,NOC,RFC,

LCOM,MPC,DAC,NOM,SIZE1, SIZE2)

(1)

3.3 Case study

In this paper, to analyze the effectiveness of the pro-
posed approach, the data sets (metric values) of two
commercial software system used by Li and Henry
(1993) are considered as case studies [13]. Software
systems such as User Interface System (UIMS) and
Quality Evaluation System (QUES) are chosen for com-
puting the maintainability, which are developed us-
ing Classic-Ada language. Classic-ADa is an object-
oriented programing language that adds the capabil-
ity of object-oriented programing to ADa by providing
object-oriented construct in addition to the ADa con-
structs [13]. Classic-ADa metrics analyzer has been
used to gather metrics from Classic-ADa’s design and
source code. The data set for over three years is being

considered for our analysis. UIMS and QUES software
system have 39 and 71 classes respectively.

3.4 Descriptive statistics

This subsection highlights on the descriptive statistics
of maintainability data. The metric values of the UIMS
and QUES systems comprising the CK metric suite, Li
& Henry, SIZE, and Change metrics, which in turn con-
stitute the data set for the respective software systems
along with their descriptive statistics such as Min, Max,
Median, Mean, and Standard deviation are tabulated in
Table 3.

In this analysis, we disregarded the CBO metric of
the CK metrics suite for computing maintainability as it
measures “non-inheritance related coupling" [6]. Also
the derivative of inheritance metric ‘NOC’ in QUES
software product, has all its 71 classes with NOC val-
ues as zero. This indicates that there are no imme-
diate sub-classes of a class in the class hierarchy and
hence NOC is not considered in computing maintain-
ability in this analysis. From Table 3, we understood
that the DIT metric has low value of median and mean
for both UIMS and QUES data sets. The low value of
median and mean for DIT shows that inheritance is not
being used in both software system. Similarly medians
and means of NOM and SIZE2 are found in the UIMS
and QUES data sets and they suggest that the class size
at the design level in both systems are similar. How-
ever, the medians and means of SIZE1 in the QUES
data set are significantly larger than those in the UIMS
data set. This suggests that the complexities of the prob-
lems processed by the two systems are rather different.
Moreover, the medians and means of RFC and MPC in
the QUES data set are of greater value in comparison
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Table 3: Descriptive statistics of classes for UIMS and QUES [13]

UIMS WMC DIT NOC RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 69 4 8 101 31 12 21 40 439 61 289
Min. 0 0 0 2 1 1 0 1 4 1 2
Median 5 2 0 17 6 3 1 7 74 9 18
Mean 11.38 2.15 0.94 23.20 7.48 4.33 2.41 11.38 106.44 13.97 46.82
Std Dev. 15.89 0.90 2.01 20.18 6.10 3.41 4.00 10.21 114.65 13.47 71.89

QUES WMC DIT NOC RFC LCOM MPC DAC NOM SIZE1 SIZE2 CHANGE
Max. 83 4 0 156 33 42 25 57 1009 82 42.09
Min. 1 0 0 17 3 2 0 4 115 4 6
Median 9 2 NA 40 5 17 2 6 211 10 52
Mean 14.95 1.91 0 54.38 9.18 17.75 3.44 13.41 275.58 18.03 62.18
Std Dev. 17.05 0.52 0 32.67 7.30 8.33 3.91 12.00 171.60 15.21 42.09

to UIMS data set. This suggests that the coupling be-
tween classes in the QUES is higher than those in the
UIMS. In contrast, the median and mean of LCOM in
the QUES data set are similar to the median and mean of
LCOM in the UIMS data set and implies that these two
systems have similar cohesion. It can also be seen that
the mean of CHANGE in the QUES data set is larger
than that in the UIMS data set.

3.5 Data normalization technique

Normalization of input feature values has been carried
out, over the range [0,1], so as to adjust the defined
range of input feature values and avoid the saturation of
neurons. In literature, techniques such as Min-Max nor-
malization, Z-Score normalization, and Decimal scal-
ing are available for normalizing the data. In this study,
we consider Min-Max normalization technique to nor-
malize the data [10]. Min-Max normalization technique
has been considered in this study because it has the ad-
vantage of preserving exactly all relationships in the
data, which is usually not possible to avail using other
similar techniques. It performs a linear transformation
on the original data. After applying Min-Max normal-
ization, each attribute will lie within the range of [0,1]
values and it will remain same. Min-Max normalization
is calculated by using the following Equation:

Normalized(x) = x′ =
x−min(X)

max(X)−min(X)
(2)

where min(X) and max(X) represent the minimum
and maximum values of the attribute X respectively.

3.6 Cross-validation method

Cross-validation is a statistical learning method which
is used to evaluate and compare the models by parti-
tioning the data into two portions. One portion of the

divided set is used to train or learn the model and the
rest of the data is used to validate the model.

K-fold cross-validation is the basic form of cross
validation [12]. In K-fold cross-validation the data are
first partitioned into K equal (or nearly equally) sized
portions or folds. For each of the K model, K-1 folds
are used for training and the remaining one fold is used
for testing purpose. The significance of K-fold-cross-
validation lies in it’s ability to use the data set for both
training and testing. So the performance of each model
on each fold can be tracked using predetermined per-
formance metrics available in literature. In literature, it
is observed that 5-fold and 10-fold cross-validation ap-
proaches have been used for designing a model. In this
paper, 10-fold cross-validation is used in QUES and 5-
fold cross-validation is used in UIMS for comparing the
models, i.e., data sets are divided into 10 and 5 parts in
QUES and UIMS respectively (each fold in both QUES
and UIMS contain seven number of data samples).

4 Techniques for predicting Maintainability

The subsequent subsections highlight on the use of arti-
ficial intelligence techniques (AI) for predicting main-
tainability [3][14]. These AI techniques are:

• 1. Artificial neural network (ANN) with Gradient
descent learning method [3][14].

• 2. Hybrid approach of ANN and genetic algo-
rithm (Neuro-GA (NGA) and Adaptive Neuro-GA
(ANGA)) [5].

• 3. Hybrid approach of ANN and Particle Swarm
Optimization (Neuro-PSO (NPSO) and Modified
Neuro-PSO (MNPSO)) [18].

4.1 Artificial neural network (ANN) model

ANN is used for solving problems such as classifica-
tion and estimation [3]. In this paper, ANN is used for
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predicting maintainability using object-oriented metrics
for two software products UIMS and QUES. Figure 1
shows the architecture of ANN, which contains three
layers, namely input layer, hidden layer, and output
layer.

Input layer Hidden layer Output layer

Figure 1: Artificial neural network

Here, for input layer, linear activation function is
used, and for hidden layer and output layer, sigmoidal
function or squashed-S function is used.

Neural network can be represented as:

Y ′ = f(W,X) (3)

whereX is the input vector, Y
′

is the output vector, and
W is the weight vector. The weight vectorW is updated
in every iteration so as to reduce Mean Square Error
(MSE). MSE is is calculated using following equation

MSE =
1

n

n∑
i=1

(y′i − yi)
2 (4)

where y is the actual output and y
′

is the expected out-
put.

Different methods are available in literature to up-
date weight vector ‘W’ such as Gradient descent, New-
ton’s method, Quasi-Newton method, Gauss Newton
conjugate-gradient method, and Levenberg Marquardt
method etc. In this study, we considered Gradient de-
scent method for updating the weight vector ‘W’ be-
cause, although the convergence of Gradient descent
method is stable, but the computation complexity is low
as compared with other methods.

Gradient descent learning method is used for updat-
ing the weights during learning phase [3]. It uses first-
order derivative of total error to find the minima in er-
ror space. Normally Gradient vector G is defined as the
1st order derivative of error function Ek, and the error
function is represented as:

Ek =
1

2
(y′k − yk)

2 (5)

Gradient vector G is represented as:

G =
∂Ek

∂W
=
∂
1

2
((y′k − yk)

2)

∂W
(6)

After obtaining the value of gradient vector G in
each iteration, weighted vector W is updated as:

Wk+1 =Wk − αGk (7)

where Wk+1 is the updated weight, Wk is the current
weights, Gk is gradient vector, α is the learning con-
stant, y and y

′
are the actual and expected output re-

spectively.

4.2 Neuro-Genetic (NGA) Approach

In this approach, genetic algorithm is used for updat-
ing the weight during learning phase. A neural network
with a configuration of ‘l-m-n’ has been considered
for estimation, i.e., the network consists of ‘l’ number
of input neurons, ‘m’ number of hidden neurons, and
‘n’ number of output neurons. In this paper, for input
layer, linear activation function is used, and for hidden
layer and output layer, sigmoidal function or squashed-
S function is used.

The number of weights N required for this network
with a configuration of ‘l-m-n’ can be computed using
the following equation:

N = (l + n) ∗m (8)

with each weight (gene) being a real number and
assuming the number of digits (gene length) in weights
to be d. The length of the chromosome L is computed
using the following equation:

L = N ∗ d = (l + n) ∗m ∗ d (9)

For determining the fitness value of each chromo-
some, weights are extracted from each chromosome us-
ing the following equation:

Wk =



if 0 <= xkd+1 < 5

−xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2

if 5 <= xkd+1 <= 9

+
xkd+2∗10d−2+xkd+3∗10d−3+....+x(k+1)d

10d−2

(10)
The fitness value of each chromosome is computed

using following equation:

Fi =
1

Ei
=

1√∑j=N
j=1 Ej

N

=
1√∑j=N

j=1 Tji−Oji

N

(11)

whereN is the total number of training data set. Tji
and Oji are the estimated and actual output of input in-
stance j for chromosome i.
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Figure 2 shows the block diagram for Neuro-GA ap-
proach, which represent the steps followed to design the
estimation model.

Random
population of

‘n’
chromosomes
is generated

Weight set is
extracted

Weight for training the
network is fed as input

Fitness value is computed
using Equation 11

Stopping
criterion

met ?

Model is used for
testing

Yes

Min fitness value
chromosome is

replaced with Max
fitness value
chromosome

Two-point cross
over is performed

No

Figure 2: Flow chart representing Neuro-GA execution

4.3 Adaptive Neuro Genetic (ANGA) Approach

To overcome the limitations of genetic algorithm such
as premature convergence due to local optima and low
convergence speed, an attempt has been made towards
the improvement of parameters such as cross over prob-
ability (Pc) and mutation probability (Pm). In this pa-
per (Pc) and (Pm) values are adaptively decreased to
prevent disruption of any proper solution. (Pc) and
(Pm) values are updated using Equations 12 and 13.
After implementation, it was observed that Adaptive
Neuro-GA Approach yields better result in comparison
with Neuro-GA.

(Pc)k+1 = (Pc)i −
C1 ∗ n

7
(12)

(Pm)k+1 = (Pm)i −
C2 ∗ n

7
(13)

where (Pc)k+1 and (Pm)k+1 are the updated prob-
ability of cross over and mutation, (Pc)i and (Pm)i are
the initial probability of cross over and mutation, C1

and C2 are positive constant and n is the number of
chromosomes having same fitness value.

4.4 Neuro Particle Swarm Optimization (NPSO) Ap-
proach

Neuro Particle Swarm Optimization is a hybrid ap-
proach of neural network and Particle Swarm Optimiza-
tion [18]. In this approach, PSO is used for updating

the weight during learning phase. PSO is a popula-
tion based search algorithm. In this paper PSO is used
as back propagation algorithm to train the network. A
neural network with a configuration of ‘l-m-n’ is con-
sidered for estimation, i.e., the network consists of ‘l’
number of input neurons, ‘m’ number of hidden neu-
rons, and ‘n’ number of output neurons. In this paper,
for input layer, linear activation function is used, and
for hidden layer and output layer, sigmoidal function or
squashed-S function is used. PSO encodes the param-
eters of neural networks as particles and the population
of particles are referred as swarm. Here, the synaptic
weights of the neural network are initialized to as parti-
cles and the PSO is applied to obtain the optimized set
of synaptic weights. In NPSO, initially particle swarm
is generated with random velocity (V) and position (X).
Fitness value is calculated using following Equation:

Fi =
1

Ei
=

1√∑j=N
j=1 Ej

N

(14)

Velocity (V) and position (X) of particles are up-
dated using Equations 15 and 16, respectively.

V i
k+1 = V i

k+C1R1(Pbest
i
k−Xi

k)+C2R2(Gbest
n
k−Xi

k)
(15)

Xi
k+1 = Xi

k + V i
k+1 (16)

where

• V i
k+1 and Xi

k+1 are the updated velocity and posi-
tion.

• V i
k and Xi

k are the current velocity and position.

• Pbest and Gbest are the local and global best po-
sition respectively.

• C1 and C2 are positive constants, usually they
range between one to four.

• R1 and R2 are two random function whose values
lies in between zero to one.

Figure 3 shows the block diagram for NPSO ap-
proach, which represents the steps followed to design
the estimation model.

4.5 Modified Neuro Particle Swarm Optimization
(MNPSO) Approach

In Modified Particle Swarm Optimization (MPSO) ap-
proach, training is same as the Particle Swarm Opti-
mization (MPSO) approach, but a mutation phase is
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Random particle swarms is generated
with random position (X) and velocity

(V)

Fitness value is
computed using

Equation 14

Fitness (X)>
Pbest ?

Pbest is replaced by
X

Pbest=Pbest

Fitness (X)>
Gbest ?

Gbest is replaced by
X

Gbest=Gbest

Stopping
criterion

met ?

Model is used for testing

Particle velocity is
calculated using

Equation 15

Position is updated
using Equation 16

Yes

No

No

Yes

Yes

No

Figure 3: Flow chart representing PSO execution

incorporated just before the completion of one gener-
ation. In this paper (Pm) value is adaptively decreased
to prevent disruption of very good solution. (Pm) value
is updated using Equation 17.

(Pm)k+1 = (Pm)i −
C ∗ n
10

(17)

where (Pm)k+1 is the updated probability of muta-
tion, (Pm)i is the initial probability of mutation, and n
is the generation number.

5 Implementation

In this section, the relationships between value of met-
rics and maintainability of the classes are determined.
Software metrics are considered as input nodes of neu-
ral networks and the output obtained is the computed
maintainability of the object-oriented software. Accu-
racy of estimation for Maintainability for the model de-
signed by using different AI techniques is determined
by using performance evaluation parameters such as
mean relative error (MRE) [9] and mean absolute rel-
ative error (MARE) [9]. Parameters like True error (e)

and estimate of true error (ê) are being used for evalu-
ating models involving cross validation approach [11].

The following sub-sections give a brief note on im-
plementation details of the applied neural network tech-
niques.

5.1 Artificial neural network (ANN) model

In this paper, architecture of ANN with three layers, i.e.,
input layer, hidden layers and output layers is consid-
ered, in which nine nodes in QUES and ten nodes in
UIMS act as input nodes, the number of hidden nodes
vary from nine to twenty and one node acts as an out-
put node. Software metrics are considered as input and
output is the computed maintainability of the object-
oriented software. The network is trained using Gra-
dient descent learning method.

Gradient descent learning method is used for updat-
ing the weights using Equation 7. True error and es-
timate of true error determine the suitable model to be
chosen for predicting maintainability. The hidden node
with least deviation between true error and the estimate
of true error in each fold is chosen as suitable model for
estimation. Figure 4 depicts the distribution of the hid-
den nodes of the suitable model in each fold for UIMS
and QUES case studies. The final model chosen for pre-
dicting maintainability is based on the median values of
the hidden nodes in their respective folds.

1 2 3 4 5 6 7 8 9 10
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20

Fold No.

N
u

m
b
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f 
H

id
d

en
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o
d

e

 

 

UIMS

QUES

Figure 4: Number of hidden nodes in each fold

From Figure 4, the median value for all the 10 folds
in QUES and 5 folds in UIMS is found to be ‘12’ and
‘11’ respectively. The median value determines the fi-
nal model to be designed based on the number of hid-
den nodes. After identifying, the suitable model, i.e.,
model having ‘11’ number of hidden neurons in UIMS
and ‘12’ number of hidden neurons in QUES is evalu-
ated. Next, the model is trained using gradient descent
learning method unless and until the neurons achieve
the threshold value of ‘MSE’ or reach stopping crite-
rion of 1,000 epochs. Table 4 shows the various perfor-
mance parameters for UIMS and QUES software sys-
tem respectively. Table 4 reports that the high value
of Pearson’s correlation (‘r’) in case of UIMS is found
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to be 0.9675, which is an indication that both actual and
estimated maintainability values are strongly dependent
in a linear fashion on each other. But in case of QUES,
Pearson’s correlation (‘r’) is 0.7382, which is an indica-
tion that both actual and estimated maintainability val-
ues are not too much linearly dependent. So this model
of predicting maintainability does not yield comparably
good result for QUES dataset.

Table 4: Performance matrix

r Epochs MAE MARE
UIMS 0.9675 549 0.0997 0.4252
QUES 0.7382 1,000 0.1340 0.4363

Figure 5 shows the variance of MSE verses number
of iterations for UIMS and QUES system respectively.
Figure 6 depicts the closeness between the actual and
estimated maintainability of UIMS and QUES.
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Figure 5: MSE Versus Number of Iterations
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Figure 6: Actual Effort Versus Estimated Maintainability

5.2 Neuro-genetic (Neuro-GA) approach

In this paper, l-m-1 configuration of neural network is
considered, i.e.,

• UIMS consists of 10 input nodes, 09-20 vary-
ing hidden nodes and one output node. The to-
tal number of weights used in 10-m-1 configura-
tion model are determined using equation 8, i.e.,
(10 + 1) ∗ m = 11 ∗ m (where ‘m’ represents
the number of hidden nodes varying from nine to
twenty)

• QUES consists of 9 input nodes, 9-20 varying hid-
den nodes and one output node. The total number
of weights used in 9-m-1 configuration model are
determined using equation 8, i.e., (9 + 1) ∗ m =
10∗m (where ‘m’ represents the number of hidden
nodes varying from nine to twenty)

Each weight is considered as a gene of length 5, so the
length of one chromosome is calculated using Equation
9, therefore the length of each chromosome is repre-
sented as:

L =

 (10 + 1) ∗m ∗ 5 = 55 ∗m For UIMS

(9 + 1) ∗m ∗ 5 = 50 ∗m For QUES
(18)

In this study a population of size 50 is considered, i.e.,
initially 50 chromosomes are randomly generated. The
input-hidden layer and hidden-output layer weights of
the network are computed using Equation 10. In case of
NGA, two-point cross-over operation is performed on
the generated population, i.e., probability of crossover
is constant. If probability of cross over (Pc) and proba-
bility of mutation (Pm) values are considered to be con-
stant, it may so happen that, as the generation progress
towards global optima, any solution giving better result
may get disrupted and may move to higher fronts by
which the approach may take huge amount of time to
converge. Due to this reason, Adaptive neuro genetic
approach (ANGA) has been considered. In ANGA, Pc

and Pm values are adaptively decreased to prevent dis-
ruption of solutions with better result. (Pc) and (Pm)
values are updated using Equations 12 and 13. In this
paper, initially (Pc) and (Pm) values are chosen as 0.8
and 0.2 respectively. Constant C1 and C2 values are
chosen as 0.1 and 0.01 respectively.

The execution of the algorithm terminates when
95% of the chromosomes achieve same fitness values.
True error and estimate of true error determine the suit-
able model to be chosen for predicting maintainability.
The hidden node with least deviation between true error
and the estimate of true error in each fold is chosen as
suitable model for estimation. Figure 7 depicts the dis-
tribution of the hidden nodes of the suitable model in
each fold. The final model chosen for predicting main-
tainability is based on the median values of the hidden
nodes in their respective folds.

From Figure 7, the median value for all the 10 folds
in QUES is found to be ‘12’ in case NGA and ‘15’
in case of ANGA, and the median value for all the 5
folds in UIMS is found to be ‘11’ in case of NGA and
‘13’ in case of ANGA. The median value determines
the final model to be designed based on the number of
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Figure 7: Number of Hidden nodes in each fold

hidden nodes. Next, the model is trained using Neuro-
GA method unless and until 95% of the chromosomes
achieve same fitness values or reach maximum iteration
limit (of 200 epochs). Table 5 shows the various per-
formance parameters for two products. Table 5 reports
that the high value of pearson’s correlation (‘r’) in case
of UIMS and QUES, which is an indication that both
actual and estimated maintainability are strongly linear
dependence on each other. From Table 5, it is evident
that ANGA Approach achieved better performance as
compared to NGA.

Table 5: Performance matrix

Product r MAE MARE
NGA UIMS 0.9500 0.0832 0.3329

QUES 0.9647 0.1481 0.3380
ANGA UIMS 0.9804 0.1023 0.2442

QUES 0.8696 0.1468 0.3133

Figure 8 shows the variance of number of chromo-
somes having same fitness value and generation num-
ber of UIMS and QUES. From Figure 8, it is evident
that NGA consumes more generation to achieve the
threshold value. Figure 9 depicts the closeness between
the actual and estimated maintainability of UIMS and
QUES.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Generation No.

N
o

. o
f 

C
h

o
ro

m
o

so
m

e 
h

av
in

e 
sa

m
e 

fi
tn

es
s 

va
lu

e

 

 

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Generation No.

N
o

. o
f 

C
h

o
ro

m
o

so
m

e 
h

av
in

e 
sa

m
e 

fi
tn

es
s 

va
lu

e

 

 
NGA

ANGA

NGA

ANGA

QUESUIMS

Figure 8: Number of chromosomes containing same fitness value
Versus Iteration Number
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5.3 Neuro Particle Swarm Optimization (NPSO) Ap-
proach

In this approach a population of size 50 is considered,
i.e., initially a swarm of 50 particles are generated with
random position and velocity. After each generation,
velocity and position of particles are updated using
Equations 15 and 16 respectively. In MNPSO, the ini-
tial probability of mutation (Pm) is considered as 0.2,
its constant value is taken as 0.01. They are updated
using Equation 17. The randomly generated particles
undergo mutation. The training process is same as that
of NPSO, but a mutation phase is incorporated just be-
fore the completion of one generation. The execution
of the algorithm continues until 100 generation.

we chose True error and estimate of true error to de-
termine the suitable for predicting maintainability. The
hidden node with least deviation between true error and
the estimate of true error in each fold is chosen as suit-
able model for estimation. Figure 10 depicts the dis-
tribution of the hidden nodes of the suitable model in
each fold. The final model chosen for predicting main-
tainability is based on the median values of the hidden
nodes in their respective folds.
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Figure 10: Number of Hidden nodes in each fold

From Figure 10, the median value for all the 10
folds in QUES is found to be ‘15’ in case NPSO and
MNPSO. The median value for all the 5 folds in UIMS
is found to be ‘14’ in case of NPSO and ‘13’ in case of
MNPSO. Median values determine the final model to
be designed based on the number of hidden nodes. Af-
ter identifying, the suitable model, the model is trained
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using NPSO and MNPSO approaches up to 100 genera-
tion. Table 6 shows the various performance parameters
for two products. Table 6 reports that from the higher
value of Pearson’s correlation (‘r’) in case of UIMS and
QUES, here is an indication that both actual and esti-
mated maintainability are strongly linear dependence
on each other. From Table 6, it is evident that MNPSO
Approach achieves better performance as comparde to
NPSO Approach.

Table 6: Performance matrix

Product r MAE MARE
NPSO UIMS 0.9850 0.1030 0.3321

QUES 0.8618 0.1490 0.4189
MNPSO UIMS 0.9805 0.0790 0.2416

QUES 0.9832 0.1320 0.3089

Figure 11 shows the variance of global fitness value
and generation number for UIMS and QUES. From Fig-
ure 11, the global fitness value using MNPSO is bet-
ter then that obtained using NPSO approach. Figure 12
depicts the closeness between the actual and estimated
maintainability of UIMS and QUES case studies.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

400

Generation No.

F
it

n
e

s
 V

a
lu

e

 

 

0 20 40 60 80 100
0

10

20

30

40

50

60

70

Generation No.

F
it

n
e

s
 V

a
lu

e

 

 

NPSO

MNPSO

NPSO

MNPSO

QUES
UIMS

Figure 11: Fitness value Versus Generation Number

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Sample No.

N
or

m
al

iz
ed

  M
ai

nt
ai

na
bi

lit
y 

va
lu

e

 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sample No.

N
or

m
al

iz
ed

  M
ai

nt
ai

na
bi

lit
y 

va
lu

e

 

 

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Sample No.

N
or

m
al

iz
ed

  M
ai

nt
ai

na
bi

lit
y 

va
lu

e

 

 

Actual Maintainability

Estimated Maintainability

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Sample No.

N
or

m
al

iz
ed

  M
ai

nt
ai

na
bi

lit
y 

va
lu

e

 

 
Actual Maintainability

Estimated Maintainability

Actual Maintainability

Estimated Maintainability

Actual Maintainability

Estimated Maintainability

UIMS(NPSO) QUES(NPSO)

QUES(MNPSO)UIMS(MNPSO)

Figure 12: Actual Effort Versus Estimated Maintainability

6 Comparison of models

Figures 13 shows the Pearson′s residual boxplots for a
model using the normalized values of UIMS and QUES
data set, allowing a visual comparison.
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Figure 13: Residual boxplot for UIMS and QUES

The line in the middle of each box represents the
median of the Pearson′s residual. In case of UIMS,
all the approaches have a median residual value close
to zero, but in case of QUES data set except ANN
approach, all other approaches have a median resid-
ual close to zero. Of all the approaches considered,
MNPSO approach has the narrowest box, small sized
whiskers, and few number of outliers. Based on these
boxplots, it is evident that the model designed by using
MNPSO approach obtained the best estimation accu-
racy as compared to other approaches.

This paper also presents an comparative analysis of
the proposed work with the work done by Li and Henry
[13]. In their analysis, Li and Henry [13] have used only
two performance parameters such as R-Square and Ad-
justed R-Square to compare the designed models. In
this study also R-Square and Adjusted R-Square have
been used for comparison. Table 7 shows the compar-
ative results of the proposed work with that of related
work [13] based on R-Square and Adjusted R-Square
values. R-Square measures the percentage of the vari-
ance in the dependent variable accounting for indepen-
dent variables in the regression model based on the sam-
ple data. Adjusted R-Square measures the percentage
of the variance in the dependent variable accounting for
independent variables in the regression model based on
the population.

Table 7 reports that, when compared with the perfor-
mance parameters values for ‘R-Square’ and Adjusted
R- Square for the two software products namely UIMS
and QUES with respect to the work of Li and Henry
[13], the proposed Modified Neuro-PSO (hybrid ap-
proach of neural network and PSO) obtained better pre-
diction rate of maintainability.

In literature, mostly statistical methods such as re-
gression based analysis and simple neural network such
as ANN have been considered to design a model for
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Table 7: Performance based on R-Square and Adjusted R-Square for
UIMS and QUES

Product R-
Square

Adjusted
R-Square

Li and Henry [13] UIMS 0.9096 0.8773
QUES 0.8737 0.8550

ANN UIMS 0.9299 0.9159
QUES 0.7742 0.7290

NGA UIMS 0.9598 0.9518
QUES 0.9234 0.9081

ANGA UIMS 0.9704 0.9645
QUES 0.9432 0.9318

NPSO UIMS 0.9511 0.9413
QUES 0.9598 0.9518

MNPSO UIMS 0.9734 0.9681
QUES 0.9530 0.9436

predicting maintainability. Other techniques such as
Neuro-Genetic (hybrid approach of neural network and
genetic algorithm) and Neuro-PSO (hybrid approach of
neural network and Particle Swarm Optimization) have
not yet been applied for predicting maintainability [16].
Yuming Zhou et al. [19] and Van Koten et al. [17]
have used same UIMS and QUES software system for
predicting maintainability based on different regression
and simple neural network models. They have consid-
ered ‘MMRE’ as a performance parameter to compare
the models designed for predicting maintainability of
object-oriented software systems. Table 8 shows the
MMRE value of the proposed work and the work done
by Yuming Zhou et al. [19] and Van Koten et al. [17].

Table 8 reports that, in case of QUES software
MMRE value obtained is almost same but in case of
UIMS software, the proposed approach obtained better
prediction rate for maintainability.

7 Threat to Validity

Several issues affect the results of the experiment are:

• Two object-oriented systems, i.e., UIMS and
QUES used in this study are design in ADA lan-
guage. The models design in this study are likely
to be valid for other object-oriented programing
language such as Java or C++. further research
can extend to design a model for other develop-
ment paradigms.

• In this study, only eleven set of software metrics
are used to design a models. Some of the metrics
which are widely used for object-oriented software
are further considered for predicting maintainabil-
ity.

Table 8: Performance based on MMRE for UIMS and QUES

MMRE
Author Technique UIMS QUES
Van Koten
et al. [17]

Backward Elimination 2.586 0.403

Bayesian Network 0.972 0.452
Regression Tree 1.538 0.493
Stepwise Selection 2.473 0.392

Zhou et al.
[19]

Artificial neural network 1.95 0.59

MARS 1.86 0.32
Multivariate linear re-
gression

2.70 0.42

Regression tree 4.95 0.58
SVR 1.68 0.43

Proposed
Tech-
niques

Artificial neural network 0.425 0.436

Neuro-GA 0.332 0.338
Adaptive Neuro-GA 0.244 0.313
Neuro-PSO 0.332 0.418
Modified Neuro-PSO 0.241 0.308

• We only consider AI techniques for designing the
prediction models to predict maintainability. Fur-
ther, we can extend the work to reduce the feature
using feature reduction techniques such as PCA,
RST, statistical test, etc..

8 Conclusion

In this paper, we propose a prediction models to predict
maintainability of object-oriented software using soft-
ware metrics. Gradient descent, Neuro-GA, Adaptive
Neuro-GA, Neuro-PSO and Modified Neuro-PSO ap-
proaches have been applied to design a model by em-
ploying 10-fold cross-validation technique for QUES
and 5-fold cross-validation technique for UIMS on
varying size of hidden neurons. These techniques have
the ability to predict the output based on historical data.
The software metrics are used as requisite input data to
train the models and estimate the number of changes
made in the code during maintenance period. The re-
sults reveal that the modified Neuro-PSO prediction ap-
proach obtained low values of MAE and MARE, when
compared with gradient descent prediction and Neuro-
GA model. These low values of performance parame-
ters emphasize on qualitative prediction model obtained
in the estimation analysis. Also this comparative analy-
sis highlights that there exists a strong relation between
software metrics and maintainability.

Further, work should be replicated to other system
INFOCOMP, v. 13, no. 2, p. 10-21, December 2014.
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like open source projects and service oriented system
using different AI techniques in order to analyze which
model performs better in achieving higher accuracy for
maintainability prediction. Also, work can be extended
on the usage of feature reduction techniques such as
rough set and principal component analysis to minimize
the computational complexity of the input data set.
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