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Abstract. In this paper we propose a new rotation invariant feature descriptor for texture classification
and clustering via first identifying the so-called principal direction of textures with the well-known Radon
transform and then extracting features defined by the fractional Fourier transform of different order from
the rotated textures along their principal direction. The performance of the proposed method is evaluated
using different kind of texture sets. Results show the advantage of the proposed method over some
existing algorithms.
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1 Introduction

Texture analysis plays an important role in image anal-
ysis, pattern recognition and machine vision. Texture-
enriched modeling has become a powerful tool for
content-based image retrieval and computer vision sys-
tems. Natural scenes consist of object surfaces exhibit-
ing texture and a successful vision system should be
able to deal with the textured world surrounding it. Tex-
ture is a ubiquitous visual experience. Texture can be
used to characterize surfaces for a wide variety of real
world objects or scenes such as terrain, fur, skin and
minerals. In computer graphics and computer games,
texture is employed to render synthetic images in or-
der to reproduce the visual realism of the real world.
Textures themselves can be acquired from a wide range
of natural sources, e.g., scanning photographs. Differ-
ent types of textures have different kind of advantages
and disadvantages. Hand-drawn patterns pictures are
aesthetically pleasing, however in some sense they lack
photo-realism. For the application of most scanned im-

ages, the difficulties lie in avoiding visible seams or rep-
etition when they are directly used for texture mapping.
Today texture analysis methods have been widely used
in many application areas. In remote sensing research,
for example, texture analysis has played a major role
in geographical analysis. Texture analysis approach has
also found its way into other disciplines such as surface
inspection [6, 29].

Texture analysis is important in many applications
of computer image analysis for classification or seg-
mentation of images based on local spatial variations
of intensity or color. Like a conventional classification
process, texture classification also involves two phases:
the learning phase and the recognition phase. Both
phases rely on a crucial pre-processing process in which
one has to define and extract informative features from
texture patterns. The ideal features should be invariant
under as many transformations as possible. For exam-
ple, it is very desirable for the extracted features to be
translation-, scale- and rotation-invariant and also in-
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sensitive to noise. Extracting and/or constructing such
features is still a challenge facing researchers today. A
wide variety of techniques for describing image tex-
ture have been proposed [29, 26]. Among many dif-
ferent kinds of texture classification approaches, statis-
tical and model-based methods are widely used because
of their capability of being applied to any type of tex-
ture. Feature learning or extraction is dominant among
these approaches. There are many different feature ex-
traction methods, from the features produced by some
well-designed filters (e.g. Gabor filters and Wavelet fil-
ters) to the features incorporating global information on
the textures (e.g Markov random field based texture fea-
tures [32]). In a recent work [16], Khellah proposed a
new approach to extract global image features for the
purpose of texture classification by exploiting the idea
from non-local denoising algorithm for image [3]. The
proposed texture features are obtained by generating an
estimated global map representing the measured inten-
sity similarity between any given image pixel and its
surrounding neighbors within a certain window.

People also are interested in extracting features
which have certain geometric characterisation. Hara-
lik et al. [10] first proposed the co-occurrence ma-
trix method to get rotation-invariant texture features so
that a classifier based on such features will be robust
to texture rotation. Later, many rotation-invariant tex-
ture classification techniques were introduced and such
features were used in texture classification problems.
For example Kashyap and Khotanzed [15] used the
rotation-invariant features based on a circular autore-
gressive model. In general, a rotation-invariant feature
incorporates global information for a texture pattern. It
is no surprise that Markov random fields can be used
to construct rotation-invariant features [7, 8, 27]. The
construction of another group of rotation-invariant fea-
tures is based on filter bank responses. Wavelet packet
was used in [19] to construct rotation-invariant feature
for textures, while image histograms were employed in
this process in [18]. Ojala et al. [23] proposed another
efficient framework for rotation-invariant texture clas-
sification in which features are obtained from the his-
tograms of the local binary patterns (LBPs). The LBP
framework have been extended by many researchers,
see [9, 11, 17, 20]. Based on the fact that the underlying
textures are comprehensively described by their pixel
joint probability density functions, an efficient den-
sity estimation for texture has been proposed in [17].
The LBP approach has wide applications, e.g., in face
recognition [1] and dynamic texture recognition [30].
Furthermore, the work presented in [16] can be con-
sidered as extended LBP approach aiming at extracting

global image features for the purpose of texture classi-
fication by using dominant neighborhood structure.

In this paper we are still concerned with the rotation-
invariant texture features. We aim to use the Radon
transform and Fractional Fourier transform for deriv-
ing a rotation invariant texture classification method. In
this method, the Radon transform is first employed to
detect the principal direction of a texture. Then, the tex-
ture is rotated to place its principal direction at a refer-
ence direction, for example, the 0◦ direction. Fractional
Fourier transform at several different orders are applied
to the rotated texture to extract texture features. Ex-
perimental results show the superiority of the proposed
approach compared with some existing methods.

The rest of this paper is organized as follows. In sec-
tion 2 Radon transform and its application in finding the
direction of the textures are reviewed. The Fractional
Fourier transform and some of its useful properties is
described in section 3. In Section 4, we present our
rotation invariant texture classification algorithm. Ex-
perimental results are presented in Section 5 and finally
conclusions are given in Section 6.

2 Texture Orientation

In this section, we will briefly review the Radon trans-
form and its important properties, then we will describe
the method of estimating the principal direction of tex-
tures via applying the Radon transform. The classical
Radon transform projects an image along a radial line
oriented at a specific angle. It transforms a 2-D im-
age with lines into a domain of possible line parame-
ters r and θ, where r is the smallest distance from the
origin and θ is its angle with the x-axis. The Radon
transform of 2-D imageRf (or simplyR) is defined as
[12, 21, 28]:

R(r, θ) [f(x, y)] =∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r − x cos(θ)− y sin(θ))dxdy (1)

where r = x cos(θ)+y sin(θ) is distance of a line from
the origin, θ is the angle between the line and the y-axis
and δ(.) is the Dirac function. It has been proved that
the Radon transform has a very strong ability to capture
information about curves and lines existing in a quite
noisy image. The research has shown that such a prop-
erty of Radon transform in extracting lines can be used
to find the so-called principal direction for each tex-
ture. In fact, R(r, θ) is roughly the information about
the possible line angled at θ and displaced at r distance
from the origin in the image f . The principal direc-
tion of a texture can be defined as the direction along
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which there are more straight lines. In general some
textures have no specific direction (isotropic textures)
and some textures have one or more principal direction
(anisotropic textures)[12, 21, 28].

Let us consider the definition of Radon transform
for an image along different angles θ from 0◦ to 179◦ at
a step size of 1◦. Suppose that the textures being con-
sidered are anisotropic. For a given angle θ0, R(r, θ0)
gives all the information about possible lines angled at
θ0 in a texture image. If the curve R(r, θ0) spreads
well, we can imagine that more lines existing in the im-
age along that direction θ0. That means the variance of
R(r, θ0) may be a good indicator of the line spreadness
in the texture image. We are concerned with the prin-
cipal orientation along which there are more straight
lines, so the maxima θ0 of the variance of Radon trans-
forms would be the direction we are after. This idea
was first investigated in [12] in which the maxima of
the variance of Radon transform is used for estimating
the principal direction of textures.

Mathematically we can work in the following way.
First, to make the method isotropic, we chose a disk
shape area (of radius r0) in the middle of the texture
and then the Radon transform is applied for this disk
area at different angle 0◦ to 179◦ at a step size of 1◦.
The variance of these transforms in different angels can
be derived as

VR(θ) = V ar (R(r, θ)) , θ ∈ [0, 180) (2)

The function VR(θ) may have different local maxima
in the interval [0, 180) and consequently we have
some different orientations in this interval. To identify
a principal orientation from different local maxima
and different directions we can calculate the second
derivative of the variance function VR(θ). Along the
orientation that the second derivatives are minimum the
variance changes more rapidly [12, 13]. Once we find
the absolute maximum in the interval, we can estimate
the principal direction of texture. To demonstrate this
ability of Radon transform in estimating the principal
direction of textures we present two different examples.

Example 1: Consider the texture sample (D68)
from Brodatz album [2] that is rotated 20◦ anticlock-
wise, see Fig. 1(a). Fig. 2(b) shows the disk area
selected in the middle of the texture. We applied
the Radon transform for different angles from 0◦ to
179◦. Fig. 1(c) shows the variance function VR(θ)
for this transforms. As this figure shows the variance
function has different local maxima. Fig. 1(d) shows
the second derivative of the variance function along
different angles. From this figure we can see there are

Figure 1: Texture orientation for example 1

(a) Original texture

(b) Disk area of the texture

0 20 40 60 80 100 120 140 160 180
5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6
x 10

8

Angle

V
a
ri
a
n
c
e

(c) The variance of projections

0 20 40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1
x 10

7

Angle

S
e
c
o
n
d
 D

e
ri
v
a
ti
v
e
 o

f 
V

a
ri
a
n
c
e

(d) Second derivative of variance

INFOCOMP, v. 13, no. 2, p. 1-9, December 2014.



Mohammadi, Gao and Shi Rotation Invariant Texture Analysis Using Radon and Fractional Fourier Transform 4

more straight lines along 20◦ and so this angle is the
principal orientation.

Example 2: Consider the texture sample (D101)
from Brodatz album [2] that is rotated 60◦ anticlock-
wise, see Fig. 2(a). Fig. 2(a) and (b) show the original
texture and the selected disk area in the middle of the
texture. Fig. 2(c) and (d) show the variance function
and its second derivative respectively. As shown in
these figures, the variance of the projections has two
local maxima. But there are more straight lines along
60◦ and so this angle is the principal orientation. This
is identified by the plot of second derivatives of the
variance in Fig. 2(d).

According to the above examples and the properties
of Radon transform just described, the principal orien-
tation of the texture can be estimated as follow

α = argmin
θ

(
d2VR(θ)

dθ2

)
(3)

where α is the principal orientation of the texture and
VR(θ) is the variance of the Radon projection of the
disk area of the texture at the angle θ. This method for
estimating the principal direction has good properties
such as robustness to additive noise. For more details
about this formula please see [12, 28].

3 Fractional Fourier Transform

In the classical Fourier transform (FT), the representa-
tion axis is changed from a representation in the (time)
domain to a representation in the frequency domain,
which corresponds to a counterclockwise rotation over
an angle π

2 in the (t, ω)-plane. By applying FT twice
we have

F2f(t) = F (Ff(t)) = f(−t) (4)

Thus the representation axis is the reversed time axis,
i.e., the time axis rotated over an angle π. In the similar
way we have

F3f(t) = F (f(−t)) = F (−ω) (5)

and

F4f(t) = F (F (−ω)) = f(t) (6)

which are correspond to a rotation of the representation
axis over 3π

2 and 2π respectively. Thus the FT operator
corresponds to a rotation in the time-frequency plane of
the axis of representation over an angle π

2 . Thus all the
representations that one can obtain by the classical FT

Figure 2: Texture orientation for example 2
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correspond to representations on the orthogonal axes of
(t, ω) plane, possibly with a reversion of the orientation
[4].

A generalization of the Fourier transforms to the
so-called fractional Fourier transforms (FrFT) has been
proposed by Namias in 1980 [22] and the FrFT has be-
come a powerful tool for time-varying signal analysis
[5, 25]. Like the classical FT corresponding to a rota-
tion in the time frequency plane over an angle π

2 , the
FrFT will correspond to a rotation over an arbitrary an-
gle aπ

2 with a a ∈ R.
Definition 3.1: The fractional Fourier transform of a
function f(t), with an angle α = aπ

2 , is defined as

(Fαf) (ω) =
e−i(

πα̂
4 −

α
2 ) e(

i
2ω

2 cot(α))√
2π| sin(α)|

×
∫ ∞
−∞

e

(
−iωt
sin(α)

+
it2 cot(α)

2

)
f(t)dt (7)

where α̂ = sgn(α) and 0 < |α| < π. For α = 0 we
have the identity operation

(
F0f

)
(ω) = (If) (ω) =

f(ω) and for |α| = π we define

(Fαf) (ω) = f(−ω), |α| = π. (8)

When |α| > π, the definition is taken modulo 2 and
reduced to the interval |α| ≤ π. For more details about
this definition and its properties please see [4, 5, 25].

3.1 Discrete Fractional Fourier Transform

Similar to the ordinary FT, we need to consider how
to calculate FrFT for discrete signals in applications.
So this leads to the requirement of the discrete frac-
tional Fourier transform (DFrFT). The discrete defini-
tion should be a discrete form of continuous definition
in (7) and moreover it should be an extension of con-
ventional discrete Fourier transform (DFT).

There are some different approaches to proposing
the definition of DFrFT. Pie and et al. [25] proposed
a definition for DFrFT based on orthogonal projection
and Candan et al. [5] gave a definition based on a par-
ticular set of eigenvectors of the DFT matrix. In this pa-
per we favor using the definition of DFrFT presented in
[5]. The main point in this definition is to construct the
eigenvalue decomposition of the discrete Fourier trans-
form matrix F.
Definition 3.2: let f = [f0, f1, ..., fN−1]

T be a dis-
crete signal, the DFrFT of order α for the signal f is
defined as

Fαf =
(
GΛαGT

)
f (9)

where F = GΛGT is the eigenvalue decomposition of
DFT matrix F. For more details about the definition and
the algorithm of the discrete fractional Fourier trans-
form, we refer to [5, 24, 25].

4 Rotation Invariance Texture Feature De-
scriptors

The FrFT has become a powerful tool for time-varying
signal analysis. However it is not rotation invariant and
the FrFT changes significantly when the image is ro-
tated. As mentioned in Section 2, Radon transform is
a powerfull tool for detecting the orientations of a tex-
ture. So, by estimating the orientations of a textures,
rotating along the principal direction and then appliy-
ing the FrFT we can derive a rotation invariant method
for cassifying textures. Fig 3 shows the proposed ro-
tation invariant algorithm for texture classification. In
this method, first a disk shape area from the middle
of the image has been selected. Then by using Radon
transform and the method mentioned in equation (3) the
principal direction of the texture is estimated. The tex-
ture is rotated so that the principal direction moves to a
reference direction such as 0◦. The FrFT of different or-
ders is then applied to the rotated texture and finally the
texture features can be extracted. It is worth to mention
that while we select a disk area in the middle of tex-
tures, Radon transform for a texture is actually a shift
and translation of the Radon transform of the original
texture and so there is no need to compute the Radon
transform for all rotated textures.

For the FrFT Iα = Fαf of the order α, the follow-
ing features are calculated

eα1 =
1

MN

M∑
i=1

N∑
j=1

|Iαi,j |2, (10)

eα2 =
1

MN

M∑
i=1

N∑
j=1

∣∣Iαi,j∣∣. (11)

where M and N are the size of FrFT. In the above defi-
nition, e1 is the power spectrum while e2 is the absolute
value of the real and imaginary parts of the FrFT.

So by applying FrFT in a finite number of differ-
ent orders Iα1 , Iα2 , ..., Iαn , feature vector e1 and e2 are
calculated for a texture as follows

e1 = (eα1
1 , eα2

1 , ..., eαn1 ) , (12)

e2 = (eα1
2 , eα2

2 , ..., eαn2 ) (13)
INFOCOMP, v. 13, no. 2, p. 1-9, December 2014.



Mohammadi, Gao and Shi Rotation Invariant Texture Analysis Using Radon and Fractional Fourier Transform 6

Then features is normalized by calculating the mean
and variance within each vector. Finally for these fea-
tures of many textures, a k-nearest neighbor (k-NN)
classifier based on the Euclidean distance (Ed) is used
to measure similarity between textures and to classify
them.

Figure 3: The proposed a rotation invariant algorithm for texture
classification.

5 Experimental Results

In this section we conduct several experiments to
demonstrate the potential of the newly constructed fea-
tures in texture classification and clustering. The ex-
perimental results and the efficiency of the proposed
method for texture classification and clustering will be
analyzed.

5.1 Experimental Setting

Experiments are carried out to demonstrate the capa-
bility of our method in texture image classification and
clustering. We evaluate the efficiency of the proposed
method on a dataset of 1440 texture images from the
Brodatz standard texture album [2]. For our purpose, 80
different texture images of size 640 × 640 in the Bro-
datz texture library are selected as testing data. Some
sample image textures are exhibited in Fig. 4.

Then each texture image is rotated 17 times from
10◦ to 180◦ with 10◦ increment in an anticlockwise di-
rection to produce 17 new texture images. There are 17
variants plus the original image for each texture. So we
create a dataset of total number of 80 × 18 texture im-
ages. For each image in this set by using the proposed
method, we calculated the features e1 and e2 in (12) and
(13) for n = 10. Training images are used as the stan-
dard images and then a k-NN classifier was employed
to classify each texture based on the extracted features
against the training images. For each feature the correct
classification rate (CCR) is measured as follows:

CCR =
c0
t0
× 100 (14)

where c0 and t0 is the total number of correctly classi-
fied textures and the total number of classified textures
respectively. Table 1 provides the CCR of the proposed
method for different features. As shown in this table,
this method is very efficient for classifying the texture.

Figure 4: The 80 used textures from the Brodatz. 1th row: D1, D2,
D3, D4, D5, D6, D8, D10, D11, D12. 2nd row: D13, D15, D18, D19,
D20, D21, D22, D24, D25, D26. 3rd row: D27, D31, D34, D35,
D36, D37, D46, D47, D49, D50. 4th row: D51, D52, D54, D57,
D61, D62, D63, D64, D651, D66. 5th row: D67, D68, D69, D71,
D73, D74, D75, D76, D78, D80. 6th row: D81, D83, D85, D86,
D87, D88, D89, D90, D91, D92. 7th: D93, D94, D95, D96, D97,
D98, D99, D100, D101, D102. 8th row: D103, D104, D105, D106,
D107, D108, D109, D110, D111, D112

5.2 Comparison with other methods

The results have also been compared with other simi-
lar existing methods for texture classification such as in
Chen and Kundu [7], Khouzani and Zadeh [12], and the
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Table 1: Correct Classification Rate (CCR)

Features
e1 e2

CCR % 96.25% 97.50%

Table 2: Comparison between the results of the proposed methods
and some of the methods from the literature

Proposed
Method

Methods from
the literature

Textures in
[7]

99.90% 95.00%

Textures in
[12]

98.33% 96.70%

Textures in
[14]

98.33% 99.90%

et al. [14]. For a fair comparison, we conducted our
experiments according the experimental setting used in
those above-mentioned methods. For example, particu-
larly, we applied our method as done in Section 5.1 for
the textures from Brodatz album that are used in [7]. We
also applied the proposed method to the 60 textures that
are used in [12] and [14]. Table 2 shows the compar-
ison between the best result for proposed method and
the best results of the method in these literatures. As
results shown, our method is more accurate or compa-
rable with these methods.

5.3 Clustering

To further demonstrate the capability of the new fea-
tures e1 and e2 in clustering, we used these features to
cluster randomly chosen 80 textures. For this purpose,
we derived the features e1 and e2 for each texture for
n = 10. So we have 80× 2 feature vectors as follow:

ej1, j = 1, 2, ..., 80; (15)

ej2, j = 1, 2, ..., 80. (16)

Thus, for each texture, a vector vj , j = 1, 2, ...80 is
constructed as follows

vj = [ej1, e
j
2], j = 1, 2, ..., 80. (17)

Then a feature matrix V can be constructed with the vj

in the rows. We simply apply the Principal Component
Analysis (PCA) to the matrix V , then a 2D-scatter plot
for the textures based on two principal components of
the features e1 and e2 can be drawn. Fig. 5 displays

Figure 5: Clustered textures using the features e1 and e2.

−600 −400 −200 0 200 400 600

−80

−60

−40

−20

0

20

40

60

80

the scatter plot for the 80 textures based on the features
e1 and e2 and their PCA coordinates. As shown in this
figure the newly constructed features are efficient for
texture clustering. From Fig. 5, it is clearly seen that the
dark and bright texture images are separated well. Some
texture clusters are also obvious, for example, on the
left hand side of the picture, a cluster of dark brick-like
textures stands out. Similarly another cluster of detailed
texture patterns is revealed in the middle bottom area.

6 Conclusion

In this paper a rotation-invariant feature for texture
analysis based on Radon transform and FrFT is pro-
posed. In this method, the principal direction of a tex-
ture is estimated using Radon transform and then the
image is rotated to place the principal direction at 0◦.
Then FrFT of different orders is applied to extract the
features for texture classification. Since this method
use different orders of FrFT in extracting feature of
each texture, it is very efficient in classifying differ-
ent kind of texture. Experimental results show that this
method is comparable to many other existing methods.
Further investigation is needed, for example, how well
the newly constructed is in terms of the state-of-the-art
classifier such support vector machines.
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