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Abstract. We apply a model-free predictor based on the Kalman Filter to signal-to-noise ratio (SNR) data
from a mobile communication system experiment. The experiment consist of collecting performance
indicators on a mobile device during the trajectory of a city bus. In particular, we analyze the SNR
measured by the mobile, which is collected every second via an application. Since some mechanisms in
a mobile network depend on the SNR, like power control and handoff processes, our results show that it
is possible to use prediction models to improve several procedures in mobile communications systems.
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1 Introduction

Since the introduction of wide-band communications in
mobile networks, the user base has experienced expo-
nential growth. Currently, there are over 145 thousand
operational commercial 5G networks [19].

This escalating demand has elevated resource allo-
cation to a crucial research focus in mobile networks.
Furthermore, given the real-time nature of bandwidth
distribution, resolving resource issues through opti-
mization techniques is generally impractical [26].

Significant attention has been directed towards pre-
dictive resource allocation, as forecasting specific net-
work parameters holds the potential for more efficient
resource distribution among subscribers. In a linear
scheme applied to predict reference signal received
power (RSRP) in Ref. [1], and a similar approach in
Ref. [27], an optimization procedure was employed
to predict signal-to-noise ratio (SNR) values, resulting
in an enhancement compared to an round robin (RR)

algorithm-based allocation method.
The application of the Kalman filter (KF) as predic-

tors has a quite extensive use in industry such as sen-
sorless control, diagnosis, and fault-tolerant control of
ac drives; distributed generation and storage systems;
robotics, vision, and sensor fusion techniques; appli-
cations in signal processing and instrumentation; and
real-time implementation of a KF for industrial control
systems [6].

The KF is extensively applied in mobile commu-
nication systems, as illustrated by the following ex-
amples. In the early stages of 4G, Aronson et al.
[4] investigated the performance of various memory-
less and memory-based channel estimators within dif-
ferent Orthogonal Frequency Division Multiple Access
(OFDMA) subcarrier allocation schemes and pilot pat-
terns, aiming to identify suitable subcarrier allocations.
Furthermore, applications extended to rate adaptation
in multihop networks [2] and modeling prediction un-
certainties for energy-efficient stored video streaming
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while maintaining ideal Quality of Service (QoS) for
the application [5].

A short-term predictor, designed to operate on a 10
ms scale, forecasts average throughput rates utilized
by prominent schedulers [22, 23]. These simulations
demonstrated elevated throughput rates and decreased
packet loss ratio (PLR) with minimal impact on packet
delay. However, this improvement comes at the expense
of an uneven resource distribution among users.

In the context of 5G and beyond, the applica-
tion of machine learning (ML) or artificial intelligence
(AI) to address mobile network challenges is common-
place [29]. This includes resource allocation (RA)
and traffic/throughput prediction with 95% accuracy, as
demonstrated in Refs. [25, 13]. Kalman filters, either
in conjunction with fuzzy logic [16] or as an auxiliary
method to estimate prediction variances through opti-
mization [5], have been utilized. However these are
costly approaches, computationally speaking. And this
was one of the motivators for us to make predictions
and optimize network performance using a model-free
predictor, the Kalman-Takens filter (KTF).

TheKTF made its debut in the work of Hamilton,
Berry, and Sauer [8] as an approach to predict the re-
sults of the Lorenz ’96 model [15]. Combining Takens
theorem with the unscented form of the Kalman filter,
the KTF functions as a model-free predictor, yielding
predictions comparable to those obtained when using
the Lorenz ’96 equations with the unscented Kalman
filter [11, 10].

The SNR prediction is very important in the mo-
bile communication systems because it directly impacts
the quality and reliability of communication. It helps to
determine the expected QoS, resource allocation, han-
dover decisions, network planning, data transmission
rates, and overall user experience in wireless networks.
Traditional methods often lack accuracy and adaptabil-
ity in dynamic environments, as the mobile environ-
ments are dynamic with varying interference levels,
user mobility, and changing channel conditions. Simple
models fail to account for these variations accurately.
When compared with machine learning techniques like
KTF, it offers more robust solutions by learning from
past data and adapting to real-time conditions effec-
tively, which is fundamental in achieving higher QoS,
efficient resource allocation, and seamless network op-
erations in modern mobile networks.

Leveraging the KTF to predict signal-to-noise ratio
values presents an opportunity to enhance the resource
allocation scheme. Predicted values can guide the se-
lection of a modulation and coding scheme (modula-
tion and coding scheme (MCS)), allowing the system

to opt for a lower MCS in environments with reduced
interference or noise, based on the predicted SNR. The
relationship between SNR and the selection of a modu-
lation scheme is detailed in Refs. [17, 28]. An imple-
mentation of the KTF is presented in Ref. [21], where
a simple method to predict future SNR values based on
the KTF is detailed. This approach requires no addi-
tional hardware or features, as proposed in [3], facili-
tating a straightforward implementation in radio access
networks. Furthermore, this method eliminates the need
for solving optimization problems, training neural net-
works, or employing complex artificial intelligence al-
gorithms for resource allocation, which may otherwise
consume significant system resources and impact net-
work performance [18].

Utilizing the KTF for forecasting SNR values can
enhance the performance of a mobile network by en-
abling the precise selection of a MCS. This proac-
tive approach, in contrast to the conventional reactive
method, allows the system to opt for a lower MCS (i.e.,
reduced error correction and heightened throughput) if
the predicted SNR indicates a radio environment with
diminished interference and/or noise. A successful im-
plementation of the KTF predicting SNR is exemplified
in [24].

This paper is organized as follows: in Section 2, we
provide a brief review of the Kalman-Takens filter; in
Section 3, we present numerical results; and finally, in
Section 4, we offer our concluding remarks.

2 Kalman-Takens model-free predictor

The KTF uses a training sequence in the interval
[1, 2, . . . , T ] to predict the state of the system in its next
steps [T + 1, T + 2, . . . , Tf ], where Tf is the final in-
stant. This direct prediction is performed by finding the
κ-nearest neighbors of the delay coordinate vector, as
given by Eq. 1:

ξk(T
′
) =

[
zk(T

′
), zk−1(T

′
), . . . zk−(d−1)(T

′
)
]
,

ξk(T
′′
) =

[
zk(T

′′
), zk−1(T

′′
), . . . zk−(d−1)(T

′′
)
]
,

...

ξk(T
κ) =

[
zk(T

κ), zk−1(T
κ), . . . zk−(d−1)(T

κ)
]
.
(1)

The superscripted prime in previous equations rep-
resents the first, second, third, etc until the κ-nearest
neighbor of ξ are located where they are found from
the noisy training data. Once the neighbors are found,
from a κ-nearest neighbor direct prediction model, the
known values from the historical series are used with
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a local model to predict the values that would occur at
future times. This is done using an average of the fu-
ture points of the lagged vectors closest to the reference.
The local model f̃ defining the system evolution for m
time steps ahead is given by

f̃(ξk +m) = [w(′)ξk(T
′
+m) + w(′′)ξk(T

′′
+m)

+w(′′′)ξk(T
′′′
+m) + . . .+ w(κ)ξk(T

κ +m) ],

(2)

where
{
w(′), w(′′), . . . , w(κ)

}
are the weights calcu-

lated for each one of the κ-nearest neighbors of the de-
lay coordinate vector at time T . The weights w(i) are
calculated as

w(i) =
e−δ(i)/σ∑κ
j=1 e

−δ(j)/σ
, (3)

with δ(i) being the euclidean distance from the i-
th nearest neighbor to the delay coordinate vec-
tor ξ and σ =

〈
δ(i)

〉
the average of distances{

δ(
′), δ(

′′), δ(
′′′) . . . δ(κ)

}
, that is, the distance of ξk to

the first, second, etc. until the κ-th neighbor [9].
Usually, we represent the state xk and the observa-

tion zk at each step k of the filtering process as

xk =f(xk−1) + µk−1 ,

zk =h(xk),+νk ,
(4)

with f and g being known functions and µk and νk
white noise processes with covariance matrices given
respectively by Q and R which are, a priori, unknown.

The KTF follows from the unscented Kalman filter
(UKF) algorithm changing

f(.) → f̃(.),

with f̃ given by Eq. (2). We calculate the sigma points
X of the UKF as follows

X (0)
k−1 = x̂k−1,

X (i)
k−1 = x̂k−1 +

√
Pk−1 i = 1, . . . , n

X (i)
k−1 = x̂k−1 −

√
Pk−1, i = n+ 1, . . . , 2n

(5)

where Pk is the covariance matrix of the state estima-
tion error.

Then the estimated state x̂−
k and covariance P−

k are
calculated as follows [10]

x̂−
k =

2n∑
i=0

W (i)f̃
(
X (i)

k−1

)
,

P−
k =

2n∑
i=0

W (i)
[
f̃
(
X (i)

k−1

)
− x̂−

k−1

]
×
[
f̃
(
X (i)

k−1

)
− x̂−

k−1

]T
+Q ,

(6)

with the weights subject to
∑2n

i=0 W
(i) = 1. At each

step of the filter the estimates given by Eqs.(6) are up-
dated. Hence, we first calculate the cross covariances
of state and observation, P xz , and the covariance of ob-
servations P zz as

P xz
k =

2n∑
i=0

W (i)
[
f̃
(
X (i)

k−1

)
− x̂−

]
.
[
zk − ẑk

−]T ,

P zz
k =

2n∑
i=0

W (i)
(
zk − ẑk

−) . (zk − ẑk
−)T +R ,

(7)
with ẑ−k =

∑2n
i=0 W

(i)zk. Then we calculate the
Kalman gain Kk and update the state estimates xk and
covariances Pk using

Kk =P xz
k /P zz

k ,

x̂k =x̂−
k +Kk

(
zk − ẑ−k

)
,

Pk =P−
k −Kk.P

zz
k .KT

k .

(8)

After the update, step k is incremented, the filter
goes back to Eq.(5) and repeats the preceding steps,
Eqs.(6)-(8).

3 Numerical results

In this work we use of the KTF to forecast values of
SNR. This model-free filter was introduced by Hamil-
ton, Berry and Sauer [8], combining the filtering equa-
tions of Kalman filter[12], in particular the UKF [11,
10] with the data-driven modeling approach of Takens
[20]. This innovative procedure substitutes the model
with dynamics reconstructed from delay coordinates,
all while utilizing the Kalman update formulation to
reconcile new observations. Its was successfullly used
to denoise the Lorenz’96 model [14].

A straightforward “experiment" facilitates the com-
prehension of how the KTF operates. In this instance, a
sine function with the addition of normal noise was uti-
lized as a time series for data generation. The variable
A signifies the amplitude of the noise, d represents the
number of past points used for prediction, Np denotes
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the quantity of points to be forecasted, and k indicates
the number of nearest neighbors.

A dataset from a 4G network collected by the
Queen’s Telecommunications Research Lab (TRL) [7]
was used for the experiment. The data comes from
Kingston Transit Express Bus 502 public bus route in
Kingston, Ontario, Canada, and two cell phones from
the same operator and Android operating system were
used during the route traveled to collect it(Samsung
Galaxy S9 and Samsung Galaxy S10). The measure-
ments were recorded on three bus trips every day of the
week (Monday to Friday) at 9 am, 12 pm and 6 pm for
ten days. Each trip had the same route and the same
starting and ending points, taking around one hour to
complete and starting and ending at almost the same
time every day, as shown in Fig. 2.

To work with all this information, we filtered and
cleaned the data. For the tests, we selected data from
one day’s journey on one of the cell phone models
(Samsung Galaxy S9) and extracted the information
collected from SNR, downlink, and uplink. The SNR
information was exported and applied as the time series
to be analyzed by the Kalman-Takens Filter to predict
SNR in future points in the Matlab software.

Different combinations of parameters were assigned
in the KTF, with kNN representing the value of k and
del the value of d. The first tests used combinations of
k = 10, 20, and 30 and d = 3, 4, and 6, with a forecast
value equal to 10, obtaining the results shown in Fig-
ure 1. One can observe satisfactory results, especially
when optimizing the number of nearest neighbors and
d combinations.

After that, different forecast values were applied,
from 100 to 800 in steps of 100, which showed that
when a very high forecast value is selected, the filter
loses its accuracy and presents divergences in the pre-
dictions, which can be seen in Figures 3 and 4.

4 Final Remarks

In this work our application of the KTF for SNR pre-
diction revealed promising outcomes, showcasing the
filter’s adaptability to real-world datasets. The experi-
ment, conducted on a 4G network dataset from bus tra-
jectory, underscored the importance of parameter tun-
ing, especially in optimizing the number of nearest
neighbors (k) and past points (d). The filter exhibited
robust performance in maintaining accuracy within rea-
sonable forecast value ranges. However, caution is ad-
vised with excessively high forecast values, as the fil-
ter’s precision diminished under such conditions. De-
spite this limitation, the KTF emerges as a valuable
tool for predicting SNR, offering practical insights for

its application in telecommunications and network op-
timization. Note that the SNR data was considered as
an example in Ref. [24], the same method may be ap-
plied to the uplink and downlink throughput data that
are also collected by the mobile device during the ex-
periment. Predicting the data rates would allow for an
adaptive bandwidth allocation instead of model-based
schedulers [21].
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Figure 1: Set of tests applied to the KTF in Matlab, with combinations of values of k equal to 10, 20 and 30 and d equal to 3, 4 and 6.

Figure 2: Route taken by the bus in the three measurements of a day based on latitude and longitude data in Matlab software, plotted under the
city map of Ontario, Canada
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Figure 3: Set of tests applied to the KTF in Matlab, with fixed values for k equal to 10, d equal to 3, and the forecast variating in 100, 200, 300
and 400.
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Figure 4: Set of tests applied to the KTF in Matlab, with fixed values for k equal to 10, d equal to 3, and the forecast variating in 500, 600, 700
and 800.
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