Entropy-Based Study of Components in Open-Source Software
Ecosystems

LIGUO YU!, JOHN CAWLEY!, SRINI RAMASWAMY?

LComputer Science and Informatics
Indiana University South Bend
South Bend, IN 46634, USA
ligyu@iusb.edu; jjcawley@iusb.edu

2Industrial Software Systems
ABB Corporate Research Center
Bangalore, India
srini@ieee.org

Abstract. Open-source software products contain free components that can be used by both individuals
and companies. When open-source commercial off the shelf (COTS) components become integral parts
of a commercial product, the open-source project and the commercial software organizations tend to form
a relationship akin to an ecosystem. In this paper, we apply entropy to measure the diversity of an open-
source ecosystem, in which it represents and measures the attractiveness of open-source components.
We studied 121 Eclipse products to understand their evolution. Our study finds that although most of the
Eclipse products’ popularity increase over time, their representative product, the Java IDE’s popularity

has remained relatively stable in recent years.

Keywords: entropy, software component, open-source software ecosystems.

(Received January 23rd, 2012 / Accepted March 15th, 2012)

1 Introduction

Software products are, in general, not used in isolation.
There exist some interdependencies among related soft-
ware products, which compromise the base for large-
scale complex software systems. For example, at the
macro level, application software depends on the un-
derlying system software; any changes to the system
software might affect the application software which is
built upon it. On the other hand at a micro level, large
software systems are compositions of several software
components; advances in some of the software compo-
nents might force the need for an upgrade of the host
product in order for companies to keep (or gain) market
share. Therefore, software products and their depen-
dents can be thought of as forming an ecosystem.

The study of complex software system as an ecosys-

tem of sorts has been gaining increased attention over
recent years. Yu et al. studied the co-evolution of
open-source products and their relations with commer-
cial software companies [33, 34]. In their represen-
tative book [24], Messerschmitt and Szyperski, stud-
ied the concept of software ecosystem, which includes
users, developers, sellers, society, government, and eco-
nomics. Boucharas et al. presented a network model-
ing based approach to study software ecosystems [7].
In their series publications, Bosch et al. wused the
concept of ecosystem in the study of software prod-
uct line and their relation to global software develop-
ment [4, 5, 6]. Berra and Rapicault studied the depen-
dency management of Eclipse p2 project, where plug-
ins are considered as the species in an ecosystem [2].
However, compared to other fields, the study of soft-

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 23

ware as an ecosystem is still a nascent research area.
One possible hurdle that scares researchers is its inher-
ent interdisciplinary nature: software ecosystems in-
volve many subjects from different fields; including
software engineering, market analysis, symbiosis, and
social networks. Therefore, a well proved domain spe-
cific method might not solve the problem of understand-
ing software ecosystems. What we need are interdisci-
plinary approaches that can solve problems which tran-
scend specific domains.

In this study, we apply entropy, an interdisciplinary
concept to study software ecosystems, formed by open-
source software components and software organiza-
tions, where it is used to measure the popularity of
eclipse components in commercial software companies.
For completeness, entropy is a commonly used concept
in many disciplines; for example, in thermodynamics it
is used to measure the randomness of particles, or in in-
formation theory, it is used as a measure of the amount
of information contained in a program unit. In this pa-
per, the concept of entropy has been applied to analyze
the evolution of the popularity and diversity of Eclipse
open-source software ecosystems, which contain 121
products and 87 software organizations.

To the best of our knowledge, entropy has not yet
been applied to the study of a software ecosystem,
which can be viewed as being similar to the mea-
surement of the existence of order or disorder among
the participating software components, software prod-
ucts, or software organizations. Because of the abil-
ity to study this property in such large-scale complex
systems, wherein software components are often dis-
tributed and contextually integrated, through which,
software organizations are often loosely coupled, we
have applied this idea here. Insights gained from this
exploratory research will be valuable for organizations
that use OSS software components in product develop-
ment process, or even integrate portions of such com-
ponents and package them into their core products.

The rest of this paper is organized as follows.
In Section 2, we review the concept of entropy and
its recent applications within the software engineering
field. Section 3 describes related work of applying
the entropy concept in software ecosystems. Section
4 presents our case study on Eclipse software compo-
nents. Threats to validity are discussed in Section 5.
Our conclusions and observations are detailed in Sec-
tion 6.

2 Related Work

The concept of entropy originated in thermodynamics
[22], where it is still used to measure disorder amongst

particles; such as atoms, molecules, plasma, in a closed
system. Later, entropy has been extended to infor-
mation theory, where it has been used to measure the
amount of information contained in a program unit,
such as variable, expression, function, and query [29].
In recent years, the application of entropy has been ex-
tended to market analysis [12, 27, 23]; information se-
curity [9, 1, 26], etc.

The concept of software entropy is defined by Ja-
cobson et al. as follows [17].

"The second law of thermodynamics, in principle,
states that a closed system’s disorder cannot be re-
duced, it can only remain unchanged or increase. A
measure of this disorder is entropy. This law also seems
plausible for software systems; as a system is modified,
its disorder, or entropy, always increases. This is known
as software entropy"

In this section, we review related work in applying
entropy in the study of software engineering issues -
such entropy-based work have been diverse, including:
complexity entropy, language entropy, author entropy,
etc.

In the area of software development and evolu-
tion, Lehman has used the concept of software entropy
to describe the evolution of software complexity [21].
Specifically, the Lehman’s laws of software evolution
state that software evolution is inevitable and its com-
plexity will increase during the evolution process unless
restructuring is performed. Therefore, reducing soft-
ware entropy, which can accordingly reducing software
complexity, is an important task in software develop-
ment and evolution. For example, Bianchi studied soft-
ware degradation from the view point of entropy [3].
Hunt and Thomas used Fixing Broken Windows as a
metaphor to reduce entropy in software systems [16].

Hassan and Holt [15] have used entropy to repre-
sent the complexity of software development processes.
They studied the source control repository of six open
software projects and found that complexity entropy is
a good indicator of software quality [14]. Jos et al. pro-
posed to improve software process using an entropy-
based approach [18]. Hanssen et al. studied entropy
in agile software development [13]. Other work in this
area includes Olague et al. used the concept of entropy
to assess object-oriented programs [25], and Jung et
al. used entropy to design metrics for web applications
[19].

Entropy has also been used in other areas of soft-
ware engineering. For example, using the concept of
entropy, Yu et al. studied the diversity of software
market shares [35]. Specifically, they studied the evo-
lution of software product diversity, such as program-

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 24

ming languages, operating systems, web browsers, and
web servers. Krein et al. proposed the concept of lan-
guage entropy, which represents the diversity of pro-
gramming languages used in a software project [20].
Their study found that language entropy is strongly cor-
related with the size of monthly project contributions.
Taylor et al. defined author entropy and used it to repre-
sent the authorship diversity of software program [31].
They found a bimodal distribution of entropy for files
with two authors and unimodal distribution of entropy
for files with three or more authors. In a further study,
they found that when two authors contribute to a file,
larger files are more likely to have a dominant author
than smaller files [8].

Other applications of entropy in software engineer-
ing fields include metric design [28], risk assessment
[30], and measuring software structure heterogeneity
[32].

In summary, intensive work of applying the concept
of entropy in the software engineering field has been
performed. However, no work of using entropy to study
the software component-based ecosystem has been per-
formed. The objective of this study is to fulfill the gaps
in this area.

3 Software Ecosystem Entropy

In this study, we considered a closed ecosystem formed
by an open-source product (component) and its depen-
dent commercial companies. Assume an open-source
product (component) OSP, which is sponsored by n
commercial companies, C, Co, .. ., C},, each with per-
centage contribution Py, Ps, ..., P,, respectively. The
entropy of this closed software ecosystem CSP is de-
fined as

B(CSP) == _piloga pi. (1)
i=1

Equation 1, known as the entropy function, was first
introduced by Boltzmann in the 1870s. It is also the
general formula for information entropy [29]. The en-
tropy (&) measure in Equation 1 represents the attrac-
tiveness and marketplace diversity of an open-source
component. For example, if an open-source component
is supported by a small number of commercial compa-
nies, the entropy (£) value of this open-source com-
ponent is low, which means the popularity and market-
place diversity of this open-source component is low;
if an open-source component is evenly contributed to
by large number of different commercial companies,
the entropy (E) value of this open-source component
is high, which means the popularity and the diversity

Table 1: Four commercial companies with five different distributions
of contribution schemes and the corresponding software ecosystem
entropy

Scheme Cq Co Cs Cy Entropy
S 100% 0 0 0 0.00
S 75% | 25% 0 0 0.81
S3 50% | 50% 0 0 1.00
Sy 50% | 55% | 25% 0 1.50
S5 25% | 55% | 25% | 25% 2.00

of its marketplace is high. Note that, if all the n com-
mercial companies of the open-source component have
equal contributions, then

1
pi:77i:172’37...,n. (2)
n

For this case, we can refine Equation 1 as,

1 1
E(CSP) = ; ~logs ~ =log n 3)

Thus, the upper bound for the entropy function is
given by Equation 3. Consider an open-source com-
ponent with four contributing companies, C', Cs, Cs,
and C4. Let us examine five different distributions of
their contribution schemes (Table 1). (We have previ-
ously used a similar analysis method for studying mar-
ket share [35].) It should be noted here that (1) these
schemes are hypothetical and used for explanation pur-
poses only; and (2) the entropy value is calculated using
Equation 1.

In Table 1, Contribution Scheme S; has entropy
value 0, which indicates that the component is most
unpopular and least diverse. In Contribution Scheme
So, two companies have varying contributions. The
entropy value is 0.81, which indicates that the com-
ponent is more popular and its market is more diverse
than Contribution Scheme S;. In Contribution Scheme
S3, the contributions of companies C; and C5 are more
evenly spread than Contribution Scheme S5, and there-
fore the system has a greater entropy value (1.0). Simi-
larly, three companies have contributions in Scheme S,
which means the component is more popular and has a
more diverse marketplace. The entropy value is 1.5. In
Scheme S5, four companies make equal contributions
and the entropy value is 2, which is the upper bound of
a software ecosystem with four commercial companies.

Table 1 shows that the entropy measure of a soft-
ware ecosystem increases as the popularity and market-
place diversity of the open-source component increases.
Therefore it follows that one can use software ecosys-
tem entropy to represent, measure, and study an open-

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 25

source component’s popularity and diversity in the mar-
ketplace. As the components become more diverse and
uniformly accepted across multiple constituents, we can
potentially infer that the component has reached a level
of marketplace stability, i.e. the ecosystem is nearing
an equilibrium state.

4 Case Study: Eclipse Open-Source Ecosys-
tems

In this section, we present our case study of eclipse
ecosystem [10]. We remark here that the data used in
section is extracted from the Eclipse web site, dash-
board queries [11].

4.1 Overview of Eclipse

Eclipse is an open-source software development code-
base, which contains various software components
(plug-ins) that support multiple languages and diverse
applications. The owner of Eclipse is the Eclipse Foun-
dation, which is a nonprofit organization. Since Eclipse
components are well received, many other organiza-
tions use Eclipse to build their own products and ser-
vices. To make sure that Eclipse components can better
meet their business need, these software organizations
joined the membership of Eclipse community. Through
making suggestions and contributions to Eclipse com-
ponents, the member organizations could benefit from
their desired functionality and quality of Eclipse com-
ponents. Currently, there are 14 strategic members, 3
enterprise members, 92 solution members, and 69 asso-
ciate members. In total, 178 organizations have joined
Eclipse membership and are contributing to Eclipse
components.

Eclipse started as a Java IDE, and has grown to
be a collection of open-source components that sup-
port static and dynamic languages, client-server devel-
opment, embedded and mobile computing, modeling,
and reporting [10]. Employees of the member organiza-
tions can choose to join their interested Eclipse projects
and become contributors. To contribute, they need to
join as a user or as a committer, where a user can re-
port a bug, post questions, and seek solutions, while a
committer can make changes to the components.

For each Eclipse component, there could be contrib-
utors from more than one software organization. These
software organizations not only contribute to this com-
ponent, but also depend on this component. Therefore,
a software ecosystem is formed around each Eclipse
component, which includes the component and all its
contributing members (software organizations). Fig-
ure 1 shows the ecosystem of Eclipse Platform project,

83 ad
RedHat
Unknown

ad

AdobeSystems

&

WindRiver

&

BedarraResearchLabs

a3

IBM m
m GenuitecLLC

BestSolution &
7
individuals

SAS

Eclipse.Platform

EclipseSource

Figure 1: Eclipse platform project ecosystem

which includes 11 different members.

4.2 The Evolution of Eclipse Software Ecosystem
Entropy

Currently, the contributing organizational data is avail-
able from 121 active projects listed in the Eclipse
web site. These 121 projects are contributed to by
87 software organizations/companies. To make it
easy analyze the data, we assemble similar projects
as one project group. For example, projects
datatools, datatools.connectivity, datatools.enablement,
datatools.modelbase, datatools.incubator, and data-
tools.sqltools are grouped together as the ‘datatools’
group in our analysis. Using this scheme, 9 project
groups, which contain 117 projects, have been formed.
Projects birt, stp, stp.bpmnmodeler, and stp.sca have
few data and hence have been omitted from the group-
ing and are not included in this study.

Table 2 illustrates the details of the 9 project groups,
in which CO represents contributing organizations; the
total lines changed is measured with the number of
thousands of source code line (KLOC) changed in 8
years (2001-2008). Figure 2 shows the number of lines
changed in eight years of each project group. There-
fore, the total of the bars in project group of Figure 2
matches the corresponding KLOC changed column in
Table 2.

The number of line changes represents the aggre-
gated amount of contributions from different software
organizations. For example, project group eclipse has
19 contributing members, who have committed over
49M of lines change. As discussed in Section 3, soft-
ware ecosystem entropy can be used to represent and
measure an open-source component’s popularity and di-
versity. We study the evolution of the ecosystem en-
tropy of these nine groups of eclipse components. The

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy Entropy-Based Study of Components in Open-Source Software Ecosystems 26

datatools dsdp eclipse
1200
1000 e
800
8 s 8 8
< 400 - = *
200 -
0 - ;
» & D H {\ ’ > & D Al
'159 '159 '\SP '&'\& 'fsp‘\gp ‘\rés‘, 2006 2007 2008 '\@ '\@ '\r@ 'Lgﬁéﬁ'\#’@ ’\-ﬁ
modeling rt technology
12000 6000 20000
10000 5000
8000 4000 R
g 6000 g 3000 g 10000
4000 - 2000 —]
2000 - 1000 .
0 "7‘(’-'7 ;O -1 T 1 0 "‘ﬁﬁ-"l' 2 ’T—."'f 18 1 D N _— e o |
2003 2004 2005 2006 2007 2008 2003 2004 2005 2006 2007 2008 2005 2006 2007 2008
tools tptp webtools
12000 5000 15000
10000 4000
8000
3000 - 10000
8 5000 g 8
X 4000 | x 2000 4 2
2000 - 1000 - == 20001
0 +— 0
0 .
» &V o> “ Al > $ \
S '»‘9’ S m@b ~ m&s S x@ & w@bx& 'ﬁ& 2003 2004 2005 2006 2007 2008

Figure 2: The number of committed line changes of the nine project groups

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 27

Table 2: Details of the nine project groups

Project Numberof | Number KLOC

Group Projects ofCO changed
datatools 6 10 2,196
dsdp 6 11 1,027
eclipse 5 19 49,685
modeling 22 20 27,413
rt 10 19 11,243
technology 38 40 26,548
tools 13 28 28,003
tptp 5 6 15,720
webtool s 12 15 35,366

results are illustrated in Figure 3. It can be seen that
for most Eclipse project groups, their ecosystem en-
tropy increases with time, which means these projects
are becoming an attractive alternative for commercial
software companies.

However, it is interesting to see that the popu-
larity of the representative component-eclipse group,
has stabilized in recent years. Examining this col-
lectively with the corresponding number of committed
line changes in Figure 2, we can see that the amount
of changes increased from 2001 and reached its high-
est level in 2004, after which it begins to decrease
(right about the same time where the entropy also be-
gins to flatten around 0.5). One explanation could be
that components in eclipse group have attained market-
place stability around this timeframe (2004). Despite
its wider use and adoption after 2004, by different soft-
ware organization/companies, fewer and fewer organi-
zation/companies are making contributions in terms of
committing changes. This demonstrates a level of mar-
ketplace stability that has been achieved. To further in-
vestigate this interesting phenomenon, we studied the
evolution of the ecosystem entropy of individual com-
ponent in eclipse group and the results are illustrated in
Figure 4. We can see that in 2001, the popularity of
eclipse.e4 (Java IDE) and eclipse.platform (a universal
tool platform) was high. In the rest of the years, their
popularities are pretty much stabilized.

Another interesting project group is tptp. In Fig-
ure 2, it shows that in general, its number of committed
line changes demonstrate a decreasing trend from 2001
to 2008. In contrast, its ecosystem entropy in Figure
3 has an increasing trend. This phenomenon can be ex-
plained as follows: from 2001 to 2008, tptp components
were becoming more stable and fewer changes were be-
ing made. However, because of its increasing adoption,
more and more software organizations/companies are
making contributions (committing changes) to them, al-
though these changes are becoming smaller. Figure 5
presents the detailed ecosystem entropy evolution of ev-

—+—eclipse.e4 - eclipse.platform eclipse.pde
—i= eclipse.jdt ~&- eclipse
1.6
|
1.4 \
\
\
1.2 %
\
\
> 1 \ y
\
£ 08 LY .
& - \ ’ N

2001 2002 2003 2004 2005 2006 2007 2008

Figure 4: The evolution of the ecosystem entropy of eclipse projects

ery component in project group tptp.

——tptp —- tptp.monitoring tptp.performance
—>tptp.platform

16

-®- tptp.test

14
1.2

1
0.8

Entropy

0.6
0.4
0.2

0
2002 2003 2004 2005 2006 2007 2008

Figure 5: The evolution of the ecosystem entropy of tptp projects

As described before, the value of entropy repre-
sents the diversities of contributors. The larger value
of entropy indicates higher diversity of the contributors,
which also means that the product has a higher popular-
ity. Increasing of product entropy means the increasing
of the popularity and market share of the product. From
the viewpoint of marketing, we would like to increase
the entropy of the product. If the entropy value becomes
stable, it could means that the product has reached its
highest possible popularity within current capacity.

5 Threats to Validity and Future Research Di-
rections

There are some significant threats to the validity of this
study. They are listed below.

We have used entropy to represent a software com-
ponents’ increasing popularity among companies and
the diversity of its use. Our measurement of entropy can
be termed ‘contribution entropy’ , i.e. one which mea-
sures the diversity of contributors to the open source
efforts. Studying contributors’ diversity may be driven
by special interests and market pressures; and we have

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 28

datatools dsdp eclipse
2.50 2.50 1.50
2.00 A 2.00 ~d %
£ 150 /= |l | « 7 oo
-) — -
& r 4 £ 100 & os0 -
0.50 w
000 Loretnd 950 T
0.00 T T !
> &V » H A > & D A
FELL LSS E w06 2007 2008 SELL LSS S
modeling rt technology
2.50 2.50 2.50
2.00 I e P o 2.00 — 2.00 AN
2 150 P g 150 / g 150 .__// \\
£ 10 ./‘/ £ 10 N/ E 100
0.50 0.50 - / 0.50
0.00 T T T T T 1 0.00 T T T T T - 0.00 T T T 1
2003 2004 2005 2006 2007 2008 2003 2004 2005 2006 2007 2008 2005 2006 2007 2008
tools tptp webtools
3.00 1.50 2.00
2.50 A
z 200 ,*,AW,Q Z 1.00 - P z 1.50 -
2 150 / 2 & s
E 100 7 £ o0s0 g /
050 “ o0s0
000 +-r——r——r——r 000 ++————— /
0.00 + T 7 T T 1
> & O & A S D “ Q)
S x°°’*§5° wéom@ '9@ S '\55?'59 '»é?"? w@% 2003 2004 2005 2006 2007 2008

Figure 3: The evolution of the ecosystem entropy of nine Eclipse project groups

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 29

assumed it to be a leading indicator of user popular-
ity. While this is potentially true for Eclipse, this may
not be always true for other software systems. Further
research should be carried out to find other related mea-
surements of entropy and its application to studying di-
versity in complex software systems development and
use.

The variability in the entropy can be further ex-
plored vis-a-vis its relationship to stability. For exam-
ple: Our study finds that within the Eclipse commu-
nity, when viewed as an Eclipse ecosystem, most com-
ponent entropies have increased during the past several
years. In some components, such as their representative
eclipse group (Java IDE), the entropy indicates a degree
of marketplace stability that has been achieved.

Defining a normalization measure that is indepen-
dent of when companies choose to join these groups
may be an interesting twist to understand the vested
roles of these participants better. This paper presents
entropy as a measure that could attract further research
focus. However, for unifying and generalizing these re-
lated concepts of popularity, stability and entropy bet-
ter, further research is needed, possibly using another
open-source software ecosystem - for example, Ubuntu.

6 Conclusions

In this exploratory paper, we adapted the concept of en-
tropy from thermodynamics and information theory and
applied it for studying the marketplace stability of soft-
ware components in an open-source ecosystem.

Software systems have become an integral part of
our everyday lives and often multiple software com-
ponents are integrated into complex industrial software
systems. By virtue of such integration, such compo-
nents often have critical and significant implications to
our quality of life issues. Hence studying the evolu-
tion of these systems as an interconnected ecosystem
becomes an important and challenging issue. Applying
an interdisciplinary approach to studying such complex
software systems thus becomes a dire necessity for de-
veloping a holistic understanding of the various com-
ponents that make up such software system and their
evolution. Through this study, we have demonstrated
that the entropy measure could be used as a tool to study
software component stability by examining correspond-
ing factors such as component popularity and user di-
versity.

References

[1] Alvim, M., Andrés, M., and Palamidessi, C.
Entropy and attack models in information flow.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

Theoretical Computer Science: IFIP Advances
in Information and Communication Technology,
323:53-54, 2010.

Berra, D. L. and Rapicault, P. Dependency
management for the eclipse ecosystem: eclipse
p2, metadata and resolution. In Proceedings of
the 1st International Workshop on Open Compo-
nent Ecosystems, pages 21-30, Amsterdam, The
Netherlands, 2009.

Bianchi, A., Caivano, D., Lanubile, F., and Visag-
gio, G. Evaluating software degradation through
entropy. In Proceedings of the 7th International
Symposium on Software Metrics, 2001.

Bosch, J. From software product lines to soft-
ware ecosystems. In Proceedings of the 13th
Software Product Line Conference, San Francisco,
CA, USA, 2009.

Bosch, J. and Bosch, P. From integration to com-
position: on the impact of software product lines,
global development and ecosystems. Journal of
Systems and Software, 83(1):67-76, 2010.

Bosch, J. and Bosch, P. Software product lines,
global development and ecosystems: collabora-
tion in software engineering. In Collaborative
Software Engineering. Springer, 2010.

Boucharas, V., Jansen, S., and Brinkkemper, S.
Formalizing software ecosystem modeling. In
Proceedings of the 1st International Workshop on
Open Component Ecosystems, pages 41-50, Am-
sterdam, The Netherland, 2009.

Casebolt, J., Krein, J., MacLean, A., Knutson, C.,
and Delorey, D. Author entropy vs. file size in the
gnome suite of applications. In Proceedings of 6th
IEEE Intnational Working Conference on Mining
Software Repositories, pages 91-94, Vancouver,
Canada, 2009.

Chen, L., Li, L., Hu, Y., and Lian, K. Informa-
tion security solution decision-making based on
entropy weight and gray situation decision. In
Proceedings of the 5th International Conference

on Information Assurance and Security, pages 7—
10, Xian, China, 2009.

Eclipse.org. http://www.eclipse.org/, last accessed
on March 16, 2012.

Eclipse.org. Eclipse Dashboard Queries,
http://dash.eclipse.org/dash/commits/web-app/,
last accessed on March 16, 2012.

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy

Entropy-Based Study of Components in Open-Source Software Ecosystems 30

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

Gopalakrishnan, R. The entropy of markets. Busi-
ness Line, 2007.

Hanssen, G., Yamashita, A., Conradi, R., and
Moonen, L. Software entropy in agile product
evolution. In Proceedings of the 43rd Hawaii In-
ternational Conference on System Sciences, 2010.

Hassan, A. Predicting faults using the complex-
ity of code changes. In Proceedings of the 31st
Intnl. Conf. on Software Engineering, pages 78—
88, Vancouver, Canada, 2009.

Hassan, A. and Holt, R. C. The chaos of software
development. In Proceedings of the 6th Interna-

tional Workshop on Principles of Software Evolu-
tion, pages 84-94, Helsinki, Finland, 2003.

Hunt, A. and Thomas, D. The Pragmatic Pro-
grammer. Addison Wesley, 1999.

Jacobson, I., Christerson, M., Jonsson, P., and
Overgaard, G. Object-Oriented Software Engi-
neering: A Use Case Driven Approach. ACM
Press, Addison-Wesley, 1992.

Jos, J., Trienekens, R. J., Kusters, D., and Kriek, P.
Entropy based software processes improvement.
Software Quality Journal, 17(3):231-243, 2009.

Jung, W, Lee, E., Kim, K., and Wu, C. A com-
plexity metric for web applications based on the
entropy theory. In Proceedings of the 15th Asia-
Pacific Software Engineering Conference, pages
511-518, Beijing, China, 2008.

Krein, J., MacLean, A., Delorey, D., Knutson, C.,
and Eggett, D. Language entropy: a metric for
characterization of author programming language
distribution. In Proceedings of the 4th Work-
shop on Public Data about Software Dvelopment,
pages 612, Skovde, Sweden, 2009.

Lehman, M. and Belady, L. Program evolution:
processes of software change. Academic Press
Professional, Inc., San Diego, CA, USA, 1985.

Maxwell, J. Theory of Heat. Dover, 2001.

McCauley, J. Thermodynamic analogies in eco-
nomics and finance: instability of markets. Phys-
ica A, 329:199-212, 2003.

Messerschmitt, D. G. and Szyperski, C. Soft-
ware Ecosystem: Understanding an Indispensable
Technology and Industry. MIT Press, Cambridge,
MA, USA, 2003.

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Olague, H., Etzkorn, L., and Cox, G. An entropy-
based approach to assessing object-oriented soft-
ware maintainability and degradation - a method
and case study. In Proceedings of International
Conference on Software Engineering Research
and Practice, pages 442-452, Las Vegas, Nevada,
USA, 2006.

Rahmani, H., Sahli, N., and Kammoun, F. Joint
entropy analysis model for ddos attack detec-
tion. In Proceedings of the 5th International Con-
ference on Information Assurance and Security,
pages 267-271, Xian, China, 2009.

Sandroni, A. Market selection when markets are
incomplete. Journal of Mathematical Economics,

41(1-2):91-104, 2005.

Selvarani, R., Nair, T., Ramachandran, M., and
Prasad, K. Software metrics evaluation based on
entropy. In Handbook of Research on Software
Engineering and Productivity Technologies: Im-
plications of Globalization. 1GI Global, 2010.

Shannon, C. A mathematical theory of communi-
cation. The Bell System Technical Journal, pages
379423, 1948.

Song, H., Wu, D., Li, M., Cai, C., and Li, j. An
entropy based approach for software risk assess-
ment: A perspective of trustworthiness enhance-
ment. In Proceedings of the 2nd International

Conference on Software Engineering and Data
Mining, pages 575-578, Chengdu, China, 2010.

Taylor, Q., Stevenson, J., Delorey, D., and Knut-
son, C. D. Author entropy: a metric for char-
acterization of software authorship patterns. In
Proceedings of the 3rd International Workshop on
Public Data about Software Development, Milan,
Italy, 2008.

Yin, B., Zhu, L., and Cai, K. Entropy-based
measures of heterogeneity of software structural
profile. In Proceedings of the 34th IEEE An-
nual Computer Software and Applications Con-
ference Workshops, pages 196-201, Chengdu,
China, 2010.

Yu, L., Ramaswamy, S., and Bush, J. Software
evolvability: an ecosystem point of view. In
Proceedings of the 3rd International IEEE Work-
shop on Software Evolvability, pages 75-80, Paris,
France, 2007.

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

Liguo Yu, John Cawley, and Srini Ramaswamy Entropy-Based Study of Components in Open-Source Software Ecosystems 31

[34] Yu, L., Ramaswamy, S., and Bush, J. Symbio-
sis and software evolvability. IT Professionals,
10(4):56-62, 2008.

[35] Yu, L., Ramaswamy, S., and Lenin, R. B. En-
tropy studies of software market evolution. In
Proceedings of the 8th Annual Conference on Ap-
plied Research in Information Technology, pages
87-91, University of Central Arkansas, Conway,
Arkansas, 2009.

INFOCOMP, v. 11, no. 1, p. 22-31, March of 2012.

