
Applying Autonomic Intrusion Detection on Web Applications

EDUARDO ALVES FERREIRA1

RODRIGO FERNANDES DE MELLO1

USP - Universidade de São Paulo
Instituto de Ciências Matemáticas e de Computação

Avenida Trabalhador São-carlense, 400 13.566-590 - São Carlos - SP - Brazil
1(eaf,mello)@icmc.usp.br

Abstract. The characterization of system behavior is a commonly considered approach when performing
intrusion detection. Such approach is limited when the observed context is unstructured, that is, context
characterization is not a trivial task. In order to tackle this issue, this paper considers the use of single-
pass clustering techniques to quantize unstructured data, generating time series where novelty detection
techniques can be employed to detect intrusion incidents. We evaluate this approach using public system
characterization datasets, and the outputs of a web application in a simulated environment. We observed
that our approach is capable of aggregating context information into time series in order to represent the
behavior of applications with fairly enough precision to detect attacks.

Keywords: Intrusion detection, Web applications.

(Received November 2nd, 2011 / Accepted March 6th, 2012)

1 Introduction

The characterization of process behavior is commonly
considered to compose autonomic intrusion detection
solutions. In order to implement this approach, one
must first extract and characterize the normal behavior
of an application (e.g. when it is working in an isolated
network, in a simulated environment or during accep-
tance or stress testing sessions). Later on, the system
can be monitored in production environments, where
observed novelties are handled as possible attack inci-
dents.

To characterize the behavior of an application, two
basic approaches are described in related works: The
first one uses model-based techniques to evaluate ap-
plication outputs, ignoring any temporal dependency
among events. The second approach considers only the
temporal dependency, among a limited number of ob-
servations. The major limitations of those approaches
are the fact that each one ignores one aspect of the ap-
plication, and also the fact that proposed solutions are
closely tied to a specific application domain, hindering

the proposal of a fully autonomous solution. A third ap-
proach, based on clustering and time series analysis, is
not only capable of addressing both aspects of an appli-
cation (i.e. the multi-dimensionality of system observa-
tions and the temporal dependency among objects), but
it can also be independent of the monitored data model.
Most works that follow this third approach present two
major shortcomings, though: the first one is that they
are based in batch approaches, using algorithms with
high computational complexity, which is not acceptable
in a real scenario. The second limitation is that most of
those works still use context-specific functions to pro-
cess the system behavior data, what restricts their use
on a truly autonomous solution.

In this paper, we evaluate a variation of this third
approach, that deals with these two limitations, i.e. pro-
cessing the dataset in a single sweep (or single pass),
and using functions that are not tied to a specific appli-
cation domain. We perform three sets of experiments.
In the first set, we evaluate the precision of generic
functions relative to domain-specific functions, when
all algorithms are applied in a single-sweep fashion.

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 14

These experiments are executed on sequences of sys-
tem calls, and indicate that the generic functions exhibit
equivalent precision to the context-aware ones, and that
single-sweep clustering is capable of characterizing the
behavior of the application with enough precision to
distinguish normal from attack sessions. The second
set of experiments evaluates the scalability of the tech-
nique, when applying our proposal to a dataset with
more than 5million operating system audit records, and
we confirm that the technique can deal with production-
scale data.

The third set of experiments evaluates the main
proposal of this work, when we apply the autonomic
technique to the outputs of a three-tiered Web appli-
cation. We designed a simulation environment using
open-sourceWeb applications and a relational database,
where test scripts were executed to collect data flows
that represent the complex behavior of a dynamic Web
application. The experiments confirm that attack ses-
sions can be differentiated from normal ones, corrobo-
rating the main hypothesis of this work.

This paper is divided in the following sections: Sec-
tion 2 presents some related work in intrusion detec-
tion via system characterization; Section 3 presents the
proposed approach, describing the intrusion detection
technique, the datasets and the simulation environment.
Experimental and simulation results are presented and
discussed in Section 4, and Section 5 presents the con-
cluding remarks.

2 Related Work

Two basic approaches are usually employed to charac-
terize the behavior of an application. The first one uses
model-based techniques to evaluate system outputs, not
considering any temporal dependency among them. For
instance, Eskin et al.[7] employ clustering techniques
to characterize unlabeled system observations and use
outlier detection to point out anomalies. Kruegel et
al.[11], on the other hand, use a multi-model detector-
based technique to model a range of characteristics (e.g.
string length and string character distribution) present
in system call parameters. Any observation that does
not fit in this model is considered an intrusion.

The second approach models the behavior of ap-
plications considering the temporal dependency among
observations. Every application procedure generates a
sequence of objects (also called events) from a limited
set when performing operations, and, in this case, the
sequence of those objects defines the application behav-
ior. Forrest et al.[8] use a sliding window to observe
the sequence of system calls performed by an applica-
tion, while Albertini and de Mello[1] and Pereira and

de Mello[15] estimate the Entropy of Markov Chains,
generated from the sequence of observations, to indi-
cate novelties.

A third approach, proposed by Zanero and
Savaresi[20], is capable of addressing both aspects of
an application: the multi-dimensionality of system ob-
servations and the temporal dependency among objects.
In that work, network packets are firstly submitted to
a clustering algorithm (K-Means [12], SOM [10] and
a hierarchical agglomerative algorithm are evaluated),
and the output of this stage is analyzed through a slid-
ing window. That approach is also employed by Maggi
et al.[13] to evaluate the system call parameters of sev-
eral UNIX applications, in which a hierarchical cluster-
ing technique is applied in the first stage, and Markov
Chains are used to evaluate the probability of the ob-
served behavior belonging to a normal set.

While being useful to characterize the behavior of
network softwares and presenting enough precision to
distinguish normal from anomalous behavior, all those
techniques present two major drawbacks: first, the
model-based techniques demand the definition of an
application-specific modeling, which might be an ob-
stacle to employ such technique to new domains or pro-
vide autonomic solutions. Another limitation lies on
the issue that, usually, system characterization data is
generated on-the-fly (as applications are executed on
production environments), producing huge amounts of
data, which cannot usually be stored on a secondary
memory device. It is therefore interesting to consider
machine learning techniques which are capable of pro-
cessing datasets in a single-sweep stage, having the
minimal dependency on the observed context. With
this setting, we need algorithms that not only have near-
linear time complexity, but also operate on datasets in a
single sweep, i.e. perform on every observation at the
time they are produced (or very close to that), keeping
only a small amount of data in memory.

3 The Proposed Approach

In this paper, we employ single-sweep clustering and
novelty detection algorithms to quantize application be-
havior and, therefore, perform autonomic intrusion de-
tection in unstructured contexts. The quantization stage
applies a clustering algorith to the dataset, allowing
the mapping from dataset inputs (i.e. complex, multi-
dimensional objects) to simple numeric and sequential
identifiers. This allows us to transform a sequence of
complex objects into a sequence of numeric identifiers,
that represent the temporal behavior of the application.
This sequence is then submitted to novelty detection al-
gorithms to point out intrusion incidents. Our approach

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 15

is based on the architecture presented in Figure 1. Such
architecture is composed of three stages: the first one
(a) extracts the events from a system under the produc-
tion environment (e.g. system call data, CPU and mem-
ory usage, log or network messages), providing the data
or domain model; such data model is input to the next
stage (b), which considers a distance function to charac-
terize the similarity among objects (also named obser-
vations or events), an optional merge function (which is
responsible for representing a multidimensional object
into a single object), and also a clustering algorithm that
receives objects as input and finally produces time se-
ries representing the system behavior; such time series
is input to the last stage (c), that applies a novelty detec-
tion algorithm on it in order to distinguish attack events
(novelties) from the normal behavior.

Figure 1: Clustering and Novelty Detection Architecture.

We evaluate the use of single-pass clustering tech-
niques to quantize unstructured data, allowing the char-
acterization of complex application behavior with lit-
tle knowledge about its structure. By using this ap-
proach, we group similar application behavior observa-
tions, overlooking small variations that are expected on
the normal operation, while attempting to distinguish
objects that are observed only during attacks. By group-
ing similar observations of unstructured system outputs,
and assigning identifiers to every cluster, we then gener-
ate time series where novelty detection techniques can
be applied to. We also evaluate the detection precision
when generic distance functions are used, since they are
needed to compose a truly autonomous solution, inde-
pendent of the application context.

Based on previously conducted experiments, we
chose, for clustering, the Greedy Leader-Follower
Adaptive algorithm [4], because it presented acceptable
performance and precision, providing an adaptive solu-
tion that does not strongly depend on parameters defini-
tion, and also because it does not demand the definition

of a point merging function. This algorithm maintains a
set of centroids in memory, to represent the most usual
dataset observations. A parameter θ is assigned to every
centroid, to represent its coverage area. The algorithm
sweeps the dataset and, for every object, computes the
distance from the object to every centroid. The cen-
troid with the smallest distance to the observed object
is considered the winner. If the distance in between the
object and the winning centroid is smaller than θ, then
the object is associated with that centroid, otherwise a
new centroid is created at the position of the observed
object. Every time a new centroid is created, the num-
ber of existing centroids is verified: if the number of
centroids exceeds a parameter k, an operation is exe-
cuted to reduce such number. In order to perform this
reduction, the algorithm looks for the two closest cen-
troids, and merges them into a single one. Parameter θ
of the composed centroid is then incremented to accom-
modate objects of both, and the initial θ is incremented
to better adapt to the observed dataset.

Based on Albertini and de Mello[1] and also on the
previously conducted experiments, we considered the
Shannon’s Entropy [17] of time series as novelty de-
tection algorithm. Each observation in the sequence is
represented as a state on a Markov Chain, and the prob-
ability of transitions are estimated from sequences of
time series. The Entropy value is computed with Equa-
tion 1, where C is the set of all groups generated from
the clustering stage, and p(i, j) is the transition prob-
ability from group i to j. This transition probability
is estimated from the time series observations (i.e. the
number of transitions from state i to state j divided by
the lenght of the time series). The amount of novelty
in the series at a specific time is given by the deriva-
tive of the Entropy with respect to time. The most im-
portant aspect of this algorithm to this work is its lin-
ear computational complexity (given that the number of
distinct identifiers is constant and must be kep to a re-
duced value, not only for performance issues but also to
avoid overfitting), which is an important aspect to make
our proposal scalable.

H = −
�

i�C

�

j�C

p(i, j)log2(p(i, j)) (1)

4 Experiments

Being defined the algorithms to perform clustering and
novelty detection, we had to choose the datasets to con-
duct experiments on. Several system characterization
datasets are presented or described in the literature. By
far, the most widely used is the “1998 and 1999DARPA
intrusion detection”, which contains network traffic and

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 16

Solaris BSM output captured during several weeks on
a simulated environment [6]. However, this dataset
presents several flaws [14] and it does not contain all
information needed to characterize the behavior of spe-
cific applications. Therefore, we only considered the
Solaris BSM output as dataset to assess the scalability
of our solution. On the other hand, we evaluated the
precision of our approach through other experiments.

Most application characterization datasets are com-
posed of sequences of system calls. For instance, War-
render et al.[19] and Kruegel et al.[11] present and de-
scribe datasets with hundreds of thousands of system
calls extracted from production systems. However, ei-
ther the system call parameters are not present or the
datasets are not published because they contain con-
fidential information, which is a common issue faced
when data is extracted from production systems. By
contrast, Twycross and Aickelin[18] provide a dataset
of system characterization which contains system calls
and their parameters for server applications, in which
the behavior was simulated using sessions from public
datasets. To build this dataset, a public domain dataset
of FTP protocol sessions was used to simulate 55 ses-
sions of normal usage, while attack sessions were man-
ually executed. Although this dataset is shorter than
others (containing around 85, 000 system calls, when
they usually have around a million objects), it is more
appropriate for this work since it is public and contains
the value of system call parameters. This dataset is used
in the first set of experiments, in which we evaluate the
precision of the proposal and its ability to work in a
single-sweep fashion, with generic distance functions.

Finally, to collect data that represents the behav-
ior of a web application, we assembled an environment
composed of an HTTP server in which web applications
are deployed, and a relational database that is used by
those applications. To simulate users’ behavior, we de-
fined scripts for a test automation tool that simulate nor-
mal and also attack requests. For the attack simulation,
we have chosen the CVE - 2010 - 2908 vulnera-
bility, a SQL-injection flaw that affects an integration
module of a popular Web-based Content Management
System. In order to exploit this vulnerability, we as-
sembled a malicious request tampering one of the pa-
rameters of the web application, which is not validated
by the application and is concatenated to a SQL query,
allowing the execution of arbitrary SQL statements by
the attacker.

This vulnerability was selected due to three main as-
pects. First, because it is a SQL injection vulnerability
conducted by HTTP requests, which is the main focus
of this work. The second aspect is because the vul-

nerable applications are very popular LAMP (“Linux,
Apache, MySQL and PHP”, an open source platform
for Web applications) applications, freely distributed on
the Internet, which simplifies the assembly of a realistic
simulation environment and reinforces the importance
of the attack. Finally, the third aspect is the fact that
traces from these attacks can be observed not only in
the user requests and the database commands, but also
in the Web Service integration tier in between applica-
tions, which allows monitoring an additional attack vec-
tor. Considering this setup, we can monitor the HTTP
requests issued by users, the Web Service messages ex-
changed in between applications, and SQL commands
executed in the database. We executed 90 sessions of
normal usage, 5 sessions of SQL-Injection attacks, and
5 sessions of anomalous behavior. The anomalous be-
havior represents user sessions executed after confiden-
tial information was extracted via the SQL-Injection at-
tacks.

All three datasets used in the experiments are mod-
eled as sequences of objects that represent either normal
or attack behavior (the Web dataset is in fact composed
of three datasets: one of SQL statements, one of HTTP
requests and a last one of Web Service requests).

We executed three sets of experiments to evaluate
different aspects of our proposal. In the first set, we
evaluated the precision of the technique when single-
sweep clustering is used, and we compared the results
of the detection when generic and specific distance
functions are used. In this first set, we used a system
call dataset, and compared the results of three distance
functions: SSD (simple syscall distance), NCD (nor-
malized compression distance [5]) and CSD (complex
syscall distance). CSD is a context-specific distance,
only applicable to system calls (i.e. to a specific do-
main). It is based on a hierarchical approach, where
only system calls under the same type are clustered to-
gether. After verifying the type, the distance in between
the objects is calculated based on the value of the pa-
rameters and the return value. The first step to calcu-
late the distance requires the computation of the dis-
tance in between every attribute value: for numeric (i.e.
integer, date and network address parameters) values,

the distance is given by |a−b|
max(a,b) . Nominal attributes

have distance equals to 1 when values are different and
0 when they are equal. For character strings, we used
the normalized padded Hamming distance [9]. We end
up having a vector of distances in range [0, 1], which is
combined into a single value using the Euclidean dis-
tance.

SSD distance, on the other hand, represents a system
call as a tuple, composed of its type, concatenated to pa-

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 17

rameters and return value. The distance in between ob-
jects is then given by the Euclidean distance in between
tuples. This distance can be considered as generic as it
is applicable to any object that could be represented as
a tuple. Finally, since NCD can be applied to any array
of bytes, we serialized system call objects to calculate
this distance. The experimental results show that single-
sweep clustering is capable of defining series that rep-
resent the application behavior with enough precision
to differentiate attacks from normal scenarios, and also
that the generic distance functions show equivalent pre-
cision to the context-specific functions, what motivates
its adoption on later experiments to compose a fully au-
tonomous intrusion detection application.

The second set of experiments evaluates the scala-
bility of the technique, using a dataset with more that 5
million Solaris BSM records [6]. Every record is com-
posed of a sequence of tokens, and we used the Eu-
clidean distance in between tokens as the distance be-
tween records. We observed that the proposed approach
can scale to a production-sized dataset, and attack ses-
sions can be successfully differentiated from the normal
ones.

The third set of experiments evaluates the proposal
on the data collected from the Web application simula-
tion. We generated three datasets, named HTTP, XML-
RPC and SQL, containing user HTTP requests, Web
Service messages and SQL commands executed in the
database. NCD distance is used for all experiments in
this set.

On all experiments that depend on NCD dis-
tance, the pickle serialization algorithm available in
Python programming language [16] was used, and
compressions were performed using gzip with 1 as
compression level. All evaluated objects were in the
limit of 32KBytes, which is required for the NCD dis-
tance stability when using the gzip algorithm [3].

The effectiveness of the proposal is measured us-
ing receiver operating characteristic (ROC) curves gen-
erated from the novelty levels observed on the novelty
detection stage. A ROC curve is a curve where the x
axis represents the sensitivity, i.e. the true positive rate
(TPR), and the y axis represents the value of 1 minus
the specificity, i.e. the false positive rate (FPR), for a
classifier when its discrimination threshold is varied. To
obtain the curve, we assumed that the normal and the at-
tack novelty indexes generate two normal distributions,
and estimate their means and standard deviations based
on the observed data.

The area under the ROC curve (AuC) is used as an
index of the intrusion detection capability. The area un-
der the ROC curve was used as indicator of classificator

accuracy due to the fact that this index is not biased [2]
when the number of observations is unbalanced (what
happens for anomaly detection datasets). On next sec-
tions, results from the characterization stage are pre-
sented.

4.1 System call experiments

Figures 2 and 3 presents the comparison of some of the
ROC curves obtained when generic distances (SSD and
NCD) are used, in comparison to one of the results from
the syscall-specific distance (CSD). We present a curve
from the CSD experiment where k = 10 (where k is the
number of centroids in the clustering stage), because it
represents an experiment in which the area under the
curve is near the average observed on all CSD exper-
iments. On this subset of the results, we observe that
SSD outperformed the context-specific distance (which
is noticeable by the curves closer to the vertex (0, 1) and
higher value of area under this curve), while the NCD
experiments present slightly inferior results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

CSD/k=10 (AuC:0.79)
SSD/k=30 (AuC:0.98)
SSD/k=73 (AuC:0.92)

SSD/k=100 (AuC:0.88)
SSD/k=200 (AuC:0.86)

Figure 2: Simple Distance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

CSD/k=10 (AuC:0.79)
NCD/k=40 (AuC:0.64)
NCD/k=70 (AuC:0.72)

NCD/k=100 (AuC:0.74)
NCD/k=200 (AuC:0.76)

Figure 3: NCD Distance.

Figure 4 presents the value of the area under the
ROC curves in relation to the parameter k of the clus-
tering experiment (i.e. the number of groups), for all
system call experiments. To compare the average per-

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 18

formance for all experiments, we executed two hypoth-
esis tests considering the observed mean and standard
deviation for the context-specific distance and the two
generic distances.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 50 100 150 200

A
u
C

Parameter k

CSD
SSD
NCD

Figure 4: Area under ROC curve for each k parameter. The horizon-
tal line presents the mean value, while the vertical bars present the
standard deviation.

The first test compares the results of CSD and NCD
distances. We employ an unpaired, two-tailed two-
sample Welch’s t-test to evaluate whether the observed
difference in between means is statistically significant.
The NCD experiments present an average area under
the ROC curve of 0.73 with standard deviation of 0.02,
while CSD experiments present slightly superior re-
sults, with 0.76 as average and 0.08 as standard devi-
ation. We formulate two hypothesis:

• Null hypothesis(H0): µcsd = µncd

• Alternate hypothesis(H1): µcsd �= µncd

The observed mean difference represents a t score
of−1.85, and with 33 degrees of freedom we observe a
probability of 0.07 of this difference being observed by
chance, i.e. it is not sufficient to reject the null hypoth-
esis with α < 0.05. Considering this, we cannot say
that the context-specific distance has presented superior
results when compared to NCD, so we assume that both
techniques presented equivalent results.

The second statistical test compares the result of
SSD experiments to CSD ones. Again, we employ an
unpaired, two-tailed, two-sample Welch’s t-test to eval-
uate whether the observed difference in between results
is statistically significant. SSD experiments presented
an average area under the curve of 0.886with 0.08 stan-
dard deviation. Thus, we formulate the hypothesis:

• Null hypothesis(H0): µcsd = µssd

• Alternate hypothesis(H1): µcsd �= µssd

The observed mean difference represents a t score
of −7.7. With 44 degrees of freedom, we have a proba-
bility on the magnitude of 10−9 of observing this mean
difference by chance, so it is safe to reject the null hy-
pothesis, and hence we can say that the generic distance
has presented superior results to the context-specific
one.

These experimental results supported the hypothesis
that techniques that do not consider context information
are also capable of characterizing the behavior of an ap-
plication, and that single-sweep clustering techniques
can successfully be applied on the first step of the char-
acterization task. It is therefore feasible to differentiate
attacks from normal sessions through a single sweep on
the dataset, using an autonomic approach that is inde-
pendent of the underlying data model that describes the
application behavior.

4.2 BSM logs experiments

After evaluating the precision of our proposal through
experiments using the system call dataset, we were mo-
tivated to assess the scalability of it, i.e. check if it is
capable of discriminating normal from attack sessions
in a dataset with a greater order of magnitude. In order
to perform this evaluation, we executed experiments on
a subset of the DARPA IDEval BSM dataset, and results
are presented in Figure 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

k=2 (AuC:0.42)
k=4 (AuC:0.75)
k=5 (AuC:0.80)
k=6 (AuC:0.75)
k=8 (AuC:0.80)
k=9 (AuC:0.80)

k=11 (AuC:0.89)

Figure 5: ROC curves for DARPA IDEval BSM dataset.

When parameter k ranges from 2 to 14, we observe
areas under the ROC curve in between 0.43 and 0.89,
with an average of 0.64. To evaluate the effectiveness
of the proposal, we need to check if the value of this av-
erage is significantly above 0.5, i.e. if the technique has
greater differentiation capability than a random classi-
fier for most of the experiments. To evaluate that, we
performed an one-tailed, one-sample Student’s t test,
because we had a reduced number of observations and
wanted to verify whether the average value is above a
threshold. Thus, we formulated two hypothesis:

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 19

• Null hypothesis(H0): µ ≤ 0, 5

• Alternate hypothesis(H1): µ > 0, 5

Having an average of 0.64 with a standard deviation
equals to 0.165, the probability of observing an aver-
age below 0.5 is 0.005, when we consider 12 degrees
of freedom. Thus, it is safe to reject the null hypothesis
even with α < 0.01, so we confirmed that the tech-
nique can be successfully applied to a production-scale
dataset.

4.3 Web experiments

Finally, we present the intrusion detection results when
testing our proposal on the dataset extracted from aWeb
application. Figure 6 presents some of the ROC curves
observed when the technique is applied to the dataset
of HTTP user requests. The most effective experiments
occur when parameter k ranges from 4 to 19: in this
dataset, we observed that when k ≤ 3, the clustering
stage is not capable of generating time series that char-
acterize the dataset with enough precision to differen-
tiate normal from attack sessions. On the other hand,
when k ≥ 20, we start observing overfitting situations,
i.e. when the added information interferes in detection.
When 4 ≤ k ≤ 19, we observe an average area under
the ROC curve of 0.68.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

NCD/K=1 (AuC:0.5)
NCD/K=5 (AuC:0.78)

NCD/K=10 (AuC:0.72)
NCD/K=15 (AuC:0.66)
NCD/K=20 (AuC:0.44)
NCD/K=30 (AuC:0.41)

Figure 6: ROC curves for HTTP dataset.

To evaluate if the technique can effectively differ-
entiate normal from attack sessions, we again perform
an one-tailed, one-sample Student’s t test to evaluate
whether the average area under the curve is above 0.5.
Thus, we formulated the following hypothesis:

• Null hypothesis(H0): µ ≤ 0, 5

• Alternate hypothesis(H1): µ > 0, 5

When all test cases are considered, i.e. for all
1 ≤ k ≤ 30, we observed an average area under the
curve of 0.56 with standard deviation equals to 0.14.

Considering 29 degrees of freedom, we have a proba-
bility of 0.008 of observing an average area under the
curve below 0.5, and hence it is safe to reject the null
hypothesis even for α < 0.01. By analyzing the results,
we confirm that the technique is effective to detect in-
trusions in this context, as long as we have good cluster-
ing results (i.e. avoiding excessive generalizations and
overfitting situations).

The second set of experiments onWeb datasets eval-
uates the effectiveness of our proposal to detect attacks
in the Web Service messages. Figures 7 and 8 presents
some of the ROC curves observed on experiments. We
evaluated two situations: in the first, we attempted to
detect both the SQL-Injection attacks and anomalous
user navigation as attacks, as we did on the other Web
experiments. On the second situation, we tried to detect
only the SQL-Injection attack. When we compared the
ROC curves in Figures 7 and 8, we notice that the tech-
nique is not capable of detecting anomalous situations
as attacks. This happens because the anomalous situa-
tions do not depend on the Web Service functionality,
and hence no anomaly is observed on this situation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

NCD/k=1 (AuC:0.5)
NCD/k=4 (AuC:0.66)
NCD/k=5 (AuC:0.64)

NCD/k=10 (AuC:0.54)
NCD/k=20 (AuC:0.42)
NCD/k=30 (AuC:0.44)

Figure 7: Anomalies and attacks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

NCD/k=1 (AuC:0.5)
NCD/k=4 (AuC:0.99)
NCD/k=5 (AuC:0.96)

NCD/k=10 (AuC:0.76)
NCD/k=20 (AuC:0.52)
NCD/k=30 (AuC:0.56)

Figure 8: Attacks only.

When we evaluate the effectiveness of the technique
considering both attacks and anomalies, we observe that
a two-tailed one-sample Student’s t-test is not conclu-

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 20

sive to state that the technique is superior to a random
classifier. On the other hand, if we consider only the
SQL injection test cases as attacks, having 1 ≤ k ≤ 30
we observe an average area under the ROC curve of
0.64 with standard deviation equals to 0.16. Consid-
ering 29 degrees of freedom, a one-tailed one-sample
Student’s t test yields a probability of less that 10−4

of observing this area difference by chance. Thus, it is
safe to reject the null hypothesis even with α < 0.01,
which indicates that the technique was effective to de-
tect attacks on this vector, even though it was not able
to detect anomalies (which is expected, since no attack
trace is present on that vector in this situation). Also,
as for the previous experiments, we observe in Figures
7 and 8 a reduction on the effectiveness when we have
overfitting situations on the clustering stage.

In the last experiment with the Web application, we
applied our proposal to the dataset with SQL commands
executed on the database. Figure 9 presents some of the
ROC curves obtained on this experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
P

R

FPR

NCD/K=1 (AuC:0.5)
NCD/K=10 (AuC:0.64)
NCD/K=12 (AuC:0.74)
NCD/K=15 (AuC:0.58)
NCD/K=20 (AuC:0.67)
NCD/K=30 (AuC:0.58)

Figure 9: ROC curves for the SQL dataset.

With 1 ≤ k ≤ 30, we observed an average area
under the ROC curve of 0.54 with standard deviation
equals to 0.13. Considering 29 degrees of freedom, an
one-tailed, one-sample Student’s t test yields a proba-
bility of 0.03 of this result being significant, so the null
hypothesis can be rejected only for α < 0.05. Thus,
we noticed that we have a much smaller differentia-
tion capacity for this dataset than in previous situations,
what happens due to the greater amount of data being is
presented (since more objects are present on every ses-
sion, as for each request several SQL statements are ex-
ecuted on the database), and also to a leniency observed
on the NCD distance when greater amount of shared
data is present on the dataset observations (since each
SQL statement is a relatively large object). A possible
workaround to deal with this issue would be by reduc-
ing the length of every section, or by using a more spe-
cific distance function only on this point of the whole
intrusion detection application, sacrificing part of the

autonomy of the solution in favor of better precision.
In every experiment presented in this work, we no-

ticed reasonably low levels of area under the curve in
comparison to related works (while most works present
indexes above 0.9, we obtained indexes ranging from
0.6 to 0.9 [8, 13, 18]). However, we must point out that
we currently do not aim at obtaining the highest preci-
sion at all, but we intend to propose an approach that
can be easily applied to any application context, so that
we can characterize several aspects of a working system
in an autonomic fashion. Throughout our experiments,
we showed the effectiveness of our proposal (expressed
by an average area under the curve above 0.5 regardless
of any parameter values) instead of showing how pre-
cise a solution can be when considering ideal parame-
ters and context-specific data functions. We considered
that the definition of these dependencies for every spe-
cific application would hinder the adoption of any pro-
posal on a real scenario, and we believe that, as showed
in previous works [18], a completely autonomic solu-
tion should be based on the collection of data from sev-
eral tiers of a working system, so we need techniques
that require the least supervision as possible to build a
whole intrusion detection application.

5 Conclusions

In this paper, we proposed a variation of a commonly
employed technique for novelty detection that can be
applied to any context, in a single sweep of a dataset.
In three groups of experiments, we have evaluated the
precision and scalability of our approach, and finally,
we applied it on a web-application scenario. All those
experiments have confirmed that generic distance func-
tions can be used to characterize the behavior of appli-
cations, and also that a single-sweep approach can in-
deed be used to perform autonomic intrusion detection
on different domains.

A shortcoming we observed in this work is the fact
that data was collected from simulations of real environ-
ments, and not from production environments. As ob-
served by McHugh[14], the issue on how to obtain this
kind of information, without bias and not compromis-
ing confidential information, is still an open question.
As future work, we intend to evaluate other datastream
clustering algorithms, in order to increase the precision
of the technique, and also to research more realistic sim-
ulation environments.

References

[1] Albertini, M. K. and de Mello, R. F. A self-
organizing neural network for detecting novelties.

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

Eduardo Alves Ferreira and Rodrigo Fernandes de Mello Applying Autonomic Intrusion Detection on Web Applications 21

In ACM Symposium on Applied Computing, pages
1–5, 2007.

[2] Bradley, A. P. The use of the area under the roc
curve in the evaluation of machine learning al-
gorithms. Pattern Recognition, 30(7):1145–1159,
1997.

[3] Cebrián, M., Alfonseca, M., , and Ortega, A.
Common pitfalls using the normalized compres-
sion distance: What to watch out for in a compres-
sor. Communications in Information and Systems,
pages 367–384, 2005.

[4] Charikar, M., Chekuri, C., Feder, T., and Mot-
wani, R. Incremental clustering and dynamic in-
formation retrieval. In Proceedings of the twenty-
ninth annual ACM symposium on Theory of com-
puting, pages 626–635, 1997.

[5] Cilibrasi, R. and Vitányi, P. M. B. Clustering by
compression. IEEE Transactions on Information
Theory, 51(4):1523–1545, 2005.

[6] Cunningham, R. K., Lippmann, R. P., Fried, D. J.,
Garfinkel, S. L., Graf, I., Kendall, K. R., Web-
ster, S. E., Wyschogrod, D., and Zissman, M. A.
Evaluating intrusion detection systems without at-
tacking your friends: The 1998 darpa intrusion de-
tection evaluation. In Proceedings of Third Con-
ference and Workshop on Intrusion Detection and
Response, pages 1–5, 1999.

[7] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and
Stolfo, S. A geometric framework for unsuper-
vised anomaly detection: Detecting intrusions in
unlabeled data. In Applications of Data Mining in
Computer Security, pages 1–20, 2002.

[8] Forrest, S., Hofmeyr, S. A., Somayaji, A., and
Longstaff, T. A. A sense of self for unix processes.
In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pages 120–128, 1996.

[9] Hamming, R. Error detecting and error correcting
codes. Bell System Technical Journal, pages 147–
160, 1950.

[10] Kohonen, T. Self-organized formation of topolog-
ically correct feature maps. Biological Cybernet-
ics, 43(1):59–69, 1982.

[11] Kruegel, C., Mutz, D., Valeur, F., and Vigna, G.
On the detection of anomalous system call argu-
ments. In Proceedings of the 8th European Sym-
posium on Research in Computer Security, pages
326–343, 2003.

[12] MacQueen, J. B. Some methods for classification
and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathe-
matical Statistics and Probability, pages 281–297,
1967.

[13] Maggi, F., Matteucci, M., and Zanero, S. De-
tecting intrusions through system call sequence
and argument analysis. IEEE Transactions on
Dependable and Secure Computing, 99(1):1–15,
2009.

[14] McHugh, J. Testing intrusion detection systems:
a critique of the 1998 and 1999 darpa intrusion
detection system evaluations as performed by lin-
coln laboratory. ACM Transactions on Informa-
tion System Security, 3(4):262–294, 2000.

[15] Pereira, C. M. M. and de Mello, R. F. Behavioral
study of unix commands in a faulty environment.
In Proceedings of the 8th International Confer-
ence on Dependable, Autonomic and Secure Com-
puting, pages 1–6, 2009.

[16] Python. Python v2.7 documentation, 2010.
http://docs.python.org/.

[17] Shannon, C. E. A mathematical theory of
communication. Bell System Technical Journal,
27(1):379–423, 1948.

[18] Twycross, J. and Aickelin, U. Information fu-
sion in the immune system. Information Fusion,
11(1):35–44, 2010.

[19] Warrender, C., Forrest, S., and Pearlmutter, B. De-
tecting intrusions using system calls: Alternative
data models. In IEEE Symposium on security and
Privacy, pages 133–145, 1999.

[20] Zanero, S. and Savaresi, S. M. Unsupervised
learning techniques for an intrusion detection sys-
tem. In ACM Symposium on Applied Computing -
SAC 2004, pages 412–419, 2004.

INFOCOMP, v. 11, no. 1, p. 13-21, March of 2012.

