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Abstract. Deep learning models have received a significant breakthrough in remote sensing scene clas-
sification due to their discriminative, hierarchical feature extraction ability. Nevertheless, CNN-based
methods deliver accurate classification results only with sufficient annotated training samples. The com-
putational bottleneck of CNNs with numerous parameters in case of inadequate training samples and the
inherent class imbalance problem in high-resolution satellite scene classification question the classifier’s
performance. Existing deep CNNs with conventional Cross-Entropy loss function neglected the signifi-
cance of gradient contribution from minority classes in handling imbalanced LULC class distribution. In
this context, we propose the hybrid probabilistic gradient-based deep learning framework CNN-FHSVM
with regularized novel Focal-Hinge loss cost function optimization for alleviating misclassifications in
imbalanced datasets. The empirical experimentation with Sentinel 2 EuroSat Dataset benchmarked for
deep learning algorithms demonstrated that the proposed model is superior in mitigating classification
errors in imbalanced class distribution contrasted to the cutting-edge deep learning frameworks. The
proposed loss function adaptively updates the gradient of the minority classes, drifting the focus to mis-
classified scenes. Focal-hinge loss is the first endeavor adapted to remote sensing LULC multiclass
classification to reduce misclassifications. The model demonstrates higher accuracy with reduced mis-
classifications and training time and can benefit other remote sensing applications like early deforestation
urban planning, where LULC maps are imbalanced.

Keywords: Class Imbalance, Convolutional Networks, Focal HingeLoss, Gradient Learning, Scene
Classification.
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1 Introduction

Scene Classification has been a burgeoning domain
of research investigation in the realm of computer vi-
sion for decades, with extensive real-world applica-
tions. Nevertheless, the classification of scenes is no-
ticeably more complex due to the semantic similarity of
the ground objects between the scenes and the diversity
in scales, distribution, and illumination effect of objects
within the class, leading to misclassifications[3, 13, 24,

27, 33, 25]. With an emerging paradigm shift in high-
resolution data availability in Earth Observation, scene
classification in Remote Sensing (RS) has gained mo-
mentum with real-world applications in deforestation,
urban planning, vegetation mapping, etc. It encom-
passes the task of assigning semantic labels to patches
cropped from imagery acquired by sensors[3]. In appli-
cations like urban planning early stages of deforesta-
tion, LULC maps are generally imbalanced, and the
misclassifications from minority classes are higher[23].
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Capturing contextual and spatial intricacies of minority
classes is also very significant in LULC maps in RS ap-
plications. The heterogeneity of land cover classes with
the complex spatial distribution of inherent ground ob-
jects makes scene classification arduous[3, 27]. In the
Machine Learning Community, it is the prevalent im-
balanced learning problem having an adverse impact on
classification accuracy[12] Deep Learning (DL) algo-
rithms in RS image classification have achieved signifi-
cant breakthroughs, offering novel approaches in recent
years with the advent of extraordinary computational
GPUs[2]. The deep network’s multiple stacked feature
extraction stages are imperative for hierarchical fea-
ture representations of objects in scene classification[2,
10, 29]. Based on the author’s insights from the lit-
erature, Deep CNNS has yielded remarkable outcomes
in RS scene classification[3, 10, 13, 29, 33, 27, 24, 6,
5]. Nonetheless, the imbalanced distribution of land
cover classes with the co-existence of ground objects
in scenes leads to misclassification errors from minor-
ity classes[24] Researchers have endeavored to reduce
misclassifications through the feature extraction stages
of the scene classification pipeline[3]. Still, gradient
learning in comprehending the essential aspects of mi-
nority classes is neglected in reducing misclassification.

The present research demonstrates the use of loss
function with probability-based gradient learning to
reduce misclassifications, specifically from minority
classes. Before accentuating the significant contribu-
tions of the current work, it is essential to mathemati-
cally formulate the problem of misclassification in the
context of the RS scene. Classification of scenes is a
decision problem. The problem statement is described
in section 1.1

1.1 Problem Statement

Given remote-sensing imagery, I , comprising patches
ρi, ordered as a tensor, Assuming training Set s with
K discrete classes ,y = {y1, y2, . . . , yk}, a set Dtrain =
patches[i] = {ρ0, ρ1, ρ2, . . . , ρn} , and with the vec-
tor, [a0, a1, a2, . . . , an],as features ∀Pi ∈ D. Hence,
the Classifier is mapped as f : ρi → Y here, and the
Training Set is defined in (1)

(Xtrain = {(ρi, yi)}Ni=1 ⊂ Rn × {0, 1}C , ) (1)

[ρi1 , ρi2 , . . . , ρin ] is i-th training sample n as features
and c as classes. If S represents a finite set of samples,
and X is a subset of S, f(x) is the classifier on a set X .
Mathematically, the misclassification rate is denoted as
Pe(f) and classifier f(x), and T = {|x| | x ∈ S −X}
as Test Set for classifier performance evaluation. The

Figure 1: Processing Pipeline of the Proposed Model

misclassification rate is defined in (2)

([Pe(f) =
|{x ∈ T | f(x) ̸= y(x)}|

|T |
) (2)

F (x) ̸= f(x) illustrates the inconsistency between the
testing results and the class labels[30]. To the best of the
author’s awareness of the State-of-the-Art Deep CNN
architectures, most of the research undermined the sig-
nificance of gradient learning from training samples for
underrepresented minority classes that can further con-
tribute to classification accuracy. The proposed FH loss
function postulates the concept of differential weight
decay based on the difficulty of predicting the scenes.
Hence, the motivation behind the FH loss function is
making the model robust with Hinge loss maximizes the
generalization ability of classifiers and accurate predic-
tions, and the Focal Loss function down weights easy
examples [11].

1illustrates the pipeline of the proposed model.

Thus, the significant contributions of this paper are out-
lined below:-

• A probabilistic gradient-based adaptive Focal-
Hinge (FH) loss function is proposed for imbal-
anced Remote Sensing LULC maps. We up-
weighed the loss of misclassified instances in ev-
ery class based on prediction difficulty and hence
reduced misclassifications from minority classes.

• The proposed hybrid deep learning framework
CNN-FHSVM further alleviated overfitting issues
by introducing dropout and data augmentation
techniques.

• Empirical evaluation of the proposed model on
Sentinel 2 Euro SAT dataset’s Red Green Blue
(RGB) bands corroborated that CNN-FHSVM re-
duced LULC misclassifications with fewer com-
putational parameters and training time compared
to the recent advances in deep CNNs with rela-
tively imbalanced datasets.

2 Literature Review

This section delves into a concise review of state-of-
the-art Knowledge-oriented CNN architectures in RS
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scene classification. Literature suggested some pioneer-
ing work of training a supervised model cross-domain
with generalized pre-activation using a few labeled
samples[32, 10]. Data Augmentation, Transfer Learn-
ing approaches and Active learning techniques are new
learning paradigms discussed in the literature[2, 10,
17, 21, 32, 29]. In [9], the author illustrated a trans-
fer learning algorithm trained with a top-2 smooth loss
function for land classification problems for wide-scale
TerraSAR-X images, addressing challenges of imbal-
anced classes and label noise. In [17], the author pro-
posed two staged transfer learning frameworks to ex-
tract hierarchical feature vectors from the UC Merced
Dataset. The results substantiated improved classifica-
tion accuracy from 83.1% to 92.4%. To visualize the
feature space in high dimensional stages, the author
used t distributed stochastic neighbours embedded al-
gorithm. In [19], the author fine-tuned Transfer Learn-
ing Knowledge ResNet and VGG 16 for LULC clas-
sification using the EuroSAT dataset. Training sam-
ples were augmented to enhance model performance
and fine-tuned with techniques like gradient clipping.
Further, in [28], the authors experimented with hyper-
spectral datasets and introduced the 3-D-LWNet model
with sensors and cross-modal techniques for hyperspec-
tral classification. In [21], the author validated similar
investigations using Convolutional Networks for fea-
ture extraction. The results substantiated also delve into
a systematic approach, including distortions and affine
transformations in the model. In [11], the author pro-
posed a fully differentiable Radial Basis Function Layer
with CNN and manifested superior results compared to
conventional models. In [14], the research presented a
deep cube CNN model with Random Forests using spa-
tial neighborhoods. The experiments were performed
on high-dimensional hyperspectral datasets.

2.1 Loss Functions and Class Imbalance

Class Imbalance issue is also inherent in LULC Scene
Classification. Hence, the probability of misclassifica-
tions increases manifolds in minority classes. In [16],
the author experimented with the CIFAR dataset and
corroborated that entropies of SoftMax function of clas-
sified samples decrease with training. The network be-
comes more confident with its incorrect predictions. In
[31], the author proposed the Class Focal Loss accen-
tuating the concept of differential weight decay in the
driving scenes dataset. Significant weight decay should
be assigned to easily classified samples in highly im-
balanced datasets. In [18], the author analyzed the fac-
tors for miscalibration and model bias in deep learn-
ing models. With insights into research and experi-

ments, focal loss demonstrated excellent performance
in imbalanced datasets with enhanced accuracy. The
experiments using different deep network architectures
proved that deep neural networks trained with focal loss
are more calibrated than the Cross-Entropy loss func-
tion [10]. In [22], the author extended this concept
by reconstructing Hinge Loss and formulated the new
Focal-Hinge(FH) loss function for binary classification.
FH loss accentuates more on misclassified instances for
mitigating misclassifications and diminishing the influ-
ence of class imbalance. The idea is further reinforced
for high-resolution segmentation in satellite images [1].
The author elucidated a confusion map for measuring
classification ability with calibrated focal loss. [15] pro-
pounded a loss combined weighted binary CE loss in
change detection in remote sensing.[26] incorporated
spatial correlation in neighboring pixels and corrobo-
rated neighbor loss for the segmentation task in the
satellite images. Inspired by the work in [22], this re-
search extends the Focal-Hinge loss for multiclass clas-
sification of LULC scenes in imbalanced learning prob-
lem comprehended with deep neural networks.

3 Proposed Framework

This section discusses the proposed deep hybrid frame-
work CNN-FHSVM with novel Focal-Hinge loss for
multiclass classification in imbalanced RS LULC scene
classification. We first elaborate on theoretical concepts
of the Focal Loss Function, then the rationale behind the
proposed Focal-Hinge Loss function with the objective
function of Multiclass SVMs.

3.1 Focal Loss Function Theoretical Basis

CE loss is the substantial loss explored in DL algo-
rithms [16, 31]. However, this loss function predomi-
nantly gives attention to the majority examples

Given a patch with label y, SoftMax CE Loss is for-
mulated in (3)

CE(z, y) = − log

(
ezy∑c
j=1 e

zj

)
(3)

CE loss, if improved with the modulating term (1−
ρ)γ ,it can perform well in imbalanced datasets

3.2 Focal Hinge Loss

In [11], the author elucidated the concept of Focal
Hinge loss relative to the imbalance ratio, as stated in
(4)

LFH(Y, f(x)) = max {0, τ̄(1− p̃)γ(1−Yf(x))}
(4)
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τ̄ =

{
τ if Y = 1

1− τ otherwise
, τ ∈ [0, 1]

ρ =

{
ρ if Y = 1

1− ρ otherwise
, ρ = σ(f(κ)) =

1

1 + e−f(κ)

Hence, the new final modified FH loss is given in (5)

LFH(y, f(x)) = max

{
0,

τ̄

(1 + eyf(x))γ
(1− yf(x))

}
(5)

3.3 Proposed FH loss for multiclass SVMs with hy-
brid DL-ML model

We extended this FH loss for multiclass SVMs, eluci-
dating its application in RS LULC scene recognition.
Here, the hyperparameter γ is calculated using sample
quantization. Higher γ can contribute a higher gradi-
ent in loss function for lower values of probability and
vanishing gradients for higher probability. This concept
is first introduced in [18], where the author gleaned in-
sights about focal loss and model calibration in deep
learning algorithms through extensive experiments with
this hyperparameter. This observation paves the way
to select γ sample-wise, assigning more weight to in-
stances with less correct class probability. Mathemati-
cal interpretation is given in (6)

The first page must contain, in the following se-
quence:

∂LFocal

∂W
=

∂L

∂W
g(ρ, γ) (6)

y ∈ {0, . . . ,K − 1} K denotes the number of classes,
and the ρ vector represents the calculated probability
distribution on K classes. The accuracy of each class
has been improved by reshaping Hinge Loss by a scal-
ing factor γ obtained. The mathematical interpretation
of this FH loss is given in (5).

3.3.1 Objective Function of Multiclass Support
Vector Machines and Loss Function

[hbt!] patches {p0, p1, . . . , pi}each{pi}is[64×64×3]
Target conditional probability distribution

P(⟨YT ⟩|XT )
Pre-process the satellite images Feeding the aug-

mented images to CNN-FHSVM Feature representation
from alternate and last Convolutional Layers Comput-
ing the gradient from the class saving parameters θ

Training Classifier C with parameters θ

Focal loss optimization with factor (ρ, γ)
∂LFocal
∂W = ∂L

∂W g(ρ, γ)
θ ← θ − δ∇θL(θ);
Update parameter θ;
In Multiclass Classification, if training samples and

their labels are (xn, yn), n = 1 . . . N,Xn ∈ R [22],
Then, the SVMs learning rate-constrained objective
function is mathematically interpreted in (7)

(min)(w,ξn)
1

2
wTw + C

N∑
n=1

ξn (7)

wTxntn ≥ 1− ϵn ∀n, ϵn ≥ 0 ∀n
for optimization constraints given in (7) n Slack Vari-
ables that penalize data points violating margin require-
ments. Augmenting vectors xn, with scalar value 1,
can also include bias. The corresponding optimization
problem then becomes as in (8)

min
w

1

2
WTW + C

n∑
i=1

max(1−WT (xn, tn), 0) (8)

This is a primal form problem of L1 SVM. Optimiza-
tion is performed in dual form for kernel SVMs.

3.3.2 Proposed Framework CNN-FHSVM

The proposed model, Convolutional Neural Networks
with enhanced Focal Hinge loss-based SVM(CNN-
FHSVM), improves Class accuracy and reduces mis-
classifications in imbalanced datasets. The rationale be-
hind this approach is differential weight decay, giving
more preference to instances where the model places
less probability mass on the correct class. Focal loss
regularizes weight norms in the network when the entire
network achieves a certain level of prediction. When
probability ρi → 1 , the modulating factor tends to 0,
which downweights the loss value for well-classified
examples. The hyperparameter γ ≥ 1 rescales the
modulating factor so that well-classified examples are
down-weighted. The details of the layers of deep cus-
tomized CNN are given in Fig. 3. Convolutions and
Max Pooling are augmented to decrease the dimension-
ality of the feature matrix. Further, the dropout is added
for the regularization of weights. Hence, it is beneficial
for scenes where objects are at multiple scales. Four
2D convolutional layers with filters 32, 64, 128, and 256
are taken to capture spatial convolutions over the image.
Two hundred fifty-six filters are used to learn the com-
plex spatial hierarchies of the objects from the scenes.
Scenes comprise a hierarchy of objects. Hence, filters
are upsampled in every layer to capture the discrimina-
tive hierarchy of objects in complex scenes. The base
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Figure 2: Base Architecture of CNN-FHSVM

architecture of the proposed framework with parame-
ters is presented in Figure2 With the increase in confi-
dence of the model, i.e., when the probability ρi → 1,
the modulating factor tends to 0. Hence, well-classified
examples are down-weighted more than misclassified
ones to reduce their impact on the loss function. Scaling
diminishes the loss from easy examples. As an illustra-
tion, if we set γ = 2 and the probability associated with
a well-classified example is p = 0.9, then the modulat-
ing factor will scale down its loss contribution by 100
times

4 Results

4.1 Experimental Configuration and Dataset De-
scription

Experiments are executed using Python 3.8 on NVIDIA
Tesla V100 GPU with 512GB RAM. The proposed
Deep Learning Framework is evaluated with multi-
ple experiments. The Sentinel-2 Eurosat comprises
27k 64 × 64 pixel patches categorized into ten LULC
classes[7, 8]. It is multispectral, with thirteen spec-
tral bands in the visible, near, and short-wave infrared
[8]. The dataset description class-wise is given in Fig-
ure5 and Figure6.RGB bands are considered for exper-
iments.

4.2 Experimental Parameters

The proposed framework CNN-FHSVM is evaluated
for assessment metrics training time, F1 score, and ac-
curacy. Experiments were conducted using loss func-
tions, such as categorical hinge loss and proposed FH
loss. The focal loss hyperparameter γ has been calcu-
lated through gradient-based sample quantization. Af-
ter extensive preliminary experiments, the best optimal
value for hyperparameters is presented in Table1. The

Figure 3: Model Summary

Figure 4: Proposed Framework for CNN- FHSVM model

Figure 5: Class Distribution of Eurosat Dataset
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Figure 6: Sample images in EuroSAT [23]

Table 1: Hyperparameters in Experiments

Hyperparameters Experimental Values
Batch Size 64
Learning Rate Initial/Final 0.004
Dropout rate per layer 0.25
Patience 15
Activation Function Relu
Loss Function Hinge Loss/Focal Loss
Epochs 100
Data Augmentation Rotate, Scale
γ 0.5(Optimal Value)

dropout layer is added to regularize parameters and pre-
vent overfitting. Data augmentation further increases
the feature representation of training samples.

4.3 Results and Analysis

We performed experiments on RGB bands of Sentinel 2
EuroSat Dataset. The quantitative assessment of the in-
troduced framework is contrasted with the leading-edge
CNN architectures in Figure7, illustrating that deep ar-
chitectures combined with ML techniques can outper-
form SVM and CNN models trained from scratch in
training time and computational parameters with com-
parable accuracies[21, 11, 19, 13]. Matrix multipli-
cations are maximum in the last neuron connections.
Hence, mitigating dense layers and classifying with
multiclass SVMs will enhance efficiency and decrease
training time. The rationale behind choosing the hy-
brid CNN-FHSVM framework is the reduction of train-
ing time. Table2 compares our proposed deep learn-
ing framework with other hybrid frameworks. Further
experiments with loss functions indicated that the pro-
posed Loss function reduced misclassifications and in-
creased class accuracy. Results are demonstrated in Ta-
bles 2-4. Table 2illustrates the experiments with a con-
ventional loss function and deep networks. It is evi-

Figure 7: Comparison of Training Time in Seconds of Hybrid DL-
ML Models

Figure 8: Convergence of FH loss function in CNN FHSVM model

dent from 3 and 4 that the proposed loss function FH
loss increased class accuracy and reduced misclassifi-
cations. In Table33, we have contrasted our model with
variations in the loss function. From the results, it is
imperative that the proposed loss function Focal-Hinge
Loss outperforms conventional Hinge loss in terms of
class accuracy and misclassifications. Further, Table4
indicates the accurate predictions of the proposed FH
loss function. The experiments are also contrasted
with deep learning architectures elucidated in the lit-
erature,our model enhances the accuracy with compar-
atively less training time. Figure8 shows that FH loss
converges well with an increasing number of epochs.
Since the Eurosat Dataset is not highly imbalanced, the
re-weighting strategy of the loss function works well to
enhance accuracy coupled with data augmentation tech-
niques.

4.4 Discussion

Results corroborate that Focal Hinge loss qualifies as
an alternative loss function with deep learning frame-
works compared to conventional CE loss function in
imbalanced datasets. The proposed loss function up
weights misclassified instances based on prediction dif-
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Table 2: Class-Wise Comparison of Accuracy of Hybrid Models

Vggnet -Random Forest CNN-SVM (Hinge Loss) CNN-Random Forest
CLASS Class Accuracy F1 Score Class Accuracy F1 score Class Accuracy F1 Score
Annual Crop 0.9045 0.8840 0.9025 0.9067 0.8923 0.8813
Forest 0.9980 0.9978 0.9413 0.9023 0.9589 0.9584
Herbaceous Vegetation 0.9650 0.9640 0.9124 0.9230 0.9450 0.9245
Highway 0.9650 0.9559 0.9410 0.9310 0.9456 0.9352
Industrial 0.9888 0.9780 0.9510 0.9712 0.9034 0.9445
Pasture 0.9440 0.9430 0.9034 0.9134 0.9245 0.9345
Permanent Crop 0.9528 0.9429 0.9312 0.9324 0.9034 0.8943
Residential 0.9986 0.9200 0.9489 0.9189 0.9556 0.9443
River 0.9476 0.9176 0.8981 0.8823 0.9267 0.9134
Sea Lake 0.9080 0.9180 0.9434 0.9134 0.9243 0.9223

Table 3: Comparative Class Accuracy of the proposed model CNN-SVM with variation in Loss Function

CNN-SVM (Hinge Loss) CNN-FHSVM (Proposed FH Loss Function)
Class Class Accuracy F1 score Class Accuracy F1 Score
Annual Crop 0.9025 0.9067 0.9866 0.9867
Forest 0.9413 0.9023 0.9986 0.9780
Herbaceous Vegetation 0.9124 0.9230 0.9866 0.9867
Highway 0.9410 0.9310 0.9840 0.9812
Industrial 0.9510 0.9712 0.9900 0.9723
Pasture 0.9034 0.9134 0.9890 0.9723
Permanent Crop 0.9312 0.9324 0.9960 0.9760
Residential 0.9489 0.9189 0.9973 0.9812
River 0.9481 0.9323 0.9908 0.9817
Sea Lake 0.9434 0.9134 0.9866 0.9932

Table 4: True predictions with proposed FH loss function

Class SamplesTrue predictionsClass Accuracy
Annual Crop 1500 1480 0.9866
Forest 1500 1496 0.9973
Herbaceous Vegetation1500 1450 0.9666
Highway 1250 1230 0.9840
Industrial 1250 1225 0.9800
Pasture 1000 990 0.99
Permanent Crop 1250 1220 0.9760
Residential 1500 1496 0.9973
River 1250 1200 0.9600
Sea Lake 1500 1480 0.9866

ficulty and enhances class accuracy. Deep CNN archi-
tectures discussed in the literature essentially incorpo-
rated CE loss function with deep learning frameworks.
The Focal-Hinge loss, as illustrated by the results, out-
performs the contemporary literature studies in terms of
training time and accuracy.

5 Conclusion and Future Investigations

This work proposed a Focal-Hinge loss-based deep
learning framework for addressing misclassifications in
relatively imbalanced RS scene classification. Insights
from the literature suggested minimal efforts were di-
rected toward the significance of gradients in loss func-
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Table 5: Comparative performance summary with State of Art Proposed Models for LULC scene classification

Authors Reference No. Model Accuracy
Chong [4] VGG 16 94.50
Helber [8] GoogleNet 98.18
Helber [8] ResNet 50 98.57
Sonune [20] Random Forest 61.46
Sonune [20] ResNet 50 94.25
Sonune [20] VGG 19 97.66
Naushad [19] VGG 16 98.14
Naushad [19] VGG16 (With Data Augmentation) 98.55
Naushad [19] Wide ResNet-50 99.04
Naushad [19] Wide ResNet-50 (With Data Augmentation) 99.17
Experiment Experimental Model Vggnet with Random Forest 97.5
Experiment Proposed Model CNN-FHSVM (With Data Augmentation) 99.6

tion for addressing misclassifications in LULC clas-
sification. The research propounded the idea of dif-
ferential weight decay, giving more preference to in-
stances where the model places less probability mass
on the correct class. Results corroborate that the de-
vised framework CNN-FHSVM has fewer misclassifi-
cations, specifically from minority classes, than state-
of-the-art models. The work also demonstrates that FH
loss qualifies as an alternative loss function with deep
learning frameworks for the imbalanced RS multiclass
scene classification. In the future, this novel loss func-
tion can be experimented on highly imbalanced satellite
images.
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