
Applying the Heterogeneity Level Metric in a Distributed Platform

PAULO S. L. SOUZA

FABIO HISTOSHI

MARCOS J. SANTANA

REGINA H. C. SANTANA

SARITA M. BRUSCHI

KALINKA R. L. J. C. BRANCO

USP - University of São Paulo
ICMC - Institute of Mathematics and Computer Sciences

SSC - Computer Systems Department
P.O. Box: 668 - 13560-970 - São Carlos (SP) - Brazil

{pssouza, hitoshi, mjs, rcs, sarita, kalinka}@icmc.usp.br

Abstract. Heterogeneity Level (HL) metric has been developed by our research-group to help scheduling
algorithms to adapt themselves to the existent heterogeneity in the platforms. This paper presents our
results considering the HL’s behaviour in a real adaptive scheduling. HL metric quantifies qualitative
aspects from heterogeneity in order to provide efficient performances and lower cost to the execution
in both heterogeneous and homogeneous platforms. HL use is investigated under different perspectives:
CPU, memory, network and considering benchmarks results. A simple but effective adaptive scheduling
using HL is proposed and its results point out to performance-gains around 53% when a non-adaptive
scheduling algorithm is used. Our case studies show that the HL was efficient, flexible and easily used
for scheduling policies.

Keywords: heterogeneity, load balancing, cluster.

(Received February 22nd, 2011 / Accepted May 2nd, 2011)

1 Introduction

Heterogeneous distributed platforms allow exploring
different and specific resources according to differ-
ent demands. They extend the platform performance
through both gradual improvements and reuse of the
resources already available in the organization. How-
ever, associating different resources with diversified de-
mands implies to compute a more complex strategy for
this distribution. Heterogeneity must be used carefully
in order to improve the computing cost vs. benefit rela-
tion.

Processes scheduling is directly affected by hetero-
geneity. It is necessary to consider relevant aspects from
both platform and applications demand when the re-
sources present different features, architecture or per-

formance. On the other hand, when the platform is
homogeneous, the scheduling may encapsulate details
from devices and basic software (such as operating sys-
tems and compilers), because they present a uniform
behavior, performance and architecture. This allows
simpler and cheaper scheduling with efficiency. Other
important point is that heterogeneity can be temporal
as well, due to workload dynamical variation and node-
changes in the platform [3].

Branco et al. [3] proposed the HL (Heterogene-
ity Level) metric to quantify the platform heterogene-
ity, considering the performance’s dispersion from each
node, in relation to an average performance [3]. Their
preliminary results show the HL performance under
simulation. This paper presents our main results from
considering the HL’s metric in a real adaptive schedul-

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 18

ing for distributed platforms. Our aim in this paper is
compare the HL metric behavior when applied in an
adaptive scheduling policy on a platform with different
heterogeneity levels.

The HL behavior is investigated using two differ-
ent perspectives: changes in the hardware-resources
and with distinct benchmarks. These hardware re-
sources and benchmarks allow analyzing the HL behav-
ior according to different and real perspectives, such as:
floating-point, integer operations, memory use and net-
work consumption [6, 7, 10, 11, 12, 14, 15].

A novel adaptive scheduling algorithm has been
proposed to investigate HL impact in this context. This
algorithm is used by AMIGO (DynAMical FlexIble
SchedulinG EnvirOnment) [13] and PVM (Parallel Vir-
tual Machine) [5]. The choice by PVM is due to both
its source code structure and its tightly coupling to
AMIGO. However, the PVM choice does not imply in
generality loss, because the studies presented here are
focused on the HL impact mainly, independently if this
scheduling is done by MPI, PVM or by a distributed op-
erating system. Indeed, the novel scheduling policy and
the investigations about the use of the HL are orthogo-
nal to the message passing interface used.

The best results in our case studies show that the
adaptive scheduling using HL metric allow a real per-
formance gain around 53% for the application runtime.
The HL is simple to be used in scheduling algorithms
and presents a stable behaviour.

This paper is organized as follows. Section 2
presents some basic definitions about heterogeneity.
Section 3 presents HL metric and its behavior consider-
ing benchmarks demand. Section 4 presents the adap-
tive scheduling algorithm proposed, describing how to
use the HL metric. Section 5 describes the main results
obtained using the HL metric and Section 6 presents the
concluding remarks.

2 Heterogeneity and Homogeneity

There are different kinds of heterogeneity [3]. Initially,
it can occur considering the configuration and architec-
ture. There is configuration heterogeneity when differ-
ences of performance are observed on devices with the
same platform (hardware and basic software). Architec-
tural heterogeneity implies different devices when con-
sidering hardware and/or basic systems.

Heterogeneity can be considered as positive or neg-
ative, depending on heterogeneity contribution for the
system performance. We have a positive heterogene-
ity when devices with better performance in relation to
previous ones are added in the platform. A negative
heterogeneity (or a performance lack) can occur when

devices with worse performance are added in a platform
[3].

Time is other important feature related to hetero-
geneity. There is temporal or dynamical heterogene-
ity if the platform presents a homogeneous behavior in
determined situations and heterogeneous in other. Fac-
tors that contribute for a temporal heterogeneity are:
workload, multi-users and the resources being consid-
ered to report the heterogeneity level. Considering the
last one (resources), for example, when two nodes have
both distinct processors and the same memory quan-
tity/type, they can be heterogeneous under CPU point-
of-view and homogeneous when considering memory.
Depending on application demand, the platform can be
considered heterogeneous or homogeneous [3].

Different research works quantify the platforms het-
erogeneity degree [1, 3] [6, 14, 16]. Some models and
metrics for heterogeneous systems were proposed by
Zhang and Yang [16], in which heterogeneous com-
puting systems can be represented by a graph (M,C),
where M = M1,M2,M3,M4,M5,,Mn is consid-
ered a set of heterogeneous workstations and C is the
communication network linking the workstations (with
a homogeneous bandwidth). Aiming to quantify the
heterogeneity of a system machines without using com-
plex measurements, Zhang and Yang [16] proposed two
metrics to evaluate the relative computing power of a
set of workstations (the capacity of each workstation is
evaluated in comparison to the fastest one):

Wi(A) =
Si(A)

maxn
i=1 {Si(A)}

(1)

Where i = 1, ..., n and Si(A) represents the speed
of Mi to execute application A dedicatedly. Speed can
be defined by the number of basic operations per time
unit, for instance, and the computing power of each
workstation is represented by a relative speed. A sec-
ond metrics proposed is:

Wi(A) =
minn

i=1 {T (A,Mi)}

T (A,Mi)
(2)

Where i = 1, ..., n and T (A,Mi) is the time re-
quired to execute application A at workstation Mi.
Grosu [6] extends these metrics so that the computing
power is given by the relative speed of the workstation
in relation to the slowest one:

Wi(A) =
minn

i=1 {Si(A)}

Si(A)
(3)

Where i = 1, ..., n and Si(A) is the speed of work-
station Mi to execute application A dedicatedly, and the

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 19

computing power is given by relative speeds. Further-
more, Grosu [6] defines:

Wi(A) =
T (A,Mi)

maxn
i=1 {T (A,Mi)}

(4)

Where i = 1, ..., n and T (A,Mi) is the time it takes
to execute application A at workstation Mi.

Thus, equations 1 and 2 now act as the basis to de-
fine the computing power, considering the fastest ma-
chine as a reference point, which is renamed W f

i (f −
fast). On the other hand, equations 3 and 4 identify the
computing power based on the slowest machine, which
is represented by W s

i (s− slow). Four ways to quantify
the heterogeneity level in a system based on the value
of W are proposed in [16] and [6]. The first and second
use the standard deviation H1, which can be calculated
based on the computing powers compared to either the
fastest or the slowest workstation:

H1 =

��n
i=1(Wmed −Wi)2

n
(5)

The mean absolute deviation, called H2, also calcu-
lated based on the fastest or the slowest workstation:

H2 =

�n
i=1 |Wmed −Wi|

n
(6)

where:

Wmed =

�n
i=1 Wi

n
(7)

The values in both H1 and H2 are observed and an-
alyzed uniformly, using the average to find the standard
deviation and the mean absolute deviation. However,
this uniformity invalidates the analysis when there are
reasonable differences among the workstations comput-
ing powers, since the standard deviation cannot reflect
computer systems.

Based on this weakness of the H1 and H2 metrics,
Zhang and Yang [16] proposed a third metric, H3, eval-
uated from the fastest workstation in the computing sys-
tem:

H3 =

�n
i=1(1−W f

i (A))

n
(8)

Similarly, Grosu [6] defines H4 based on the com-
puting power of the slowest workstation in the comput-
ing system:

H4 =

�n
i=1(1−W s

i (A))

n
(9)

In H3, the computing power of the fastest worksta-
tion is equal to 1 while, in H4, the slowest machine has

a computing power value of 1. Thus, H4 represents the
difference of computing power between each machine
and the fastest machine and H3 calculates the same dif-
ference between each machine and the slowest one.

Based on his experiments, Grosu [6] states that the
metric H4 is more suitable than H3. However, the
case studies presented in [3] demonstrate the fallacy
of that statement in some situations, because the met-
rics present contradictory behaviour when evaluating
the same platform, in different cases.

Branco et al. [3] propose the HL (Heterogeneity
Level) metric to eliminate these discrepancies. HL con-
siders a hypothetic (not real) standard node, represent-
ing the nodes average performance [3]. This metric will
be detailed in next section due to its importance for this
work.

3 The HL Metric

Platform heterogeneity can be quantified considering
different perspectives, such as: architectural aspects,
operating systems or resources performance [15]. In
this sense, Branco et al. proposed the HL metric [3] to
quantify the heterogeneity, using a virtual node (called
standard node), which represents the average perfor-
mance in the platform. The dispersion around this stan-
dard node allows quantifying the platform heterogene-
ity level, in a similar way to the works presented in
[6] and [16] that use respectively the worst and the
best node as standard node. The main difference be-
tween HL metric and those two is that HL has a uni-
form behaviour when quantifying distinct heterogene-
ity levels and also both the positive and the negative
heterogeneities. HL quantifies the platform heterogene-
ity level through equation 10, where n represents the
amount of nodes in the platform, Xi is the nodei perfor-
mance and X is the virtual standard node performance.

HL =

�n
i=1

�
�Xi −X

�
�

n ∗X
(10)

The preliminaries results using the HL [3] consid-
ered a general parameter called "speed", in order to
qualify application demands. Indeed, Branco et al. con-
sidered "speed" as a generic value, which should be eas-
ily instantiated later at real parameters, such as: MIPS,
MFLOPS, runtime, RAM amount or other.

Different experiments were conducted by Branco et
al. [3] to simulate the HL behaviour when including
new nodes in a heterogeneous platform with just three
nodes with "speeds" 10, 100 and 1000.

Figure 1 show the HL behaviour when nodes iden-
tical to the fastest one are added. The heterogeneity de-
gree behavior is coherent, since as similar high-speed

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 20

nodes are being added, the system heterogeneity level
drops and stabilizes close to zero. Few nodes with high-
speeds change the platform status quickly for homoge-
neous. This situation could be represented by the met-
rics proposed by Zhang (Zhang & Yang) as well; how-
ever, it is not properly represented by Grosu’s metrics
[6], due to standard node, based on the slowest work-
station.

Figure 1: Behavior of the heterogeneity degree when nodes identical
to the system’s fastest node are added (initial speeds of 10, 100 and
1000)

Figure 2 shows the HL behaviour when nodes iden-
tical to the slowest one are added. The heterogeneity
level rises at a first moment, because more nodes with
"speed" 10 are required to reach the speed of the fastest
node. When they reach this threshold, the heterogene-
ity level falls near to zero, where it must stabilize. The
HL metric evaluations done by Branco et al. [3] were
not concerned about static or dynamic behaviour of the
environment being used for the experiments, since the
"speed" parameter encapsulated this question.

However, metrics based on static data, such as hard-
ware features, offer just a partial view of both perfor-
mance and heterogeneity. They are not able to repre-
sent usual dynamic changes in the platforms that make
them temporarily heterogeneous. In this sense, dynamic
metrics, such as runtime, can point out the heterogene-
ity level on-the-fly and according to user point-of-view
[12]. Runtime encapsulates basic details from hardware
and software, grouping them in a common point: to of-
fer better performance (considering time) to end-user
applications. Indeed, if used properly, time allows a
performance comparison while encapsulating architec-
ture details.

We develop initially two new experiments with HL
metric to show these perspectives. For the first one

Figure 2: Behavior of the heterogeneity degree when nodes identical
to the system’s slowest node are added (initial speeds of 10, 100 and
1000)

we use real and static hardware features to evalu-
ate the HL metric. For the second one we use dy-
namic benchmarks results to determine the heterogene-
ity. Both experiments consider the same platform. The
hardware features considered for the first analysis are:
CPU frequency, cache amount, RAM amount, swap-
memory amount and network peak throughput (see Ta-
ble 1). The second analysis considers six different
open-source benchmarks: (Whetstone, Dhrystone and
Linpack), memory (Stream and Cachebench) and net-
work (Netperf). Table 2 points out the main features
evaluated in each benchmark and their respective met-
rics [4, 7, 9, 10, 11, 14]. These benchmarks were cho-
sen because they are: (1) meet the specific-demands
planned for our experiments, (2) open-source and (3)
free.

The experiments were executed on a cluster with
5 nodes, all using GNU/Linux, distribution OpenSuse
10.0, 100Mbits ethernet network and gcc compiler. Ta-
ble 1 contains the HL resulting from each hardware fea-
ture analyzed, where it is possible to observe a stable
HL behavior. This platform can be viewed as homoge-
neous if the network maximum throughput is consid-
ered and as heterogeneous one if the CPU performance
is taken account. The demand generated by applica-
tion should determine which metric must be used to
reach effectiveness when using the heterogeneity level
with these data. This implies in a previous study of
the demand and usually is associated with monitoring
software tools, which automates this process and helps
managers to characterize the demand in a correct way
[8].

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 21

Table 1: HL results when evaluated on a five nodes cluster and ac-
cording to hardware features such as: CPU frequency, cache amount,
RAM amount, swap amount and network peak throughput.

Features Node1 Node2 Node3 Node4 Node5 HL

CPU 400.91 451.05 1200.07 1666.73 2017.99 0.50
(MHz)
Cache 512 512 64 256 512 0.45
(KB)
RAM 192 128 256 256 256 0.21
(MB)
Swap 196 243 415 512 256 0.34
(MB)
Network 100 100 100 100 100 0.00
(Mbps)

It can be observed through Table 3 that HL metric
is also efficient to represent the platform heterogeneity
and it presents a stable behaviour according to bench-
marks results. The values showed in the Table 3 repre-
sent the average of 30 executions.

TheHL values in Tables 2 and 3 point out some pos-
sible discrepancies that occur when considering hetero-
geneity in a distributed platform. An example is the HL
value obtained from CPU feature (0.50) and the Whet-
stone result (0.74), because both consider CPU perfor-
mance. In these cases, the results obtained from the
benchmark were considered more efficient to represent
the platform heterogeneity, since they intend to indicate
the real performance for the user.

This difference can also be observed with mem-
ory and network. Network is a critical case, since the
platform is homogeneous (HL=0.00) when consider-
ing peak performance (100Mbps). However, Netperf
benchmark shows that when different nodes send mes-
sages to (or receive from) node 5, the platform pre-
sented the second major HL result (0.67) and thus, can
be considered heterogeneous. Again, in these cases, the
benchmark results should be used because they repre-
sent the performance expected by final user. In these
cases, a simple view considering just one hardware fea-
ture is not a better choice to estimate the heterogeneity
level.

4 An Adaptive Scheduling As/Hl

An adaptive scheduling based on the heterogeneity level
(or As/Hl) was developed in this work to investigate the
HL metric impact in a real scenario, considering the
end-user perspective. The As/Hl is adaptive because it
changes dynamically the scheduling algorithm accord-
ing to the HL metric.

AMIGO (DynAMical FlexIble SchedulinG Envi-

Table 2: Benchmarks used to evaluate the HL metric behaviour.

Category Benchmark Demand Metric

Whetstone Floating-Point Execution Time
simple execution time

arithmetic, and dhrystones;
Dhrystone strings, performance in

logical and relation to Vax
CPU access to the 11/780 for one

memory benchmark iter
linear eq FLOPS and

Linpack systems execution time
float/double
in arrays
memory throughput and

Stream throughput avg execution
Memory time

accesses to throughput
Cachebench memory and

to cache
latency, throughput and

Network Netperf TCP/UDP avg execution
throughput time

rOnment) [13] and PVM (Parallel Virtual Machine) [5]
were used to insert the HLmetric in the As/Hl. AMIGO
allows grouping specific scheduling policies according
to different demands. The choice by PVM is due to
its source code structure and because it is tightly cou-
pled to AMIGO. However, it is important to note that
the choice by AMIGO/PVM does not cause general-
ity loss, because this policy could be applied in other
contexts, such as: MPI environment, operating system
or directly inside parallel application code. The As/Hl
determines which scheduling algorithm must be used
considering the platform heterogeneity. The aim is min-
imizing scheduling costs and at the same time maximiz-
ing its benefits.

Table 3: HL results when evaluated on a five nodes cluster and ac-
cording to six distinct benchmarks.

Benchmark Node1 Node2 Node3 Node4 Node5 HL

Whetstone 1119.0 995.4 265.0 190.4 1265.0 0.74
(s)

Dhrystone 3.2 2.8 1.0 0.7 0.8 0.49
(s)

Linpack 0.020 0.018 0.006 0.004 0.005 0.52
(s)

Stream 0.31 0.30 0.07 0.06 0.04 0.58
(s)

Cachebench 984.2 1105.0 3509.6 5054.5 5400.3 0.53
(Mb/s)
Netperf 64.9 5753.3 5559.5 15988.2 x 0.67
(Mb/s)

AMIGO is basically composed by an upper and a

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 22

lower layer. Upper layer is responsible by the config-
uration, while lower layer is responsible by schedul-
ing policies, AMIGOD (AMIGO Daemon), message-
passing environment (in this work instantiated by PVM)
and parallel applications [13].

AMIGO has scheduling policies for memory-
bound, network-bound and CPU bound applications.
DPWP (Dynamical Policy Without Preemption) is one
of them, which presents features such as: dynamic (de-
cides the scheduling at runtime), specific to CPU-bound
applications and does not consider preemption [2]. The
scheduling done by DPWP aims to balance new work-
loads considering the existent nodes load. It tries to
normalize this workload using a relative-performance
in relation to the whole platform. DPWP normalizes
the ready-processes in the ready-queue to determine the
target node.

AMIGO acts just when the message-passing en-
vironment needs to schedule new processes on the
platform. Figure 3(a) shows the steps followed by
the original PVM in this case. An application re-
quests the scheduling from pvm_spawn(), which for-
wards the request to local PVMD. The local PVMD,
running tm_spawn(), create a list contending nodes
that will receive the new processes using by default a
round-robin policy. The functions assign_tasks and
dm_exec are called later to create and to start these pro-
cesses, respectively.

To interact with AMIGO, tm_spawn() routine
was modified (Figure 3(b)), where processes selec-
tion is always requested to AMIGOD through the
GetHostsFromAMIGOD(). This request will be
attended by an AMIGO’s scheduling policy, indepen-
dently if round-robin policy existing in PVM could
present better results or not, according to used plat-
form. The HL metric was inserted in this scenario try-
ing to solve this problem by analyzing the platform het-
erogeneity and creating a simple but efficient adaptive
scheduling algorithm in this point.

AMIGO is requested to give a nodes-relation ac-
cording to DPWP policy when the platform is hetero-
geneous; when it is homogeneous, the request is not
sent to AMIGO and the original round-robin policy is
used to determine the nodes target to the scheduling.
Figure 3(c) shows the algorithm basic steps, highlight-
ing just the tm_spawn() routine. This adaptive algo-
rithm is based on a conditional structure comparing the
HL value returned from eval_HL() with a threshold,
called standard_HL. The correct choice of this value
is a complex question and needs to be investigated in a
more detailed sense. Unfortunately, this study does not
belong to the scope of this paper. The standard_HL

Figure 3: Steps followed by (a) original PVM, (b) PVM/AMIGO and
(c) As/Hl algorithm in order to schedule new processes.

must be defined by the system manager considering the
expected demand, used platform and objectives. The
standard_HL was empirically fixed as 0.01 in this pa-
per, as explained in the next section.

The HL is evaluated by the eval_HL() consider-
ing the nodes performance. The activities conducted by
eval_HL() are: gets the computing performance from
each node, evaluates the HL through equation 10 and
returns the HL value.

The node performance can be determined from dif-
ferent ways. In this paper, they were instantiated
through benchmarks previously executed.

5 Experiments and Results with As/Hl

The objective of the experiments with the As/Hl is to
analyze the HL efficiency when it is applied in schedul-
ing policies on distributed platforms. To reach this ob-
jective, it was developed an experimental study using a
parallel application responsible to solve linear systems,
based on Gauss-Jacobi iterative method. Gauss-Jacobi
application was chosen because it is CPU-bound appli-
cation, representative for a large number of HPC pro-
grams. The version executed in this work is compound
by a master code responsible by dynamically generate
slaves, these ones able to solve a variable sub-group
from the linear system. The new slave processes gener-
ation is made on-the-fly by master processes. The mas-
ter code evaluates the linear system convergence and,
before starts a new iteration, it decides either to stop or

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 23

not the execution.
Experiments were done in a Beowulf cluster with

ten nodes, all of them with: Intel Pentium4 Processor
(64bits and 3.4GHz), RAM with 4GBytes, a Gigabit
Ethernet network and GNU/Linux operating system.

This cluster is a homogeneous platform. Fixed-and-
extra workloads were inserted into some nodes, turn-
ing this platform a temporally-heterogeneous one with
three different levels: totally homogeneous, partially
heterogeneous and totally heterogeneous. The syn-
thetic extra workloads were generated using the Lin-
pack, Dhrystone and Whetstone benchmarks. The ho-
mogeneous scenario is composed by ten nodes without
any extra workload. In the partially heterogeneous sce-
nario the nodes are grouped into five distinct pairs with
workload ranging from 0% to 40% in relation to CPU
utilization. For the totally heterogeneous scenario the
nodes are also grouped in pairs, being generated for
them extra workloads ranging from 0% to 80% in re-
lation to the CPU utilization. Benchmarks used to cre-
ate the two heterogeneous-scenarios affected the plat-
form performance in a fixed and constant way, during
the whole experiment.

The Linpack benchmark was used to evaluate the
node performance in these three platforms. It was cho-
sen because it has features close to the parallel appli-
cation used: operations with floating-point vectors to
solve linear systems. The results obtained from the Lin-
pack were applied to equation 10 in order to evaluate
the HL metric. Using Linpack to establish the hetero-
geneity in platform allows focusing on CPU features,
majorly those related to FPU. Table 4 presents the re-
sults when using Linpack andHL for the three scenarios
discussed.

Table 4: Results for Linpack benchmark and HL metric.

Scenarios Used
Totally Partially Totally

Homogeneous Heterogeneous Heterogeneous
HL = 0.0002 HL = 0.22 HL = 0.57

Nodes Extra Time Extra Time Extra Time
Load (ms) Load (ms) Load (ms)

1 0% 0.506 0% 0.505 0% 0.505
2 0% 0.504 0% 0.504 0% 0.504
3 0% 0.505 20% 0.684 20% 0.684
4 0% 0.504 20% 0.684 20% 0.684
5 0% 0.505 40% 1.074 40% 1.073
6 0% 0.504 40% 1.072 40% 1.072
7 0% 0.505 10% 0.585 60% 1.965
8 0% 0.504 10% 0.585 60% 1.964
9 0% 0.505 30% 0.907 80% 4.944
10 0% 0.504 30% 0.907 80% 4.940

The threshold used by HL to determine if the

platform is either homogeneous or heterogeneous
(standard_HL) was arbitrarily fixed in 0.1, due to
HL results obtained from the three platforms. This HL
value allows separating the totally homogeneous plat-
form (HL=0.0002) from other two possibilities: par-
tially and totally heterogeneous with HL 0.22 and 0.57,
respectively.

In a first execution, the Gauss-Jacobi application
was scheduled using the As/Hl algorithm on the three
platforms and according standard_HL value. This
means that the policy used was the round-robin when
executing the homogeneous scenario and the DPWP
when executing on the partially and totally heteroge-
neous platforms.

In order to compare the scheduling done for each
platform, we repeated the executions, changing the
policies used. In these complementary executions the
policy DPWP was chosen when executing the homoge-
neous scenario and the round-robin policy was the op-
tion when executing both the partially and totally het-
erogeneous platforms.

Table 5 presents the runtime average in sec-
onds for thirty Gauss-Jacobi parallel application
executions, using the round-robin/PVM and the
DPWP/AMIGO/PVM scheduling policies, and consid-
ering platforms: homogeneous, partially heterogeneous
and totally heterogeneous. The values between paren-
theses indicate the complementary execution.

Table 5: Gauss-Jacobi parallel application runtime using round-robin
and DPWP policies on three different platforms. Values between
parentheses indicate the complementary executions to compare the
correct scheduling done in each platform by As/Hl.

Schedule Totally Partially Totally
Policy Homogeneous Heterogeneous Heterogeneous

Round- 5,1s (17,6s) (28,6s)
Robin
DPWP (7,8s) 11,6s 23,7s

The round-robin policy in the homogeneous sce-
nario presents a better performance when compared to
the results from the DPWP. These results point-out a
53% performance loss, in this case. The DPWP spent
more time to find target nodes to receive new pro-
cesses, while the original round-robin policy distribute
these same processes equally among the nodes, doing
scheduling in a simple and efficient way. Since the plat-
form used is homogeneous and there were not external
interferences from other applications, concurring to the
available resources, the DPWP is unnecessary and inef-
ficient. In this case the HL metric is capable to prevent

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 24

the use of a higher computing cost scheduling policy
(such as the DPWP).

The DPWP policy is more efficient than the round-
robin policy when considering the partially heteroge-
neous platform. In this case the performance gain was
around 51.7%. This is due to the heterogeneity pre-
sented in the platform, fact considered only by the
DPWP. Again, the HL metric can choose properly the
schedule policy.

The DPWP obtains a better performance when com-
pared to the round-robin in the heterogeneous scenario,
as expected. However, the difference between both exe-
cutions was lower, with a DPWP performance gain just
around 20.7%. This smaller difference, when compar-
ing to partially heterogeneous platform, is due to the
overload of 60% and 80% in four nodes available for
the experiments. These four nodes are near to satura-
tion and this causes a higher impact in the DPWP per-
formance, due to its costs. In this scenario DPWP spent
more time to find the correct nodes to use and how many
processes each node should receive, when comparing to
the round-robin policy.

6 Concluding Remarks

This work investigates the HL metric behaviour in real
scenarios. TheHLmetric [3] was investigated consider-
ing static and dynamic perspectives and it was also used
in the As/Hl algorithm. The HL metric presented excel-
lent behaviors in our case studies, pointing out the plat-
form heterogeneity for both static features (e.g.: CPU
frequency, memory quantity or network) and dynami-
cal features, these obtained from benchmarks.

The results obtained from the experiments con-
ducted with As/Hl algorithm, show performance loss
to 53% when using the wrong scheduling policy in re-
lation to the platform heterogeneity level. They show
also performance gains to 51.7% when using the correct
scheduling policy. The investigations performed in this
work confirm that the correct use of the heterogeneity
level is essential to improve the platform performance,
therefore, producing better benefits with lower costs for
the end-user. They also show that the HL is efficient to
represent the heterogeneity degree, flexible when con-
sidering different heterogeneity perspectives and easy
to be used in the processes scheduling context.

Future works include studying theHLmetric thresh-
olds to indicate if a platform must be handled either
as homogeneous or heterogeneous, also under differ-
ent perspectives such as: CPU, memory, network and
a mixing of them.

7 Acknowledgments

The authors would like to thank CAPES, CNPq and
FAPESP, Brazilian funding agencies, for the financial
support.

References

[1] Al-Jaroodi, J., Mohamed, N., Hong, J., and Swan-
son, D. Modeling parallel applications perfor-
mance on heterogeneous systems. In Int. Paral-
lel and Distributed Processing Symposium, pages
160.2–, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[2] Araujo, A. P. F., Santana, M., Santana, R. H. C.,
and Souza, P. S. L. Dpwp - a new load balanc-
ing algorithm. In 5th Int. Conference on Infor-
mation Systems Analysis and Synthesis - ISAS’99,
Orlando, U.S.A., 1999.

[3] Branco, K., Santana, M., and Santana, R. H. C. A
novel metric for checking levels of heterogeneity
in distributed computer systems. In Advances in
Intelligent System and Robotic. IOS Press, 2003.

[4] Curnow, H. J. and Wichmann, B. A. A syn-
thetic benchmark. Computer Journal, 19(1):43–
49, 1976.

[5] Geist, G. A., Beguelin, A., Dongarra, J. J., Jiang,
W., Manchek, R., and Sunderam, R. Pvm 3 users
guide and reference manual. Oak National Lab.,
1994.

[6] Grosu, D. Some performance metrics for hetero-
geneous distributed systems. In Proceedings of
PDPTA’96. Las Vegas, 1996.

[7] Linpack. www.math.utah.edu/software/
linpack.html#documentation, Last access:
02/02/2011.

[8] Massie, Matthew, L., Chun, Brent, N., and Culler.
The ganglia distributed monitoring system: de-
sign, implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[9] McCalpin, J. D. Memory bandwidth and machine
balance in current high performance computers.
IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, 1995.

[10] Mucci, P. J. and London, K. The cachebench re-
port, 1998.

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

Paulo S. L. Souza et al. Applying the Heterogeneity Level Metric in a Distributed Platform 25

[11] Netperf. www.netperf.org/netperf/NetperfPage.html
Last access: 02/02/2011.

[12] Petterson, D. A. Computer organization and
design: the hardware/software interface. Else-
vier/Morgan Kaufmann, third edition, 2005.

[13] Souza, P. S. L., Santana, M., and Santana, R. H. C.
Amigo - a dynamical flexible scheduling environ-
ment. In 5th International Conference on Infor-
mation Systems Analysis and Synthesis - ISAS’99,
1999.

[14] Weicker, R. P. Dhrystone: a synthetic systems
programming benchmark. ACM Computing Sur-
veys, 27:1013 – 1030, 1984.

[15] Zhang, Z. and Seidel, S. Benchmark measure-
ments of current upc platforms. In 19th IEEE In-
ternational on Parallel and Distributed Process-
ing Symposium, 2005.

[16] Zhang, Z. and Yan, Y. Benchmark measurements
of current upc platforms. In 7th IEEE Symposium
on Parallel and Distributed Proceeding, pages
25–34, 1995.

INFOCOMP, v. 10, no. 2, p. 17-25, June of 2011

