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Abstract. Let � be a positive integer, and� be a graph with nonnegative integer weights on edges. Then
a generalized vertex-coloring, called an �-vertex-coloring of �, is an assignment of colors to the vertices
in such a way that any two vertices � and � get different colors if the distance between � and � in � is at
most �. A coloring is optimal if it uses minimum number of distinct colors. The �-vertex-coloringproblem
is to find an optimal �-vertex-coloring of a graph �. In this paper we present an ���� � ������ time
algorithm to find an �-vertex-coloring of a tree � , where � is the maximum degree of � . The algorithm
takes ����� time if both � and � are bounded integers. We compute the upper bound of colors to be

� � � ������������
����� . We also present an ���� � ������ time algorithm for solving the �-edge-coloring

problem of trees. If both � and � are bounded integers, this algorithm also takes ����� time.
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1 Introduction

A vertex coloring of a graph� is an assignment of col-
ors to the vertices in such a way that any adjacent ver-
tices get different colors [14]. Let � be a positive inte-
ger, and� be a graph with nonnegative integer weights
on edges. Then an �-vertex-coloring of �, is an assign-
ment of colors to the vertices in such a way that any two
vertices � and � get different colors if dist��� �� � �,
where ������� �� denotes the distance between � and �
in �, that is the length of the shortest path between �
and � in �. Clearly an ordinary vertex coloring is a
�-vertex-coloring of a graph when weight of each edge
is one. The chromatic number ���� of a graph � is
the minimum number of colors needed to color the ver-

tices of�. The �-chromatic-number or the �-chromatic-
index ����� of a graph � is the minimum number of
distinct colors needed to perform an �-vertex-coloring
of �. The �-vertex-coloring problem or the distance-
vertex-coloring problem is to compute the �-chromatic-
index ����� of a given graph�. For example, Figure 1
depicts a 4-vertex-coloring of a graph� using four col-
ors, where a number next to an edge is its weight and
a number next to a vertex is its color. One can easily
observe that ����� � � for � in Figure 1.

Vertex coloring has diverse applications in problems
such as time tabling and scheduling, frequency assign-
ment for spectrum, register allocation in compiler, pat-
tern matching, analysis of biological and archeological
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Figure 1: A 4-vertex-coloring of a graph with four colors

data, etc. In a university we may want to assign time
slots for final examinations so that two courses with a
common student have different time slots. The mini-
mum number of slots needed to schedule examinations
without conflict is the chromatic number of the graph in
which two courses are adjacent if they have a common
student. Compiler optimization is the canonical appli-
cation for coloring, where we seek to schedule the use
of a finite numbers of registers. In a program fragment
to be optimized, each variable has a range of times dur-
ing which its value must be kept intact, in particular,
after it is initialized and before its final use. Any two
variables whose life spans intersect cannot be associ-
ated with the same register. Edge between any two ver-
tices representing variables indicates that the variable
life spans intersect. A coloring of the vertices of this
graph assigns the variables to classes such that variables
with the same color do not clash and so can be assigned
to the same register.

Since the ordinary vertex coloring problem is NP-
hard [6], the �-vertex-coloring problem is NP-hard in
general [15]. So it is very unlikely that there exists an
efficient algorithm to solve the �-vertex-coloring prob-
lem for general graphs. However, Zhou et al. presented

an ���� � ��� � ���
�������������

� time algorithm to
solve the �-vertex-coloring problem for partial �-trees,
that is, the class of graphs of treewidth bounded by a
fixed constant � [15]. Here a partial �-tree has an �-
vertex-coloring: � � �, where � is a set of colors
and ��� � � and � is the number of vertices in �.
If both � and � are bounded integers, then their algo-
rithm runs in polynomial time. Note that a tree is a par-
tial 1-tree, whereas a series-parallel graph is a partial
2-tree. Thus puttting � � � and � in their algorithm,
we obtain an �-vertex-coloring algorithm for trees hav-

ing time complexity of ���� � ��� � ���
����

� and
an �-vertex-coloring algorithm for series-parallel graphs

having time complexity of ���� � ��� � ���
�����

� re-
spectively. There is a polynomial-time 2-approximation
algorithm for the �-vertex-coloring problem on planar
graphs [1]. The algorithm for �-vertex-coloring of a
tree � , presented in [9], uses a greedy strategy to as-
sign colors to the nodes in a post order fashion and runs

in ����������
��� � time, where � is the maximum de-

gree of � . Though this algorithm runs in linear time
if both � and � are bounded integers, it is not correct
and does not guarantee an optimal solution. Kashem
et. al. showed that the �-vertex-coloring problem for
series-parallel graphs can be solved in ���� � ���� �
���������� time [10]. The �-vertex-coloring problem
on a weighted graph � � ����� can be easily reduced
to the ordinary vertex coloring problem on a new non-
weighted graph �� � ������ such that ��� �� � �� for
any two vertices � and � in � if and only if dist��� �� �
� in� [15]. Therefore, one may expect that the �-vertex-
coloring problem for a tree can be solved by applying a
linear-time algorithm to solve an ordinary vertex color-
ing problem for a tree [4]. However, it is not the case
because �� obtained for a tree is not always a tree.
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Figure 2: A 3-edge-coloring of a tree with five colors.

An edge version of the �-vertex-coloring problem
has been studied for partial �-trees and planar graphs.
An ordinary edge-coloring of a graph � is to color all
edges of � so that any adjacent edges have different
colors. For two edges � � ��� �� and �

�

� ��
�

� �
�

�, the
distance between � and �

�

in � is defined as follows,
where ������ �� �� �� denotes the minimum of �� �� �
and �.

������� �
�

� = min{dist(�� �
�

), dist(�� �
�

), dist(�� �
�

),
dist(�� �

�

)}.

For a given nonnegative integer �, we wish to color
all edges of � so that any two edges � and �

�

with
dist(�� �

�

� � � have different colors. Such a coloring is
called an �-edge-coloring or a distance-edge-coloring
of �. Thus a �-edge-coloring is merely an ordinary

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

���������������������������������������������������� ��������������������������������������������������

������������������������������������������



edge-coloring, and a �-edge-coloring is a “strong edge-
coloring” [11, 13]. The �-chromatic-index �

�

���� of a
graph � is the minimum number of distinct colors re-
quired for an �-edge-coloring of�. The �-edge-coloring
problem or the distance-edge-coloring problem is to
compute the �-chromatic-index �

�

���� of a given graph
�. For example, Figure 2 depicts a 3-edge-coloring of
a tree using five colors ��� ��� ��� ��, and ��. One can
easily observe that �

�

���� � � for � in Figure 2.

The edge-coloring problem arises in many appli-
cations, including various scheduling and partitioning
problems [5]. Since the edge-coloring problem is NP-
hard [7], the �-edge-coloring problem is NP-hard in
general [8] and hence it is very unlikely that the �-edge-
coloring problem can be efficiently solved for gen-
eral graphs. However, the following results have been
known. First, the ordinary edge-coloring problem can
be solved in linear time for partial �-trees [16]. Sec-
ond, the �-edge-coloring problem can be solved for par-

tial �-trees in ����� � ���
��������

� time [13]. This
algorithm takes linear time if � is a bounded integer.
Putting � � � and � � � in their algorithm, we ob-
tain a �-edge-coloring algorithm for trees having time

complexity of ����� � ���
�

� and a �-edge-coloring
algorithm for series-parallel graphs having time com-

plexity of ����� � ���
��

� respectively. Third, there

is an ����� � ���
�������������

� time exact algorithm
that determines whether a partial �-tree has an �-edge-
coloring with a given number of � colors [8]. This al-
gorithm takes linear time if both �� � are bounded in-
tegers. Putting � � � in their algorithm, we obtain

an ����� � ���
��������

� time exact algorithm that de-
termines whether a tree has an �-edge-coloring with a
given number of � colors. Putting � � � in their algo-

rithm, we obtain an���������
��������

� time exact al-
gorithm that determines whether a series-parallel graph
has an �-edge-coloringwith a given number of � colors.
There is a polynomial-time �-approximation algorithm
for the �-edge-coloring problem on planar graphs [8].
The �-edge-coloring problem for a graph � can be re-
duced to an ordinary vertex coloring problem for a new
graph �

�

obtained from � by some operations. How-
ever, �

�

is not always a partial �-tree or a planar graph
even if � is a partial �-tree or a planar graph.

In this paper we give an ���� � ������ time algo-
rithm to find an �-vertex-coloring of a tree. The algo-
rithm runs in ����� time if both � and � are bounded
integers. We compute the upper bound of colors to be

��� ������������
����� . We also present an���� �������

time algorithm for solving the �-edge-coloring problem
of trees. If both � and � are bounded integers, then this

algorithm also takes ����� time. Early versions of this
paper have been presented at [3] and [2].

The rest of the paper is organized as follows. Sec-
tion 2 gives some definitions and preliminary ideas. In
Section 3, we present an ����� time algorithm for �-
vertex-coloring of trees. In Section 4, we present an
����� time algorithm for �-edge-coloring of trees. Fi-
nally, Section 5 is a conclusion.

2 Preliminaries

In this section we define several graph theoretical terms
used in this paper and prove that the constraint graph
for the �-vertex-coloring of a tree is a chordal graph.

Let ������ be a connected simple graph with ver-
tex set � ��� and edge set ����. We denote by � the
number of vertices in � and by � the number of edges
in �. Thus � � �� ������ � ������. An edge joining
vertices �� � is denoted by ��� ��. The degree of a vertex
� in a graph�, denoted by ����, is the number of edges
incident to � in �. The maximum degree of � is de-
noted by �. We call a graph a weighted graph if each
of the edges has a positive weight associated with it.
Now if � is the set of all positive integers then we can
define the weight function for the edges as � � � � � .
A walk, ��� ��� ��� � � � � ����� ��� �� , in a graph � is an
alternating sequence of vertices and edges of �, be-
ginning and ending with a vertex, in which each edge
is incident to two vertices immediately preceding and
following it. If the vertices ��� ��� � � � � �� are distinct
(except possibly ��� ��), then the walk is called a path
and usually denoted either by the sequence of vertices
��� � � � � �� or by the sequence of edges ��� �� � � � � ��.
The length of a path is � which is one less than the num-
ber of vertices on the path. A path or walk is closed if
�� � ��. A closed path containing at least one edge is
called a cycle. A clique in a graph is a set of pairwise
adjacent vertices. The clique number of a graph �, de-
noted by ����, is the maximum size of a set of pairwise
adjacent vertices (clique) in �. By ������, we denote
the set of vertices adjacent to �� in �.

A free tree is a connected acyclic undirected graph.
We often omit the term “free" when we say that a graph
is a tree. A rooted tree is a free tree in which one of the
nodes is distinguished from others. This distinguished
node is called the root that is drawn generally at the
top. If a rooted tree is regarded as a directed graph in
which each edge is directed from top to bottom, then
every node � other than the root is connected by an edge
from some other node �, called the parent of �. We also
call � a child of �. A leaf is a node of a tree that has
no child. An internal node is a node that has one or
more children. Every node of a tree is either a leaf or

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

�� ���������������

������������������������������������������



an internal node. Consider a node � in a rooted tree �
with root �. Any node � on the unique path from � to �
is called an ancestor of �. If � is an ancestor of �, then
� is a descendent of �. The subtree rooted at � is the
tree induced by descendents of �. The depth of a node
� in a tree is the length of the path from the root to �.

Let � be a positive integer, � be a set of colors and
the number of colors used by an �-vertex-coloring of a
tree � is denoted by ��. Then a function � � � � �
is an �-vertex-coloring of � if ���� �� ���� for any
two vertices � and � such that dist��� �� � �. Clearly
���� � � ��. We can assume without loss of general-
ity that the consecutive integers �� �� � � � ��� are used
as the colors. Then � is the color set having colors
�� �� � � � ���. The greedy coloring relative to a vertex
ordering ��� ��� � � � �� of � ��� is obtained by coloring
vertices in the order ��� ��� � � � �� assigning to �� the
smallest indexed color not already used on its lower-
indexed neighbors.

A chord of a cycle � is an edge, not in �, whose
end-points lie in �. A chordless cycle in a graph � is
a cycle of length at least four in � that has no chord
(that is the cycle is an induced subgraph). A graph �
is chordal if it is simple and has no chordless cycle.
A graph � is perfect if the chromatic number of every
induced subgraph equals the size of the largest clique
of that subgraph, i.e. ���� � ���� for every induced
subgraph� � �.

A vertex of a graph � is simplicial if its neighbor-
hood in � is a clique. A simplicial elimination order-
ing is an ordering ��� � � � � �� for deletion of vertices so
that each vertex �� is a simplicial vertex of the remain-
ing graph induced by ���� � � � ���. These orderings are
called perfect elimination ordering. We say that the ver-
tex ordering � � ���� ��� � � � � ��� is a maximum car-
dinality ordering if for every � � ��� �� � � � � � � ��
and � � ��� � � � � ��, ������� � ������ � � � � ���� �
������� � ������ � � � � ����. In Figure 3 �� �� �� �� �� �
is a maximum cardinality ordering of the vertices of �.

�

�

��

��
�

Figure 3: Maximum cardinality ordering.

We call �� � ���� ��� the constraint graph for the
�-vertex-coloring of a tree � � �����, if �� � � and
for any two vertices � and � with dist��� �� � � in � ,

there is an edge ��� �� � ��. Let � �� ��� ��� � � � � ��,
�� � be a cycle in �� and �� �� ��� ����� � � � � �� �
be a path in� such that the path between �� and �� in �
also includes the vertices ���� through ���� in the same
order. Then we call �� an original path. If �� is not a
subpath of any original path in�, we call �� amaximal
original path in �. For every original path �� ��
��� ����� � � � � �� � in � �� ��� ��� � � � � ��� �� �, we
term the path � ����� ���� � � � � �� � as the return path
��. We have the following lemma and theorem.

Lemma 2.1 The �-vertex-coloring problem for a tree �
reduces to the ordinary vertex coloring problem for the
constraint graph��.

Theorem 2.2 The constraint graph�� for the �-vertex-
coloring of a tree � is a chordal graph.

Proof. Let � �� ��� ��� � � � ��� �� � be a cycle in
��, �� be a maximal original path and �� be its return
path in �. Without any loss of generality we can order
the vertices in � so that �� �� ��� ��� � � � � �� � and
�� �� ����� ����� � � � � �� �. In the following figures
the vertices of �� are shown as shaded circles. If we
can show that there exists at least one chord in �, we
shall be able to conclude that as long as the length of
� remains greater than three, a chord will be found and
the lengths of the newly formed cycles will be less than
the original cycle. Eventually there will be no chord-
less cycle of length greater than three. According to the
definition of maximal original path, �� has at least two
vertices. We have the following cases to consider.

Case 1: �� has exactly two vertices and �� has at
least two vertices.
In this case �� �� ��� �� � and �� �� ��� � � � � �� �.
There are two possible subcases.

� �

�

� �

��
��

��

�� ����

��

��

��

Figure 4: The original path does not have a common subpath

Case 1a: The original path between �� and �� does
not have any common subpath with the original path
between �� and �� (see Figure 4). If the original path
between �� and �� shares only one vertex in common
with the original path between �� and ��� � will be 0

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

���������������������������������������������������� ��������������������������������������������������

������������������������������������������



and that will not affect the following proof. Now if �
is a chordless cycle, there could be no edges between
�� and �� or between �� and ��. So the following two
conditions must hold.

� � � � � � � (1)

� � � � � � � (2)

But for the presence of edges (��� ��) and (��� ��) in �,

� � � � � � � (3)

� � � � � � � (4)

From equation 1 and 4 we get � � �. But from equa-
tion 2 and 3 we get � � �. So the conditions contradict.
So either dist���� ��� � � or dist���� ��� � �. Hence
there exists at least one chord in �.

�

�

�� �

��
��

��

��
����

��

�� ��

Figure 5: The common subpath lies between the vertices of the same
edge

Case 1b: The original path between �� and ��

shares a common subpath � ��� � � � � �� � with the
original path between �� and �� (see Figure 5). If any
vertex in the return path �� lies in the common subpath,
then it eventually falls in the actual path between �� and
�� resulting the existence of two chords between that
vertex and �� and ��. So let no vertex in �� lies in the
original path between �� and ��. Now, as the original
path between �� and �� has some part lying in ��, and
no vertices of �� are allowed to be lying on the common
subpath either, there exists at least one edge ��� � �����
in �� such that the original path between �� and ����

includes the common subpath.
To be chordless, � cannot have any edge either be-

tween �� and ���� or between �� and �� . So at least the
following two conditions must hold.

� � � � � � � (5)

� � � � � � � (6)

But for the presence of edges (��� ��) and (�� � ����) in
�,

� � � � � � � (7)

� � � � � � � (8)

From equation 5 and 7 we get � � �. But from equa-
tion 6 and 8 we get � � �. So the conditions contradict.
So either dist���� ��� � � or dist���� ����� � �. Hence
there exists at least one chord in �.

Case 2: �� has three or more vertices and �� has
one or more vertex.
In this case �� �� ��� ��� � � � � �� �,�� �� ����� � � �,
�� � and � � �. The path ��, from �� to �� in ��

indicates that the path between �� and �� in � must
also go through every vertex in ��. So to make a cycle,
the path � ����� ����� � � � � ��� �� � in �� must take a
different path in the original tree other than the shortest
path between �� and �� as covered by ��. Now, for a
tree, there exists exactly one simple path between each
pair of vertices. So �� must have gone along a complex
path and this path must visit all the vertices lying in the
original path between �� and ��. So there exists at least
one edge �� between �� and ����� � � �� � �� � � � � ��
in �� for every ��� � � ��� � � � � � � �� in �� such that
�� lies in the original path between �� and ����. This
along with the presence of �� implies that the distance
between �� or ���� and �� is not more than �. Hence
there must be a chord in �.

����

����

��

�� ����

��

Figure 6: The vertices of �� fall in original paths between vertices
of ��

Case 3: �� has four or more vertices and �� has
no vertex.
In this case, �� �� ��� ��� � � � � �� �,�� � � and � �
�. This is the simplest of all cases because the edge
���� ��� in �� implies dist���� ��� � �. But from the
definition of maximal original path, all the vertices of
�� must lie in the original path between �� and ��. So
dist���� ��� � � implies dist���� ��� � � for all � �
��� � � � � � � ��. Each of these inequalities induces a
chord in �. ��� ���

In Section 3, we provide an ����� time algorithm
for solving the �-vertex-coloring problem on trees.

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������
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3 �-vertex-coloring

In this section we present an ���� � ������ time al-
gorithm for solving the �-vertex-coloring problem on
trees.

Given a tree � , we first transform � into its con-
straint graph ��, then find maximum cardinality or-
dering of the vertices of �� and perform greedy col-
oring in the reverse of the obtained perfect elimination
ordering to obtain the required �-vertex-coloring. The
following algorithm Generate_Constraint_Graph gen-
erates the constraint graph for the �-vertex-coloring of
a tree.

Algorithm 1: Generate_Constraint_Graph

Input : A weighted tree � � ����� and �.
Output: A constraint graph�� � ���� ���

for the �-vertex-coloring of a tree � .

begin
�� � �
for each vertex � � � do

BFS-Traverse(�� �� �)

end

Procedure BFS-Traverse(�� �� �)

begin
for each vertex � � � ��� do

�������� � white
���� ��

���� � �
�� ���
while � �� � do

�� �������
for each vertex � � ������ do

if �������� � white then
���� � ���� � ���� ��
if ���� � � then

Enqueue(�� �)
if � �� ������ then

�� � �� � ���� ���

else �������� � black

Dequeue(�)
�������� � black

end

We have the following lemmas and theorem.

Lemma 3.1 Let ���� � be the �-chromatic-index of a
tree � with maximum degree �. Then

���� � � � � � ������������
����� .

Proof. Since the �-vertex-coloring problem for a tree
� reduces to the ordinary vertex coloring for the chordal
graph ��, ����� will be the same as ���� �. Now a
chordal graph is a perfect graph and for a perfect graph
������ � ����. So to determine the upper bound of
���� �, we have to know the size of the maximum clique
in ��. We need to know how many vertices could be at
maximum such that any two of them remain at max �
distance apart in � . We assume the weights of each
edges as minimum which is one.

We can add vertices to the set constituting the clique
until we could add no more vertices keeping it within
� distance from all the members of the clique. Now
if we start with the vertex �� and add vertices accord-
ingly, we can add vertices to the set till all the leaves of
the sub-tree rooted at �� are within � distance from ��.
The depth of the sub-tree could be no more than �����
as any two leaves must be within � distance from each
other and the distance between them is twice the depth
of the sub-tree. The number of vertices could be found
by adding up the following series, where the �-th term
denotes the number of vertices in �� � ��-th level.

���� �
� �����
� �������������������� � ���������������

� � � � ������������
�����

��� ���

Lemma 3.2 The constraint graph �� � ���� ��� has
������ edges.

Proof. We have to add edges between all the ver-
tices that are at most � distance apart in � . For each
vertex the number of vertices within � distance is found
by the exact analogy used in lemma 3.1. The same edge
is considered twice if the edges for all the vertices are
taken separately. Hence

���� �
�
� ������ � � ����� � ��������

������ � ������.

��� ���

Lemma 3.3 The constraint graph�� can be generated
in ���� � ������ time.

Proof. Algorithm Generate_Constraint_Graph ex-
haustively adds edges to each pair of vertices � and �
with dist��� �� � � in � . The BFS-Traverse part of
the algorithm traverses the subtree rooted at any vertex
�, up to � level deep at maximum when each edge has
a minimum weight of one. The calculation for num-
ber of vertices covered in each such subtree is similar
to the number of vertices obtained in lemma 3.1 with
only going � level deep rather than halting at level �

� .

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

���������������������������������������������������� ��������������������������������������������������

������������������������������������������



So maximum number of vertices to traverse for BFS-
Traverse is � � � ��������

����� � �����. From lemma
3.2 the maximum number of edges for each vertex in
�� is �����. Since the adjacency list of each vertex is
scanned at most once, at most ������� � �������
time is spent in total scanning adjacency lists. The
overhead for initialization is ����, and thus the to-
tal running time of BFS-Traverse ���� � ����� �
������� � ��� � �����. Hence the run time of Gen-
erate_Constraint_Graph would be ���� � ������.

��� ���

The following algorithm MCS finds maximum car-
dinality ordering of the vertices of a chordal graph.

Algorithm 2:MCS

Input : A chordal graph�� � ���� ���.
Output: A maximum cardinality ordering of

��.

begin
������������ � ����
������������ � �
for each vertex � � �� do

��������� �

for � � � to ���� do
pick an unordered vertex � with the
highest label
�������� � ������������
for each vertex � � ������ do

�������� � ������������
�� � �� � �������

�� � �� � ���
������������ � ��������������
������������� ������������ � �

end

We have the following lemmas and theorem.

Lemma 3.4 Algorithm MCS can be implemented in
time ������.

Proof. To implement MCS in linear time, we define
�� to be the set of vertices with label �. Then we present
every set by a list. Also for each vertex we store its la-
bel � and pointer to its position in ��. When a vertex �
receives a number, we remove it from the correspond-
ing list and move each of its neighbors one list upwards.
This takes ��� � ������� time. So MCS can be imple-
mented in ������� ����� � ������ time. ��� ���

Lemma 3.5 A graph is chordal if and only if every or-
dering obtained by Algorithm MCS is a perfect elimi-
nation ordering [12].

Lemma 3.6 If greedy coloring is applied in the reverse
perfect elimination ordering of a chordal graph, the col-
oring will be optimal.

Proof. We prove it by induction on the number of
vertices colored.

Base case: �� can arbitrarily be given color 1.
Induction step: Assume that ��� ����� � � � � ����

have been colored optimally. We want to show that
choosing the color for �� in a greedy manner will yield
an optimal coloring for ��� ����� � � � � ����� ��. We
choose an arbitrary color for �� that has not been used
by any of its neighbors. If any color that has already
been used is available, we use that for �� keeping the
number of colors as before. Otherwise, if all the al-
ready colored neighbors of �� form a clique, there is
no way they (including ��) could be colored by any
fewer colors than the size of this clique. If there is
no other color than the colors used by the neighbors,
we have no choice but to use a new color for �� and
this coloring is optimal. Since the coloring was opti-
mal for ��� ����� � � � � ����, it must also be optimal for
the subgraph ��� ����� � � � � ����� �� and thus we have a
new optimal sub-solution. This completes the inductive
step. ��� ���

Theorem 3.7 The �-vertex-coloring of a tree � can be
solved in time ���� � ������, where � is a positive
integer and � is the maximum degree of � . If both �
and � are bounded integers, then an �-vertex-coloring
of � can be found in ����� time.

Proof. At first the input tree � is transformed into
constraint graph ��. Then we run the MCS algorithm
on �� which is a chordal graph and greedy coloring is
applied in the reverse of the obtained perfect elimina-
tion ordering to get the required �-vertex-coloring. The
simple greedy-coloring algorithm can be implemented
in������ time. Thus from lemma 3.3 and 3.4, the total
running time is������������������������� �
���� �������. Hence if both � and � are bounded in-
tegers, then our algorithm runs in ����� time.

��� ���

Now we illustrate an example for solving the �-
vertex-coloring problem on a weighted tree for a given
�.

We first transform � into its constraint graph ��.
Figure 7(b) shows the constraint graph �� for the �-
vertex-coloring of the input weighted tree in Figure 7(a)
with � � �. Then using Algorithm MCS, we find the
maximum cardinality ordering of the vertices of ��.
Figure 8(a) shows the maximum cardinality ordering

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

�� ���������������

������������������������������������������
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Figure 7: (a) Input weighted tree � with � � � and (b) its constraint
graph ��
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Figure 8: (a) Maximum cardinality ordering and (b) greedy coloring
of the vertices of ��

of the vertices of ��, where a number next to a ver-
tex is its order. Then we perform greedy coloring in the
reverse of the obtained perfect elimination ordering to
obtain the required �-vertex-coloring. Figure 8(b) shows
the required �-vertex-coloring using four colors, where
a number next to a vertex is its color.

In Section 4, we provide an ����� time algorithm
for solving �-edge-coloring problem on trees.

4 �-edge-coloring

In this section we present an���� ������� time algo-
rithm for solving the �-edge-coloring problem on trees.

The constraint graph �
�

� � ��
�

� � �
�

�� for the �-edge-
coloring of a tree � � ����� is the graph whose
vertices are the edges of � , with ��� �� � �

�

� when
� � ��� ��� � � ��

�

� �
�

� and dist(�� �� � � in � . We
have the following lemmas and theorem.

Lemma 4.1 The �-edge-coloring problem for a tree �
reduces to the ordinary vertex coloring problem for the
constraint graph�

�

�.

Theorem 4.2 The constraint graph �
�

� for the �-edge-
coloring of a tree � is a chordal graph.

Proof. The proof is similar to that of Theorem 2.2.

Lemma 4.3 The constraint graph�
�

� can be generated
in ���� � ������ time.

Lemma 4.4 The constraint graph �
�

� has ������
edges.

So we have transformed the �-edge-coloring of tree
into ordinary vertex coloring of the constraint graph
�

�

� which is chordal. In Section 3, we have already
shown the procedure for coloring a chordal graph in
������ time. From Lemma 4.4, the number of edges
in the chordal graph created in this case is also������.
Hence the algorithm for solving the �-edge-coloring of
tree runs in time ���� � ������. Thus we have the
following theorem.

Theorem 4.5 The �-edge-coloring of a tree � can be
solved in time ���� � ������, where � is a positive
integer and � is the maximum degree of � . If both �
and� are bounded integers, then an �-edge-coloring of
� can be found in ����� time.

Nowwe illustrate an example for solving the �-edge-
coloring problem on a weighted tree for a given �.

�
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Figure 9: (a) Input weighted tree � with � � � and (b) its constraint

graph �
�
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Figure 10: (a) Maximum cardinality ordering and (b) Greedy color-

ing of the vertices of �
�

�

We first transform � into its constraint graph �
�

�.
Figure 9(b) shows the constraint graph �

�

� for the �-
vedge-coloring of the input weighted tree � in Figure
9(a) with � � �. Then using Algorithm MCS, we find

����������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������

���������������������������������������������������� ��������������������������������������������������
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Figure 11: �-edge-coloring of �

the maximum cardinality ordering of the vertices of�
�

�.
Figure 10(a) shows the maximum cardinality ordering
of the vertices of �

�

�, where a number next to a ver-
tex is its order. Then we perform greedy coloring in
the reverse of the obtained perfect elimination ordering
in Figure 10(a). Figure 10(b) shows the greedy color-
ing, where a number next to a vertex is its color. Hence
Figure 11 shows the required �-edge-coloring using five
colors ��� ��� ��� ��, and ��.

5 Conclusion

In this paper we present an ���� � ������ time al-
gorithm for solving the �-vertex-coloring problem on
trees. If both � and � are bounded integers, then our
algorithm takes ����� time. We compute the upper

bound of colors to be � � � ������������
����� . We also

present an ���� � ������ time algorithm for solv-
ing the �-edge-coloring problem on trees. If both � and
� are bounded integers, then this algorithm also takes
����� time.
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