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Abstract. Decomposition for complexity minimization has long been a challenging approach. This
paper presents a data decomposition approach as a pre-processor for outlier detection. The decomposi-
tion of the data using space partitioning makes homogeneous sub-groups. Consequently, it reduces the
complexity of data patterns by isolating possible outliers into the sub-groups of monolithic character.
This approach creates sub-groups of homogeneous data points based on the fitness of purpose. They
optimize the outlier patterns in the sub-groups for subsequent mapping of outlier detectors onto the sub-
groups. This decomposition strategy is found to be effective in reducing the complexity of learning for
the detectors without deterioration in the overall detection rate. We experimented with this approach
using different benchmark detectors on eight benchmark data sets. Our data decomposition approach is
superior for identifying localized patterns in the partitions and offers a better generalization.
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1 Introduction

Outlier is one of the most significant patterns in data
analysis. Detection of outliers seeks to identify the
unique or rare instances that deviate significantly from
most data. The objective is to identify and flag the ex-
ceptional or uncommon objects compared to most of the
data. Misclassification of any such single event can be
catastrophic in critical applications, e.g., in social net-
work [18], in intrusion detection systems [14], in med-
ical diagnosis [12], in geoscience [25]. Real-life appli-
cations demand that a single outlier instance should not
remain undetected even though it is weak.

Various outlier detection techniques have been pro-
posed in the past tailored to different applications’
specific characteristics and requirements. Outlier de-
tection tasks are commonly classified into three cate-
gories: supervised, semi-supervised, and unsupervised,
depending on the availability of outlier labels. Unsu-

pervised methods are extensively used in outlier de-
tection, primarily due to the shortcomings of obtain-
ing accurate and representative labels, which are often
expensive and scarce. Unsupervised outlier detection
methods can be categorized into six major types based
on their underlying approaches: Linear models [37],
clustering-based methods [24, 11, 35], information-
theoretic methods [43], neural network-based methods
[38, 29, 2, 1, 10, 33, 9, 34], isolation-based methods
[23], and nearest neighbour-based methods [4]. These
methods have been developed and refined to suit the
unique features of each application, taking into account
factors such as data distribution, data type, domain
knowledge, and desired level of sensitivity.

Although significant development is witnessed in
unsupervised outlier detection, it remains a challeng-
ing and interesting problem for the pattern recognition
community. Outlier detection becomes tough due to no
prior knowledge and a highly imbalanced class. Com-
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plexity further inflates because of local irregularities
and the boundary effect of defining outliers. In handling
such problems, conventional outlier detection methods
do not perform effectively. To overcome such limita-
tions, we propose a data decomposition [20] of pattern
space aimed at getting a more robust outcome by par-
titioning the data into sub-groups of homogeneous el-
ements. In Figure 1, we present the data decomposi-
tion effect in 2− d projection of d-dimensional pattern
space where boldfaced points may be undetected by the
conventional method because of local irregularities. By
other pattern projection through partitioning the space
into sub-groups, those points become potential outliers
in that space.

Decomposition is one of the powerful tools for
managing hard data pattern complexity and improving
the recognition process, and it requires careful plan-
ning, design, and management to reap its full bene-
fits. Though it has some genuine benefits in pattern
recognition, it has few challenges in determining the
boundaries between different components or subsys-
tems. Overlapping functionalities or dependencies be-
tween modules can complicate the decomposition pro-
cess. Addressing the challenges associated with decom-
position is crucial to ensure that the divided parts work
together harmoniously to achieve the desired outcomes.
A standard decomposition method isolates anomalous
data points into sub-groups based on the inherent char-
acteristics of data points. Such decomposition charac-
teristics are expected to give group-wise detection ef-
ficiency to the outlier detectors. To achieve the data
decomposition goal, we use the standard clustering
[16] method as proof of concept. Here, the clustering
method works as a pre-processor for outlier detectors to
reduce the data pattern’s complexity. It creates a smooth
ground for the outlier detectors to learn the patterns in
the homogeneous groups of data points in sub-groups
and improve the outlier scores. Our approach investi-
gates a pre-processing framework for outlier detection
inspired by the Learning-follows-decomposition (LFD)
[20] strategy through clustering based on the fitness of
purpose as it considers homogeneity condition while
making sub-groups than other clustering methods. The
principle characteristic of our data decomposition mod-
ulation is that an outlier detector can take advantage
of the decomposition [32, 26]. It is presented exper-
imentally that our approach alleviates the drawbacks
mentioned above. We experimented on eight bench-
mark datasets and six standard outlier detection meth-
ods to establish whether the above decomposition strat-
egy produced a conducive environment for the detector
to perform better. The proposed approach performs bet-

ter on almost all the datasets and detectors.
The research contributions of the proposed work

in this paper are: (i) data decomposition is more pro-
nounced to create patterns of outliers in sub-groups so
that the detection process becomes more accessible for
the detectors, and (ii) Outlier-clusters make outlier de-
tection trivial and thus, outliers could be detected effec-
tively from the decomposed clusters.

The rest of the paper is organized as follows. Sec-
tion 2 tells us about the significance of our approach.
Section 3 mentions a few existing methods related
to decomposition. Section 4 describes the proposed
methodology. Section 5 reports the experimental setup
and empirical results. Finally, Section 6 concludes the
paper.

Table 1: Abbreviation used.

Abbreviation For
O-cluster Outlier cluster (proposed)
AD After Data Decomposition (pro-

posed)
WD Without Data Decomposition (pro-

posed)
LOF Local outlier factor [5]
COF Connective-based outlier factor [39]
IForest Isolation Forest [23]
COPOD Copula-Based Outlier Detection [21]
PCA-OD PCA-based outlier detector [37]
kNN-OD k-Nearest Neighbor (kNN) based

outlier detector [4]

2 Motivation

Is there any pre-processing approach concerning the
outlier detection that makes the outlier detectors more
robust? Our motivation is based on the following fac-
tors:

• Understanding the inherent pattern of data is cru-
cial before detection and how data-centric in-
formation can help the outlier detection process
through partitioning. We want to examine the in-
herent specific outlier pattern (Fig. 1), which can
cause systematic measurement failure for the de-
tectors.

• Outliers are rare events to identify in the differ-
ent data types. The border effect and dense data
locality adversely affect the identification of out-
liers. How the data modulation in monolithic ho-
mogeneous sub-groups (Fig. 1) before detection
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can help smooth and effective the detection pro-
cess.

• As a part of the complexity reduction and qual-
ity enhancement process, how data decomposition
[20] can reduce learning complexity by increasing
decision surface and as a consequence, it can re-
duce local irregularities for the outlier detector and
increase classification accuracy in different data
distribution.

3 Related Work

In the past decade, various methods have been devel-
oped for outlier detection under the unsupervised cat-
egory. Among the recent developments, Cheng et al.
[7] proposed an ensemble-based detector for global
and local outliers. Recently, Li et al. [22] studied
ECOD (Empirical-Cumulative-distribution-based Out-
lier Detection). Wang et al. [41] used a virtual graph-
based outlier detection method. An exclusive survey of
model-based outlier detection techniques has been pre-
sented recently by Wang et al. [42]. As our work con-
centrates on data decomposition and subsequent map-
ping of outlier detectors, we restrict the rest of the re-
lated work to the same category.

A well-known k-nearest neighbor (kNN) based ap-
proach [4] computes the distances between data points,
and a data point with a significantly higher distance
value from its nearest neighbors based on a threshold
is regarded as an outlier. An efficient version of the
distance-based method is proposed by Ramaswamy et
al. [30]. They partition the data and remove parts of
the data that cannot contain outliers, thus reducing the
computation and improving efficiency. Breunig et al.
[5] developed a Local Outlier Factor (LOF) to identify
outliers based on the density approach. The principle
behind the density approach is that outlier data points
are likely to occur in the low-density region while the
normal data points are found in dense spaces. Tang et
al. [39] proposed COF, an improved version of LOF [5]
based on chaining distance. Liu et al. [23] proposed
a unique isolation-based model, and they observed that
outliers are present in the vicinity of the trees’ roots due
to their isolation. Inliers are found closer to the ter-
minal nodes of the trees. Shyu et al. [37] proposed a
PCA-based outlier approach. He et al. [15] designed a
cluster-based local outlier factor (CBLOF) based on the
concept of a cluster-based local outlier.

A Learning-follows-Decomposition (LFD) strategy
[20] for hierarchical learning of pattern spaces uses a
multi-objective genetic algorithm followed by (near-)
optimal learning of pattern sub-spaces. Their technique

is a generic solution to complex high-dimensional prob-
lems where clusters are generated based on the fitness
of purpose. This strategy splits a problem into a series
of sub-problems; it then assigns a set of function ap-
proximators to each sub-problem such that each module
specializes in a subdomain to learn the pattern. Mai-
mon et al. [26] outlined a brief overview of the de-
composition methods by presenting the essential prop-
erties that characterize various decomposition frame-
works and their respective benefits. In a different vein,
Paulheim and Meusel introduced an alternative method
for outlier identification called ALSO (attribute-wise
learning for scoring outliers) [28]. Rather than rely-
ing on density-based measures, ALSO examines pat-
terns within the data. The authors decompose the out-
lier detection problem into supervised learning tasks,
enabling the identification and evaluation of patterns’
strengths within each attribute. Weight assignments are
made to attributes based on these strength estimations,
with weaker or nonexistent patterns receiving lower
weights. Outliers are identified by comparing each data
point against the established patterns, considering the
attribute weights. Any data point deviating significantly
from the patterns is classified as an outlier. Jiang et al.
[17] proposed a K-means a clustering-based two-phase
method to detect outliers. The first phase involves par-
titioning data points. The second phase consists in con-
structing a minimum spanning tree (MST) based on the
cluster centers obtained in the first phase. Outliers are
identified as clusters located in small sub-trees.

4 The Proposed Methodology

Our proposed method is composed of a two-stage pro-
cess. First, we partition the data into sub-groups or
clusters using the decomposition mechanism by creat-
ing homogeneous sub-groups. We recursively take the
best optimal sub-group centers, add the closest possible
points of the respective centers in sub-groups, and op-
timize the entire decomposed systems with an optimiz-
ing function to make homogeneous sub-groups. These
homogeneous sub-groups of similar characters have re-
duced pattern complexity because of pattern modula-
tion based on some objective. We design our algorithm
and objective function in such a way that it can help
overcome the boundary effect of making sub-groups.
The decomposition technique creates clusters of homo-
geneous elements, and the homogeneous grouping of
data points fits the outliers in the different sub-groups
based on the criteria. Second, we employ a standard
outlier detector in each sub-group. We outline the eval-
uation framework for our approach based on the stan-
dard metrics. We present extensive empirical results
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(a) Synthetic data (b) Data decomposition

Figure 1: Data decomposition effect on outliers. Outliers and inliers are presented by boldfaced diamond and circle symbols, respectively.

over eight benchmark data sets. We establish the com-
petency of our approach in the detection of outliers. We
also show that the generalization of our approach us-
ing six heterogeneous standard outlier methods is quite
effective.

We aim to pre-process the input data by decom-
posing it into sub-groups of homogeneous data points
and detect outliers in the subsequent sub-groups using a
standard outlier detection method. Such pre-processing
of input data is expected to create a conducive environ-
ment for the detector to yield effective and efficient out-
put. In this work, we assume the heterogeneity of un-
natural input data with global [19], local [5] type, and
unnatural data points distributed in the clusters accord-
ing to their characteristics. Since K-means [40] clus-
tering tries to separate data points in K groups of equal
variance by minimizing inertia or within-cluster sum-
of-squares criterion. As inertia assumes that clusters
are convex and isotropic, it is expected that separation is
appropriately done by the K-means clustering method.
But it is not always the case. Sometimes, K-means clus-
tering responds poorly to irregular shapes. Considering
this fact, We consider the following two cases:

• Case 1: If a few isolated data points create a
separate cluster of tiny size (less than equal to 2%
of total data points), we treat these data points as
an outlier. As outliers are usually located in low-
density regions than the normal data points, these
highly isolated data points are strong candidates
to be outliers compared to other data points. So,
they can be treated as outliers by definition [5].
Here, we refer to these clusters as outlier-cluster
(O-cluster), i.e., O-cluster is one of the sub-groups
containing only outliers. So, there is no need to

assign any detector as it categorically classifies the
potential outliers. The reasoning behind using a
2% limit for the O-cluster is based on experiments
on benchmark datasets, such as the Satimage
dataset, which shows that using a 2% limit results
in all data points in the O-cluster being outliers
according to the dataset’s ground truth. Using a
higher limit can result in some normal data points
becoming part of the O-cluster, which does not
satisfy the criteria for an O-cluster and can lead to
unexpected results in the overall decomposition
process.

• Case 2: Clusters with a significant number of data
points that have complex data patterns with the lo-
cal and global patterns of outliers, which signifies
Case 2. This type of cluster requires treatment for
depth dive to identify more localized patterns in
homogeneous data. This homogeneous data mod-
ulation makes few localized outlier points poten-
tially deviate in decomposed space, and their iso-
lation from normal points is quite significant. That
is why we consider those clusters suitable for as-
signing standard outlier detectors to identify more
unnatural events or outliers.

4.1 Mathematical Formulation

Here, we define our proposed method using mathe-
matical notions. To outline our algorithm, let X =
{x1, x2, .....xN} be a dataset containing of N data
points with d dimension and we also consider a dis-
tance function d : X × X → Rd in the d-
dimensional Euclidean space Rd. The Euclidean dis-
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tance is represented between the pairs of data points in
X as: d(xi, xj) = (

∑d
t=1(xit − xjt)

2)
1
2 , where xi =

(xi1, xi2....., xid) is the representation of xi in Rd.

4.2 Decomposition Approximation

In our approach towards reducing complexity for the
outlier detectors, we intend to decompose input data
into sub-groups and subsequently map detectors in the
sub-groups for learning. If we consider input data de-
composition as mapping F from an (N, d)-shaped input
data (X) to K sub-groups (nk, d), then the following
formulation is a (N, d)-shaped function decomposition
into many (nK, d)-shaped sub-groups subject to meeting
the criteria Objective f(X).

F : Rd
N →

⋃
k

Rd
nk

, nk ≤ N (1)

As data decomposition modularity minimizes the
hypersphere into smaller sub-groups, they represent a
comparatively lesser complex domain for the detectors
to learn patterns, and a detector exercises less effort to
get better output. Figure 1 depicts the benefits of de-
composition into sub-groups.

Here, our objective f(X) is to increase the ho-
mogeneity (H) of sub-groups and decrease the learn-
ing complexity, i.e., data points should have the same
characteristics. We wish to maximize the homogene-
ity of data points by distributing them in sub-groups
based on defined decomposition criteria. As a conse-
quence of decomposition, outlier data points of homo-
geneous character cater according to their sub-groups.
For the decomposition step, we choose standard K-
means clustering with four different configurations of
K. Let Z = {z1, z2, .....zK} be a set of potential cluster
centers that are used for the decomposition of dataset
X . The distance of x ∈ X to its closest cluster center
z(x | Z) is represented by:

d(x | Z) = min
z∈Z
{d(x, z)} (2)

Here, the input data (X) is decomposed into K clus-
ter by minimizing the within-cluster sum-of-squares
criteria, which is given by:

U(X,Z) =

n∑
i=0

d(x | Z) =

n∑
i=0

min
zK∈Z

(‖xi−zK‖2) (3)

Let the number of data points in the clusters be nK,
a decisive factor for assigning a detector to the clusters.
Let A = {a1, a2, ..., aK} is a set of detected outliers
in the respective clusters. We experiment with our data

decomposition strategy in four different configuration
values of K (number of clusters), so the detected outlier
in the four different configurations of decomposition is
represented by Dj(A) ∀j ∈ {2, 3, 4, 5}.

4.3 Algorithmic Description

Our data decomposition method is described in Algo-
rithm 1. We take six different types of outlier detectors
and four different configurations for data decomposi-
tion, chosen sequentially in a fixed number of clusters.
Here, we attempt to find complex outlier patterns for all
four decomposition configurations.

Algorithm 1 Data Decomposition
Input: M1,M2....,Mm:= m-sets of heterogeneous outlier

detector, Set of points X = {x1, x2..., xn}
Output: A = identified outliers

1: A = φ
2: Dj(A) = φ
3: for each (j ∈ {2, 3, 4, 5}) do
4: perform K-means considering Eqn. 1 and Eqn. 2
5: calculate nK ∀K
6: if (nK ≤ 0.02N ) then
7: zK = aK ⊆ A ∀K
8: else
9: assign any Mm

10: Check aK in each zK

11: end if
12: A = a1 ∪ a2 ∪ .... ∪ aK

13: end for
14: return Dj(A) ∀j ∈ {2, 3, 4, 5}

For each clustering configuration of K, we decom-
pose the data points in the sub-groups or clusters using
K-means (Lines 3-4). Then, we calculate the size of
these clusters (Line 5). Then, we check the condition of
the O-cluster (Line 6); if it satisfies, we do not assign
detectors. Otherwise, we assign detectors in the clus-
ters (Line 9) and detect outliers (Line 10) in the clus-
ters. Finally, we integrate all the clusters (Line 12) for
evaluation measures.

4.4 Learning Complexity

The complexity of most of the unsupervised outlier de-
tectors is approximate of the order O(N2), where N
is the number of data points. For any data pattern,
learning complexity after using data decomposition is:
O(n2

1) + O(n2
2) + ... + O(n2

k) ≤ O(N2). Our ob-
jective behind data decomposition is to reduce the sum
of squares using sub-groups. We assume that each sub-
group is an independent event in a statistical sense. Sep-
arability measure [13] of data into sub-groups preserve
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the inherent pattern space intact, increasing the decision
surface’s regularity. Consequently, this data decompo-
sition step surges classification accuracy.

5 Experimental Setup and Results

In this section, We present the experimental setup of our
proposed approach and experimental results on mean-
ingful benchmark datasets, which can be easily trace-
able at the UCI repository. We use six heterogeneous
outlier detectors in our approach. We have done our
entire experiment using the Jupyter notebook 1, and vi-
sualization is generated using the Plotly library.

5.1 Dataset Description

This work uses eight benchmark datasets from the UCI
machine learning repository2.

Table 2: Summary of the used datasets.

Dataset Instances Dimension Outliers (%)

Pendigits 6870 16 156 (2.27%)
Optdigit 5216 64 150 (3.00%)
Waveform 3443 21 100 (2.90%)
Thyroid 7200 6 536 (7.42%)
Letter 1599 32 100 (6.25%)
Satimage 5803 36 71 (1.20%)
Ecoli 336 7 9 (2.60%)
ALOI 49534 27 1508(3.04%)

The datasets are briefly described below in Table 2.
The pendigits (Pen-Based Recognition of Handwritten
Digits) dataset is a multi-class classification dataset that
has ten classes (0,1,...,9) of different handwritings, and
class 4 is taken as an outlier. Optdigits (optical recog-
nition of handwritten digits) is a multi-class dataset of
handwritten digits. Here, the digit 0 instances are taken
as outliers, and the rest are inliers. As mentioned in the
UCI repository, the Waveform dataset represents three
classes of waves. Class 0 is labeled an outlier, and
the rest of the data instances are inliers. The Thyroid
dataset contains information about the hypothyroid pa-
tient, where hyperfunction and subnormal functioning
are considered outliers, and the remaining instances are
inliers. The Letter recognition dataset is a classification
dataset, and we use it as in Rayana et al. [31]. SatIm-
age dataset is also a multi-class dataset, where class 2 of
71 instances is labeled as an outlier. The original Ecoli
dataset [36] from UCI machine learning repository is a

1https://github.com/gourangaduari1995/outlier-decomp
2http://archive.ics.uci.edu/ml/datasets.html

multiclass classification dataset having eight attributes.
Among the eight classes omL, imL, and imS are the mi-
nority classes and are used as outliers. The Amsterdam
Library of Object Images (ALOI) dataset is a collection
of images we use as given by Campos et al. [6].

5.2 Outlier Detectors used for Comparison

In this paper, we consider six heterogeneous standard
outlier detectors to check the effectiveness of our de-
composition approach as base detectors: IForest [23] as
an ensemble-based method, PCA-based outlier detec-
tor [37] as a linear model, kNN [8] as a distance-based
method, LOF [5] as a density-based method, COF [39],
and COPOD [21] as a probability-based method for all
datasets in Table 2. Here, we use global and local out-
lier detectors to diversify our analysis. However, more
outlier detectors with different characteristics may be
experimented with to check the effectiveness of the de-
composition strategy on outlier detection. We use the
sci-kit library for K-means clustering, and pyod3 library
for the detectors.

5.3 Decomposition Results

Here, we demonstrate the effectiveness of our de-
composition strategy using three widely used perfor-
mance measures, precision, recall, and ROC-AUC [27],
as shown in Table 3 and Table 4, respectively. As
mentioned in the proposed methodology, we present
the output of four different configurations of K (j ∈
{2, 3, 4, 5}). In Table 3 and Table 4, the best parameter-
wise performance corresponding to each dataset is
boldfaced in the table.

The proposed decomposition strategy works pretty
well in detecting outliers in the datasets. This is evi-
dent in the results summarized in Table 3 and Table 4.
Our data decomposition step gives the best results in
all four decomposition configurations (K) compared
to those without data decomposition. In the Satimage
dataset, many outlier data points generate separate sub-
groups as the O-cluster satisfying the case 1 condition
after K = 3. In the Satimage data, case 1 applies to
a few clusters on K = 4 and K = 5 configuration,
where nK ≤ 0.02N and consequently aK = zK ∀K.
For the rest of the datasets, there are no O-clusters.
Data decomposition works well, and superior perfor-
mance is achieved in all the decomposition configura-
tions. Meanwhile, our decomposition strategy helps the
detector to achieve a 100% recall rate in the Satimage
(K = 2) and Pendigit (K = 3) data, which shows the
efficacy of our approach. We have also considered a

3https://pyod.readthedocs.io/en/latest/index.html
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Table 3: Precision and Recall with the proposed decomposition strategy. The performance of detectors is shown in two ways: (a) Without data
decomposition and (b) with data decomposition.

Dataset Parameter IForest Data Decomposition

K=2 K=3 K=4 K=5

Pendigits Precision 0.71 1.82 2.02 1.82 1.82
Recall 35.00 90.00 100.00 90.00 90.00

Optdigit Precision 4.98 12.64 14.53 10.11 9.54
Recall 17.33 44.00 50.67 35.33 33.33

Waveform Precision 3.45 9.86 11.30 11.27 11.45
Recall 12.00 34.00 39.00 39.00 40.00

Thyroid Precision 16.53 16.67 18.75 22.71 18.01
Recall 22.33 22.57 25.33 30.77 24.39

Letter Precision 10.62 22.36 24.22 25.47 28.40
Recall 17.00 39.00 39.00 40.00 46.00

Satimage Precision 11.88 12.22 12.05 10.94 10.94
Recall 97.18 100.00 98.59 98.59 98.59

ALOI Precision 3.31 3.67 3.71 3.69 3.79
Recall 10.08 12.07 12.20 12.14 12.47

Ecoli Precision 20.59 26.47 0.00 0.00 2.86
Recall 77.78 100.00 0.00 0.00 11.11

Table 4: ROC-AUC score with the proposed decomposition strategy with varying K. The performance of detectors is shown in two ways: (a)
Without decomposition and (b) after decomposition. The variance of ROC-AUC in parentheses shows the stability of the results. Bold fonts
are the best values.

Dataset IForest Data Decomposition

K=2 K=3 K=4 K=5

Pendigits 85.02 96.59 95.9 96.39 96.71

Optdigits 68.22 87.59 89.75 89.94 87.06

Waveform 67.96 76.68 66.97 73.07 85.69

Thyroid 63.40 67.74 69.57 73.50 68.19

Letter 61.75 74.99 81.44 81.39 83.55

Satimage 98.14 99.84 98.26 99.58 99.58

ALOI 53.41 54.78 54.90 54.58 54.03

Ecoli 86.54 94.02 55.76 30.75 47.40

smaller dataset, named Ecoli, to evaluate our method,
and we found out that the method works well only
K = 2. It infers that data decomposition is unsuitable
for small data, and the model gives better benefits for

bigger datasets.

We have taken the ROC-AUC score in Table 4 as
the parameter for checking overall performance com-
petency concerning four decomposition configurations.
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We can see that overall detection has significantly im-
proved using the data decomposition approach for the
Pendigits, Optical digits, Waveform, Letter, and Ann-
thyroid datasets. We have also tested our algorithm
twenty times to confirm performance stability.

5.4 Comparative Analysis

We exhibit our data decomposition approach using
three widely used methods, namely, precision, recall,
and ROC-AUC in Tables 3 and Table 5 using IForest
as a base detector. In the case of highly imbalanced
data with a large number of negative samples (inlier),
the false-positive rate (FPR) remains relatively small,
even for plenty of false positives. However, in dealing
with imbalanced data, the accuracy of the positive class
(minority class) is more important. So, we take true
positive (TP) for comparing our approach globally in
Table 5. We can find that data decomposition emerges
as a clear winner in all three datasets. After using data
decomposition, many true outliers are detected, which
significantly benefits the overall efficacy.

Comparing the data decomposition approach using
the ROC-AUC curve in Figure 2 with different decom-
position configurations with varying values of K, we
have found that the data decomposition approach is a
strategic winner in detecting outliers in complex data
patterns. The performance improvement by data de-
composition approach for the Waveform dataset using
IForest (Figure 2(a)) and Optical digits dataset using
COPOD (Figure 2(b)) and the Letter dataset using Prin-
ciple Component Analysis (PCA) based outlier detec-
tor (Figure 2(d)) is advantageous. Overall, we can say
that the data decomposition approach performs substan-
tially better than the regular use of detectors. The rea-
soning behind our claim is very subtle. First, detec-
tors are more potent in filtering out outliers from ho-
mogeneous sub-groups. Second, the learning complex-
ity of data patterns reduces due to breaking out into
smaller sub-groups. So, the decomposition strategy has
the edge over the raw use of the outlier detectors. LOF
and COF are both density-based local outlier detectors,
and they have not had substantial improvement, which
needs more investigation in future research.

As our approach is to give detection efficiency us-
ing data decomposition rather than the regular use of
detectors, our approach is directly comparable to the
concerned detectors. So, we restrict our results to com-
paring with varying values of K, not with other outlier
algorithms.

5.5 Visual Analysis

Figure 3 represents t-distributed stochastic neighbor
embedding (t-SNE) plots to show the effectiveness of
performances in the Waveform dataset. We conduct
comparative performance between without data decom-
position and after decomposition using the kNN-based
outlier detector. Here, we use the default value of per-
plexity (30) and iteration (1000) for all the plots. Fig-
ure 3(a) and Figure 3(b) display exclusively detected
true-positive (TP) outliers by red dots. In the OptDig-
its dataset, our data decomposition approach detects 22
true outliers, and 11 are detected without data decom-
position. Evidently, data decomposition has the edge
over the usual use of an outlier detector.

5.6 Discussion

From the results outlined above, we observe two pri-
mary categories of clusters emerge as the outcome of
decomposition: (I) O-cluster, a cluster of a few signifi-
cant isolated data points that are potential candidates for
outliers, and (ii) cluster with outliers and natural data
points. In the first category, we do not assign any de-
tector to classify the data points as outliers further, as
the clustering method does not forcefully include iso-
lated data points in the cluster. It is sufficient to con-
sider them as outliers with 100% probability. These
data points are significantly dissimilar from the rest
(Figure 1), and k-means clustering alone is sufficient
to separate outlier points into clusters. As our approach
involves excluding isolated outliers named after them-
selves, our primary goal is to maximize the utilization
of patterns, not to obligate the use of all patterns. Addi-
tionally, groups of outliers produced due to systematic
measurement failure will form their own separate sub-
group, which may be considerably distinct from other
patterns with the same classification. So, we can con-
sider them as potential global outliers of distinct nature.
The handling of outliers is a topic that requires addi-
tional research. The second main category of clusters
requires assigning a detector to classify the class of the
data points, as these categories of clusters may consist
of both standard and outlier data points. These clusters
mainly contain local with few global outliers, and de-
tectors can only learn the patterns to classify the outlier
class.

Further investigation is required to explore how
clusters of outliers (Figure 1) resulting from system-
atic measurement failure can create distinct sub-groups
that are notably isolated from other patterns of the same
class. This outcome gives a significant hint about pos-
sible outlier patterns in the data. Categorization of
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(a) Iforest (b) COPOD

(c) LOF (d) PCA

Figure 2: ROC-AUC score of IForest, COPOD, LOF, and PCA-OD after decomposition (AD) and without decomposition in different configu-
rations of k.

such outlier patterns can be very valuable in the pattern
recognition community. The handling and understand-
ing of these outliers remain a topic of ongoing study.

The sole purpose of the decomposition of input data
is to improve the detection efficiency of the detectors
compared to regular methods. We also explain the de-
composition strategy using the bias-variance tradeoff
[3]. As the decomposition strategy creates sub-groups,
it helps the detectors perform better by choosing ap-
propriate sub-groups for learning, i.e., finding the best
bias-variance tradeoff. The entire input data model is
a single decision tree with high variance and low bias.
On the other side, decomposition brings a set of poten-
tial decision trees. Each tree is less complicated than
the entire input data and has a lower bias and low vari-
ance. Bias might increase in the case of the O-cluster
(Case 1), but the criterion defined for the O-cluster is
not enough to have a high bias.

Our method is a generic approach to complex out-
lier detection problems where we use the decomposi-
tion strategy of input space as a pre-processor to the
outlier detectors. This method is applicable even when
we do not have enough prior knowledge of the input
space, and clustering is a guiding principle for decom-
position. Though the K-means clustering algorithm is
based on similarity measures, and it depends on the
judgment of the number of clusters (K), which is ill-
defined. Here, our approach avoids such biased fac-
tors. Instead, we decompose the input space based on
the purpose of identifying unnatural data points in sub-
clusters. Our pre-processing approach works as a cat-
alyst for the detector to maximize performance, Table
4 and Figure 2. We also explain theoretically and em-
pirically how data decomposition can reduce learning
complexity and enhance classification accuracy. It is
crucial to identify true outliers rather than having false
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Table 5: A brief presentation of exclusively detected true outliers without decomposition (WD) and after decomposition (AD). Benchmark
datasets with respective outliers are also mentioned.

Detector Optical Digits (150) Waveform (100) Letter (100)

WD AD WD AD WD AD

IForest 25 52 18 41 16 44

kNN-OD 11 22 35 38 54 57

PCA-OD 5 44 12 49 13 49

LOF 31 38 27 40 53 58

COF 59 61 25 31 59 61

COPOD 17 60 3 42 11 40

(a) Without data decomposition, #exclusively detected out-
liers: 11

(b) After data decomposition #exclusively detected out-
liers: 22

Figure 3: t-SNE plot for Waveform dataset. True outliers and inliers are presented by red and blue dots, respectively.

positives (When inliers are detected as outliers). The
significance of our method lies in there. Table 4, Table
5, and Figure 3(b) suggest that our method increases the
detection accuracy of true outliers more than any other
method. So, the above-outlined results and theoretical
foundation make our approach more relevant in the un-
supervised outlier detection process. The reduced com-
plexity in the data space makes the entire system com-
pact and conducive to the detectors’ doing smooth and
effective operations to recognize the complex pattern.
Our approach can work well for a wide range of com-
plex unsupervised problems where prior knowledge is
not readily available to analyze data patterns.
Limitations of Implementation: As stated above, the
proposed approach is generic. However, the implemen-
tation presented in this work is limited by (i) the decom-
position, which is influenced by the K-means clustering.
Results may not be as good as above if the clustering is

inaccurate. (ii) Since the data decomposition approach
limits the number of clusters (K) as efficiency deteri-
orates after K = 5 for most of the datasets. So, per-
formance entirely depends on decomposition configu-
ration or the number of clusters (K).

6 Conclusion

In this paper, we proposed a new approach to outlier
detection by data decomposition with K-means cluster-
ing. Our approach is pragmatic in practical applica-
tions of complex data patterns. Experiments indicate
that our proposed approach outperforms almost every
dataset and each detector. We have recorded around
1.7% to 30% improvement in AUC score and signif-
icant improvements in the detection of positive class,
especially local outliers.

In the future, we would like to investigate a more ef-
INFOCOMP, v. 23, no. 1, p. pp-pp, June, 2024.
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ficient objective function for decomposition so that we
can improve the homogeneity conditions for complex
data patterns. We can also focus on optimized multi-
layered homogeneity, considering diverse data charac-
teristics that can unveil more knowledge to the pattern
recognition community.
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