
A New Approach To Semantic Matchmaking Using Description

Logics

TOUFIK TAIBI

Freelance Software Developer
753 Village Green Ave

London N6K1H3, Ontario, Canada
email:ttaibi@gmail.com

Abstract. An agent wishing to delegate some of its tasks to others needs to use the services of a match-
making agent. The quality of the matchmaking process represents a key success factor in the effective-
ness of the delegation process. As more services are exposing descriptions based on languages devel-
oped in the framework of Semantic Web, there is no doubt that Descriptions Logics (DLs) on which
Web Ontology Language (OWL-DL) is based will be playing a major role in this context. This work
contributes to the field in three ways. First, the DL ALCN was used in a matchmaking process that
yields a justified ranking of results. Second, the matchmaking process provides useful information to
the requester/provider in order to modify or refine the original request/capability description for a better
result. Third, the requester agents should be able to further filter the results based on other criteria that
we call “service goodness” that are based on some Quality of Service (QoS) criteria as well as attributes
such as trust and cost.

Keywords: Semantic matchmaking, description logics, software agents, semantic web, delegation, qual-
ity of service.

(Received November 01, 2009 / Accepted September 15, 2010)

1 Introduction

The Semantic Web was introduced to extend the Web
in such a way that its content can expressed in a for-
mat that can be understood by machines through the
creation of domain ontologies. This has increased both
openness and interoperability in the web environment.

The widespread availability of resources and ser-
vices has led to the complexity of finding the best
matches for a given request. The need for an effective
matchmaking process has become a key factor in many
e-marketplaces in which supply and demand have to be
matched and services need to be discovered.

In this context, we define an agent as an entity that
acts on behalf of a user or another program. Agents
need to delegate some tasks to others either because
they don’t have the capabilities or resources to per-
form them or that they want to optimize the execu-

tion of their tasks. Before the delegation process hap-
pens a requester agent (or a broker acting on its be-
half if a full-mediation service is used) needs to use
the services of a resource discovery agent (matchmaker)
which matches requests with available offers. The pur-
pose of the matchmaking process is to find, for a given
request, the best matches available among the list of of-
fers. The Semantic Web paradigm requires that descrip-
tions of requests and offers should be in a structured
form based on ontologies. We assume in what follows
that the descriptions of requests and offers pertain to a
common ontology.

Although matchmaking has been widely studied in
the past, there has been recently a growing effort aimed
at formalizing the process using Description Logics
(DLs) [4]. DLs can model structured descriptions of
requests and offers as concepts. Moreover, DLs relies

on the open-world assumption in which the absence of
information is distinguished from negative information.

Usually, DL-based approaches exploit standard rea-
soning services of a DL system (satisfiability and sub-
sumption) to match requests with offers. If an offer
(supply) is described by a concept Sup and a request
(demand) is described by a concept Dem, unsatisfi-
ability is denoted by the empty conjunction of Sup
and Dem, while satisfiability is denoted by its non-
emptiness. Hence, unsatisfiability identifies incompat-
ibility between requests and offers, while satisfiability
identifies a potential match between them (compatibil-
ity). Dem subsumes Sup (every individual of concept
Sup is also of concept Dem) means that requirements
on Dem are completely fulfilled by Sup.

The matchmaking process needs to go beyond com-
patible and incompatible matches by providing an ex-
plained ranking of the most prominent matches. More-
over, when an exact match is not found (which is the
case most of the time), the matchmaking process should
identify what needs to be changed in Sup and/or Dem

in order to get a better result. The automation of such
process is still a widely accepted challenge.

This work goes beyond providing a list of ranked
matches by allowing the requester to further filter the re-
sults based on other criteria that we call “service good-
ness” that are based on some Quality of Service (QoS)
criteria as well as attributes such as trust, and cost that
are embedded into a common capability description
language called Requester Provider Capability Descrip-
tion Language (RPCDL).

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of DLs, while section 3
presents how matchmaking is performed using DLs.
Section 4 defines the extra filtering process performed
by a requester after receiving a ranked list of offers.
Section 5 presents a case study applying our approach
to matchmaking. Section 6 presents related work, while
section 7 concludes the paper.

2 Description Logics

DLs are a family of logic formalisms for Knowledge
Representation [7]. This section is intented to present
the core principles of DLs. In DLs, the basic syntax
elements are:

• Concepts, such as Person, Female, Parent,
Women and Mother.

• Roles, such as has child.

• Individuals, such as Elizabeth and Charles.

Intuitively, concepts represent sets of individuals
and roles link individuals in different concepts, as the
role has child links a Parent with a Person. Ba-
sic elements can be combined using constructors to
form concept and role expressions, and each DL has
its distinguished set of constructors. In this paper we
use Attributive Language with Complements and un-
quantified Number restrictions ALCN . Although hav-
ing more constructors makes a DLmore expressive, this
comes with a cost which is the explosion in computa-
tional complexity of inference services [6]. Hence a
trade-off is necessary. ALCN meets the trade-off be-
cause it is both sufficiently expressive and yet offers
PSpace-complete complexity of inference services [20].
Moreover, ALCN can be mapped into a subset of
OWL-DL [2]. The following lists the constructs of
ALCN :

• � universal concept represents all individuals in
the domain.

• ⊥ bottom concept represents the empty set.

• A atomic concept represents all individuals be-
longing to the set represented by A.

• ¬C negation represents all individuals not belong-
ing to the set represented by C.

• C � D intersection represents the individuals be-
longing to both to C and D.

• C �D union represents the individuals belonging
to either C or D.

• ∀R.C universal restriction represents all individu-
als participating in relation R whose range are all
individuals belonging to C.

• ∃R.C existential restriction represents some indi-
viduals participating in relationR whose range are
all individuals belonging to C.

• (≥ nR),(≤ nR) unquantified number restriction
represents the minimum and the maximum indi-
viduals participating in relation R. We write (=
nR) for (≥ nR) � (≤ nR).

Concept expressions can be used in axioms which
can be either containment (symbol: �), or definition
(symbol: ≡). Axioms impose restrictions on possible
interpretations according to the knowledge elicited for
a given domain. Definition can be expressed using con-
tainment as follows: C ≡ D can be defined by: C � D,
D � C.

2 Taibi, T.

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

ADL knowledge base typically comprises two com-
ponents, a “TBox” and an “ABox”. The TBox contains
terminological knowledge (hence the term “TBox”)
and is built through declarations (axioms) that de-
scribe general properties of concepts. The ABox con-
tains assertional knowledge (hence the term ABox)–
knowledge that is specific to the individuals of a do-
main. Terminological knowledge is usually thought
not to change (timeless), while assertional knowledge
is usually thought to be subject to occasional or even
constant change. For example, a TBox could in-
clude the following axioms: Parent ≡ Person
�∃ has child.Person and Women � Person,
while an ABox could include the following assertions:
mother(Elizabeth),
person(Charles) and
has child(Elizabeth,Charles).

Let’s turn our attention now to the semantics of
ALCN . A model provides a set of domain elements
and a way to interpret each piece of syntax. For
example, we can interpret mother(Elizabeth)
and
has child(Elizabeth,Charles) only when
we are told who Elizabeth is and who Charles
is and what Mother means (a set of individuals) and
what has child means (a role, a binary relation).
Whether or not the statements are true depends on
whether
Elizabeth is a Mother and on whether
Elizabeth’s child is Charles in our domain.
In model theory, formulas are fixed and interpretations
are varied (as to tackle different domains). When a
set of formulas is true in some domain, the formulas
are said to represent a model of that domain. They
say something accurate about it, but don’t tell us
everything. What makes this useful is that when we do
some syntactic manipulation to generate new formulas
from the model, we expect that the new thing we found
is also true in the domain.

DLs semantic can be defined by the standard Tarski-
style interpretations. A semantic interpretation is a pair
I = (Δ,.I), which consists of the domain Δ and the
interpretation function .I , which maps every concept to
a subset of Δ, every role to a subset of of Δ ×Δ , and
every individual to an element of Δ. We assume that
different individuals are mapped to different elements
of Δ, i.e., aI �= bI for individuals a �= b. Table 1 and
Table 2 define both the syntax and semantics ofALCN
constructs and its TBox axioms respectively. A model
of a TBox T is an interpretation satisfying all axioms
of T .

Table 1: Syntax and Semantics of ALCN constructs
Name Syntax Semantics

Top � ΔI

Bottom ⊥ ∅

Intersection C �D CI ∩DI

Union C �D CI ∪DI

Negation ¬C ΔI \ CI

Universal quantification ∀R.C {x ∈ ΔI |

∀y : (x, y) ∈ RI → y ∈ CI}

Existential quantification ∃R.C {x ∈ ΔI |

∃y : (x, y) ∈ RI ∧ y ∈ CI}

Number restrictions (≥ nR) {x ∈ ΔI |

�{y ∈ ΔI |(x, y) ∈ RI} ≥ n}

(≤ nR) {x ∈ ΔI |

�{y ∈ ΔI |(x, y) ∈ RI} ≤ n}

Table 2: Syntax and Semantics of ALCN TBox asser-
tions
Name Syntax Semantics

Definition C ≡ D C
I
= D

I

Inclusion C � D C
I
⊆ D

I

DL-based systems usually provide two basic rea-
soning services [17]:

• Concept Satisfiability: given a TBox T and a
concept C, does there exist at least one model of
T assigning a non-empty extension to C? Satisfia-
bility is defined as follows: C ��T ⊥.

• Subsumption: given a TBox T and two concepts
C and D, is CI always contained in DI for ev-
ery model I of T ? Subsumption between C and
D is defined as follows: C �T D. Subsumption
can be expressed using concept unsatisfiability as
follows: C � ¬D �T ⊥.

Intuitively, unsatisfiability means that a concept
does not belong to a given ontology, whereas D

subsumes C (or C is subsumed by D) ,means that
D is more general than C and C is more specific
than D. This means that C inherits all properties
of D in addition to having its own properties. For
example if in a certain domain the concepts Person
and Parent are made of the following individuals:
Person={Elizabeth, Charles, William},
and Parent={Elizabeth,Charles}. The in-
dividuals Elizabeth and Charles are in the set
Parent because they participate in role has child,
while William does not.

3 Semantic Matchmaking

In the context of this work, matchmaking is defined as
the process by which a resource discovery agent pro-
vides a justified ranking of advertisements matching

A New Approach To Semantic Matchmaking Using Description Logics 3

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

a certain request from a requester. Requests and ad-
vertisements are expressed with reference to a shared
ontology (having TBox T). A study of the latest ad-
vances in the field reveals the following classification
of matches [17]:

• Exact match: Sup ≡T Dem.This means that
Sup and Dem are equivalent.

• Full match: Sup �T Dem. This means that
Dem subsumes Sup. Sup has at least all features
required by Dem.

• Plug-in match: Dem �T Sup. This means that
Sup subsumesDem. Dem may have features not
fulfilled by Sup.

• Intersection match: Dem � Sup ��T ⊥. This
means that Sup andDem have something in com-
mon and no conflicting features.

• Disjoint match: Dem � Sup �T ⊥. This means
that there is a conflict betweenDem and Sup.

The above degrees of matches are organized in an
ascending order of preference. We now introduce the
process of matchmaking a request with advertisements.
A DL reasoner [1] is used to compute a hierarchy of
all advertised services. For an incoming request R, a
DL reasoner is used to classify R i.e. compute R’s sub-
sumption relationships with all advertised services. Ad-
vertisements equivalent to R are considered to be “ex-
act matches”, those subsumed by, but not equivalent to
R are considered to be “full matches”, those subsum-
ing but not equivalent to R are considered to be “plug-
in” matches. The DL reasoner is then used to classify
¬R. Advertisements subsuming but not equivalent to
¬R are considered to be “intersection matches”, while
those subsumed by ¬R are considered to be “disjoint
matches”.
Getting a ranked list of advertisements matching its

request is not enough for a requester. The requester
(provider) should be given extra-information as to allow
it to refine/modify its request (advertisement). In order
to do so, we need first to normalize the way in which
concepts are defined. Every satisfiable concept C can
be divided into three components: C ≡T Cc�Cr�Cn.
Cc ≡T A1 � . . . � Ah represents the conjunction of h
atomic concepts. Cr ≡T QRl.Cl�. . .�QRp.Cp. Here
l < p and Q represents either ∃ or ∀. Cr represents
the conjunction of (p − l) concepts of the form ∀R.D
or ∃R.D, where D is a normalized concept. Finally,
Cn ≡T (ORs) � . . . � (ORt) represents the conjunc-
tion of all number restrictions. O is an operator that

could be either ≥ or ≤. Each role can have at most two
conjuncts of number restrictions of either ≥ or ≤.
Now, we are ready to define the refinement tech-

niques for each of the of non-exact matches defined
above.

• Case of Full match: Since Sup �T Dem, then
Sup ≡T Dem � Cl � . . . � Cp, where l < p. The
matchmaker sends the part Cl � . . . � Cp to the
requester in order to let it know the extra features
provided by the provider of the service in order
to put it into consideration (if required) in future
requests.

• Case of plug-in match: Since Dem �T Sup,
thenDem ≡T Sup�Cl � . . . �Cp, where l < p.
The matchmaker sends the part Cl � . . . � Cp to
both requester and provider in order to improve the
request or advertisement. The requester will know
the requested features that are not supported by the
provider of the service, while the provider can pro-
vide extra features to meet the demands of the re-
quester. This leads to the following two cases.

– request refinement: If we remove the part
Cl � . . . � Cp from Dem we get an exact
match (Dem ≡T Sup).

– advertisement refinement: We can use con-
cept abduction [9] by finding a ALCN for-
mula H satisfiable with respect to T such
that Sup �H �T Dem.

• Case of intersection match: Since, Dem �
Sup ��T ⊥, then Dem ≡T C � Cl1 � . . . � Cp1

and Sup ≡T C � Cl2 � . . . � Cp2
. l1 < p1 and

l2 < p2. C represents, the “common” features be-
tween Sup andDem. There are two alternatives to
consider in this case, each is based on whether the
requester or provider takes the initiative of refining
its request or advertisement.

– request refinement: The requester keeps the
common part (C) and remove the part which
is different. We get, Sup �T C, where C
represents the refined Dem. So we get a full
match.

– advertisement refinement: The provider
keeps the common part (C) and removes the
part which is difference. We get Dem �T

C, where C represents the refined Sup. So
we get a plug-in match, which should be
treated as per the previous case.

4 Taibi, T.

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

• Case of disjoint match: In this case concept con-
traction [9] can be used to refine the request in oder
to get an “intersection” match. We need to find two
ALCN formulasG (for give-up) andK (for keep)
such that Dem ≡T G �K andK � Sup ��T ⊥.

4 Filtering Matchmaking Results Using “Ser-
vice Goodness”Attributes

Our approach goes beyond providing a list of ranked
matches by allowing the requester to further filter the re-
sults based on other criteria that we call “service good-
ness” that are based on some Quality of Service (QoS)
criteria as well as attributes such as trust, and cost.
To achieve this requests and advertisements should be
written using a common capability description language
named Requester Provider Capability Description Lan-
guage
(RPCDL). Table 3 describes the high-level EBNF
grammar ofRPCDL.

Table 3: EBNF Grammar ofRPCDL
< Request Capability >::=< Context > < Description >
< Service Goodness >
< Context >::=< Domain of the ontology >
< Description >::=< An ALCN formula defining
a request or capability >
< Service Goodness >::=< QoS > < Other Attributes >
< QoS >::=< Availability > < Accessibility > < Integrity >
< Performance > < Reliability >
< Other Attributes >::=< Trust > < Cost >

As mentioned earlier requests and advertisements
should use the same context (ontology describing the
domain). If they have different contexts then an inte-
gration process need to be performed as defined for ex-
ample in [21].

The filtering process starts at the requester imme-
diately after it receives a ranked list of advertisements
that match its request as described in the previous sec-
tion. The “service goodness” attributes used are defined
below:

• Availability: Availability reflects if the service is
ready for immediate use. It represents the proba-
bility that a service is available. Mean Time To Re-
pair (MTTR), usually associated with availability
represents the mean time it takes to repair a service
that has failed. Smaller values ofMTTR are de-
sirable.

• Accessibility: Accessibility represents the degree
in which a service is capable of serving a request.
It represents the probability of service initiation at
a point in time. There could be situations when a

service is available but not accessible. High ac-
cessibility of services can be achieved by building
highly scalable systems. Scalability refers to the
ability to consistently serve the requests despite
variations in the volume of requests. Again,
accessibility can be calculated as:

the time the service was actually accessible

time elapsed since the service started after being advertised

• Integrity: Integrity represents how the service main-
tains the correctness of the interaction in respect to the
requester. Proper execution of service transactions will
provide the correctness of interaction. A transaction
refers to a sequence of tasks that make-up a service
which needs to be treated as a single unit of work. All
the tasks have to be completed to make the transaction
successful, otherwise all changes made should be rolled
back. Integrity can be calculated as:

the number of transactions successfully completed

total number of handled transactions

Here by “successfully” we mean that the provider has
given a correct service result to the requester.

• Performance: Performance is defined as made-up of
two attributes: throughput and latency. Throughput rep-
resents the number of service requests served per unit of
time. Latency is the round-trip time between sending a
request and receiving the response. Higher throughput
and lower latency values represent good performance of
a service.

• Reliability: Reliability represents the degree of being
capable of maintaining a service and its associated qual-
ity. The Mean-Time Between Failures (MTBF) repre-
sents a measure of reliability of a service.

• Trust: Trust can be defined as the degree of confidence
that an entity is capable of acting reliably and securely
in a particular transaction. Trust management thus in-
volves the collection of information necessary for defin-
ing trust values of entities and continuously monitoring
and adjusting such values. Reputation mechanisms rep-
resent an attractive way of handling trust [22]. In these
mechanisms, a requester will have an aggregated trust
value (between 0 and 1) for each provider.

• Cost: This represent the amount of money the provider
is charging for providing the service.

The filtering technique uses a weighting strategy in
which the requester assigns a weighting factor (∈ [0, 1])
reflecting the importance each of the eight attribute
has for the requester. Weights are chosen such that

A New Approach To Semantic Matchmaking Using Description Logics 5

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

�7
i=1Wi = 1 . The requester also defines the rela-

tive difference between its requested value of each at-
tribute and the value offered by the provider. If Ad is
the value requested by a requester and As is a value
offered by a provider then the percentage in difference
(PD ∈ [0, 1])(from the viewpoint of the requested) is
calculated as PD = Ad−As

Ad

. A negative value of PD

means that what is offered is more than what is expected
and a positive value means the opposite. A final value
of preferences (called Pref ∈ [0, 1]) is calculated as
follows:

Pref =
8�

i=1

Wi ∗ PDi

Pref combines weights and percentages in differ-
ence of all eight attributes. The final result is com-
pared with a threshold value that the requester has. If
Pref ≤ threshold then the requester will consider us-
ing the service of the provider, otherwise it will move
to calculate Pref for the next ranked provider.
The final result of the entire filtering process should

be a set of providers instead of only one to cater for the
dynamism of the system. If only one provider is gener-
ated, there is a possibility that by the time the requester
wants to call its related service, the provider has either
unadvertised for its service or has left the system.

5 Case Study

In this section, we use a modified version of the sample
ontology that appeared in [17] to illustrate our match-
making process. The ontology is related to the buy-
ing/selling of computers and their variants. Table 4
represents a TBox of the ontology.

Table 4: TBox of Computers Ontology
Monitor≡ CRTmonitor � LCDmonitor
CRTmonitor � LCDmonitor≡ ⊥
StorageDevice≡ HardDisk � FlashDisk
OperatingSystem≡ Linux � Windows
Device≡ Monitor � StorageDevice
Software≡ OperatingSystem � Browser � WordProcessor
Computer≡ PC � Laptop
Computer� (≥ 1 hasStorageDevice)
� ∀hasStorageDevice.StorageDevice
� ∀hasSoftware.Software � (≥ 1 hasRAM)
HomePC� PC � (≥ 1 hasSoftware) � (= 1 hasOS)
� (≥ 1 hasMonitor) � ∀hasMonitor.Monitor
Server� Computer � (≥ 2 hasCPU) � ∀hasRAM.(≥ 512 hasMB)
� ∀hasStorageDevice.(≥ 20000 hasMB)

Based on the above TBox, let’s take now examples
of each of the four cases of matches.

• Case of full match: Sup ≡ HomePC �
∀hasMonitor.LCDMonitor and

Dem ≡ HomePC. This is a full match because
Sup � Dem. In such a case the matchmaker send
the part
∀hasMonitor.LCDMonitor to the requester
in order to let it know that all provided HomePCs
come with an LCD monitor. In such a case it is up
to it to accept this or not.

• Case of plug-in match: Sup ≡ HomePC �
∀hasMonitor.LCDMonitor and
Dem ≡ HomePC �
∀hasMonitor.LCDMonitor �
∀hasRAM.(≥ 1024 hasMB). This is plug-in
match because Dem � Sup. If the requester re-
moves the part ∀hasMonitor.LCDMonitor �
∀hasRAM.(≥ 1024 hasMB) from Dem then we
get full-match as Sup � Dem. If the provider
adds ∀hasRAM.(≥ 1024 hasMB) to Sup then we
get an exact match (although we can add a more
specific conjunct and we get a full match). How-
ever, in most cases it is easier for a requester to re-
move features from its request than for a provider
to add features because sometimes it does not have
the capability to offer them.

• Case of intersection match:Sup ≡ HomePC �
∀hasRAM.(≥ 1024 hasMB �
∃hasSoftware.WordProcessor) and
Dem ≡ HomePC �
∀hasMonitor.CRTMonitor. HomePC
≡ Dem � Sup. If the requester keeps HomePC
and removes the rest then Sup � Dem and we
have a full match. If the provider keeps HomePC
and removes the rest we get a plug-in match which
can be refined as per the previous point.

• Case of disjoint match: Sup ≡ HomePC �
∀hasMonitor.LCDMonitor and
Dem ≡ Server �
∀hasMonitor.CRTMonitor. Clearly
Dem � Sup ≡ ⊥. In this case we need to
use concept contraction by finding two ALCN
formulas G (for give-up) and K (for keep) such
that Dem ≡ G �K and K � Sup ��T ⊥. In our
caseK ≡ HomePC and
G ≡ ∀hasMonitor.LCDMonitor.

Now assuming that we have a ranked list of
providers that can somehow fulfill the request of the re-
quester, the next step is to further filter them based on
“service goodness”. In Table 5, we list the weights and
PD of each of the eight attributes as defined by a re-
quester. If the threshold of the requester is 0.1 the final
value of Pref = 0.02 will be acceptable.

6 Taibi, T.

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

Table 5: Sample Filtering Process
Wi PDi Wi ∗ PDi

W1 = 0.1 PD1 = −0.25 -0.025

W2 = 0.1 PD2 = 0.3 0.03

W3 = 0.1 PD3 = 0.25 0.025

W4 = 0.1 PD4 = 0.25 0.025

W5 = 0.1 PD5 = −0.25 -0.025

W6 = 0.1 PD6 = −0.3 -0.03

W7 = 0.20 PD7 = 0.35 0.07

W8 = 0.20 PD8 = −0.2 -0.04

Pref =

8�

i=1

Wi ∗ PDi = 0.03

6 Related Work

With the growing information overload on the Web,
matchmaking has been increasingly investigated in re-
cent years under a number of perspectives and for dif-
ferent purposes. In this section, we will summarize
work done on matchmaking in general (for the sake of
completeness), with a focus on DL-based approaches.
However, at the end of the section we compare our work
with only those using DLs for matchmaking.
In [11],KQML was proposed as an agent com-

munication language that can facilitate the matchmak-
ing process. In [15], two developed matchmakers
were described, the SHADE matchmaker, which op-
erates over logic-based and structured text languages,
and the COINS matchmaker, which operates over free
text. These matchmakers have been used for a variety
of applications, most significantly, in the domains of
engineering and electronic commerce. Similar meth-
ods were later re-considered in the GRAPPA system
[26]. Classified ads matchmaking, at a syntactic level,
was proposed in [19] to matchmake semi-structured
descriptions advertising computational resources in a
fashion anticipating grid resources brokering. Match-
making was used in SIMS [3] to dynamically inte-
grate queries using KQML, and LOOM as description
languages. LOOM was also used in the subsumption
matching addressed in [12]. InfoSleuth [14], a sys-
tem for discovery and integration of information, in-
cluded an agent matchmaker, which adopted KIF as a
description language and the deductive database lan-
guage LDL++.
Matchmaking using satisfiability in DLs was first

proposed in [13], [10] and [25]. In [23], the authors
introduced a specific language (LARKS) for agent ad-
vertisement in the framework of the RETSINA Multi-
agent infrastructure. Moreover, a matchmaking engine

was developed which carries out the process using five
filters. Such levels exploit both classical text-retrieval
techniques and semantic match using θ-subsumption.
However, standard features of a semantic-based system,
such as satisfiability check were not used. Nonethe-
less, the authors introduced the notion of plug-in match
in order to overcome the limitations of exact match.
This was further extended in [18]. In [16], the au-
thors extended the approach defined in [23] by adding
two new levels of matching classification (subsumes
and intersection). In [5], the authors proposed an ap-
proach to semantic matchmaking that uses concept dif-
ference [24], followed by a covering operation opti-
mized using hypergraph techniques, in the framework
of web services discovery. An initial DL-based ap-
proach, adopting penalty functions ranking, has been
proposed by [8] in the framework of dating systems.
An extended matchmaking approach based on concept
contraction and concept abduction was presented in [9]
and further extended in [17].
Our work can be seen as an extension to [16] and

[9]. However, besides the similarities, there are major
differences in the approach taken. Both similarities and
differences can be summarized as follows:

• Our approach has similar classification of match-
making levels found in [16], although different
naming conventions were used. It is worth not-
ing that [16] did not tackle request refinements.
Our approach, uses techniques to refine a request
which is somehow similar to what is defined in
[9]. However, there are many differences between
the two approaches (see below).

• The work in [9] uses concept contraction to
improve the match from “disjoint” to “intersec-
tion”. It also uses concept abduction to improve
the match from “intersection” to “full”. In con-
trast, our approach tackles all cases (besides ex-
act match) and proposes ways to refine the match.
In the case of “full” match the requester is in-
formed of the “extra” features of the provided ser-
vice so that it can use them in the future. “Plug-
in”,“intersection” and “disjoint” matches can be
improved to “full” matches by either making
changes to the request or the advertisement.

• After the requester gets the matchmaking results,
we have devised a filtering process based on “ser-
vice goodness” which combines QoS attributes
with other important attributes such as trust and
cost. Those attributes are embedded in match-
maker reply as part of an (RPCDL) message.

A New Approach To Semantic Matchmaking Using Description Logics 7

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

7 Conclusion

We have addressed the matchmaking problem between
requests and advertisements from a DL perspective. We
cannot overemphasize the importance of efficient and
effective matchmaking in the Semantic Web.
The problem of matchmaking has been tackled from

different aspects. First, we organized the degrees of
matches by order of importance then defined ways to
improve the request or advertisement in order to reach
either an exact or full match. Then, we went beyond the
matchmaking done at resource discovery level and de-
fined a filtering process of the results based on attributes
that we call “goodness of service”. These attributes
combine both QoS attributes and other attributes such
as trust, and cost. To this end, we defined RPCDL as
a language in which requests and advertisements can
be written and “goodness of service” attributes can be
conveyed by the providers. The outcome of the fil-
tering process can trim-down tremendously the list of
matching advertisements and provides the most accu-
rate matches that the requester needs. To our knowl-
edge, our refinement mechanism and the filtering using
“service goodness” represent new contribution to the
matchmaking field.

References

[1] Dl reasoners. available from
http://www.cs.man.ac.uk/ sattler/reasoners.html.

[2] Owl. available from http://www.w3.org/tr/owl-
features/.

[3] Arens, Y., Knoblock, C. A., and Shen, W. Query
reformulation for dynamic information integra-
tion. Journal of Intelligent Information Systems,
6:99–13, 1996.

[4] Baader, F., Calvanese, D., D.and Mc Guinness,
Nardi, D., and Patel-Schneider, P., editors. The
Description Logic Handbook. Cambridge Univer-
sity Press, 2003.

[5] Benatallah, B., Hacid, M., Rey, C., and Toumani,
F. Request rewriting-based web service discov-
ery. In Proceedings of International Semantic
Web Conference, volume 2870 of Lecture Notes
in Computer Science, pages 242–257. Springer,
2003.

[6] Brachman, R. and Levesque, H. The tractability
of subsumption in frame-based description lan-
guages. In Proceedings of the Fourth National
Conference on Artificial Intelligence (AAAI-84),

pages 34–37. Morgan Kaufmann, Los Altos,
1984.

[7] Brachman, R. and Levesque, H. Knowledge Rep-
resentation and Reasoning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

[8] Cali, A., Calvanese, D., Colucci, S., Di Noia, T.,
and Donini, F. M. A description logic based ap-
proach for matching user profiles. In In Proceed-
ings of the 17th International Workshop on De-
scription Logics (DL04), volume 104, 2004.

[9] Colucci, S., Di Noia, T., Di Sciascio, E., Donini,
F., andMongiello, M. Concept abduction and con-
traction for semantic-based discovery of matches
and negotiation spaces in an e-marketplace. Elec-
tronic Commerce Research and Applications,
4(4):345–361, 2005.

[10] Di Sciascio, E., Donini, F., Mongiello, M., and
Piscitelli, G. A knowledge-based system for
person-to-person e-commerce. In In Proceedings
of the KI-2001 Workshop on Applications of De-
scription Logics (ADL-2001), volume 44, 2001.

[11] Finin, T., Fritzson, R., McKay, D., and McEntire,
R. Kqml as an agent communication language.
In Proceedings of the Third International Confer-
ence on Information and Knowledge Management
(CIKM94), pages 456–463. ACM Press, 1994.

[12] Gil, Y. and Ramachandran, S. Phosphorus: a task
based agent matchmaker. In Proceedings of In-
ternational Conference on Autonomous Agents 01,
pages 110–111. ACM Press, 2001.

[13] Gonzales-Castillo, J., Trastour, D., and Bartolini,
C. Description logics for matchmaking of ser-
vices. In Proceedings of the KI-2001 Workshop on
Applications of Description Logics (ADL-2001),
volume 44, 2001.

[14] Jacobs, N. and Shea, R. Carnot and infosleuth
database technology and the web. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data, pages 443–444. ACM
Press, 1995.

[15] Kuokka, D. and Harada, L. Integrating informa-
tion via matchmaking. Journal of Intelligent In-
formation Systems, 6:261–279, 1996.

[16] Li, L. and Horrocks, I. A software framework for
matchmaking based on semantic web technology.
In In Proc. International World Wide Web Confer-
ence (WWW 03), pages 331–339, 2003.

8 Taibi, T.

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

[17] Noia, T. D., Sciascio, E. D., and Donini, F. M.
Semantic matchmaking as non-monotonic reason-
ing: A description logic approach. Journal of Ar-
tificial Intelligence Research, 29:269–307, 2007.

[18] Paolucci, M., Kawamura, T., Payne, T., and
Sycara, K. Semantic matching of web services
capabilities. In proceedings The Semantic Web
- ISWC 2002, volume 2342 of Lecture Notes
in Computer Science, pages 333–347. Springer-
Verlag, 2002.

[19] Raman, R., Livny, M., and Solomon, M. Match-
making: distributed resource management for
high throughput computing. In Proceedings of
IEEE High Performance Distributed Computing
Conference, pages 140–146, 1998.

[20] Schmidt-Schaub, M. and Smolka, G. Attributive
concept descriptions with complements. Artificial
Intelligence, 48(1):1–26, 1991.

[21] Shvaiko, P. and Euzenat, J. A survey of schema-
based matching approaches. Journal on Data Se-
mantics, 4:146–171, 2005.

[22] Singh, A. and Liu, L. Trustme: Anonymous man-
agement of trust relationships in decentralized p2p
systems. In Proceedings of IEEE Peer-to-Peer
Computing (P2P) 2003, pages 142–149, 2003.

[23] Sycara, K., Widoff, S., Klusch, M., and Lu,
J. Larks: Dynamic matchmaking among het-
erogeneus software agents in cyberspace. Au-
tonomous agents and multi-agent systems, 5:173–
203, 2002.

[24] Teege, G. Making the difference: A subtraction
operation for description logics. In Proceedings of
the Fourth International Conference on the Prin-
ciples of Knowledge Representation and Reason-
ing (KR94), pages 540–550.

[25] Trastour, D., Bartolini, C., and Priest, C. Se-
mantic web support for the business-to-business
e-commerce lifecycle. In Proceedings of Inter-
national World Wide Web Conference (WWW) 02,
pages 89–98, 2002.

[26] Veit, D., Muller, J., Schneider, M., and Fiehn, B.
Matchmaking for autonomous agents in electronic
marketplaces. In Proceedings of International
Conference on Autonomous Agents 01, pages 65–
66. ACM Press, 2001.

A New Approach To Semantic Matchmaking Using Description Logics 9

INFOCOMP, v. 9, n. 3, p. 01–09, set. 2010

