

Identification and Definition of Early Aspects - A Prototype of Method

ANTONIO MARIA PEREIRA DE RESENDE
1

ADILSON MARQUES DA CUNHA
2

HEITOR AUGUSTUS XAVIER COSTA
3

1, 3PqES - Software Engineering Research Group

1, 3Federal University of Lavras - Department of Computer Science
ZIP 37200-000, Lavras, MG, Brazil

1tonio@dcc.ufla.br, 3heitor@dcc.ufla.br

2 Technological Institute of Aeronautics
Department of Electronic Engineering and Computation

ZIP 12228-900, São José dos Campos, SP, Brazil
2cunha@ita.br

Abstract. This paper briefly presents the conceptual model of the Method for Early Aspect (EA)
Identification and Definition (MEAID). It also details activities named Early Aspects Candidates
Identification with a set of heuristics and Early Aspects Definition with decision equation. The MEAID has
being developed to support software engineering professionals reduce empirical and subjective decisions,
aiming to increase efficacy and efficiency on such activity. Results from a scientific experimentation, based
on Experimental Software Engineering concepts and their statistical analysis applying Student’s T Test
statistical method are presented as well.

Keywords: Workflow process management, Dynamic access control integration, Authorization policy

 (Received January 20, 2010 / Accepted May 30, 2010)

1. Introduction

The emergence of Object-Oriented (OO) paradigm
shows up several benefits to the software engineering
field, such as the software development complexity
reduction, as well as facilities to maintain, modularize
and reuse software. Despite of such contributions during
the previous decades, OO seems to achieve their limits
for reducing systems complexity nowadays [1], [2], [3],
and [4]. The Aspect-Oriented (AO) has appeared on this
context, being able to reduce the software development
complexity and keeping benefits achieved by OO [3].

Along with AO, needs of figuring out a methodology
of Aspect Oriented Software Development (AOSD) has
emerged in order to identify, separate, design and
compose aspects and crosscutting concerns This
methodology shall support software engineering phases
such as analysis, design, implementation, testing and
maintenance.

Early Aspects (EA) represent the subset of activities
belonging to the AOSD, [5] and [6] aiming to identify
aspects from initial phases of software development as
domain analysis, requirements specification and
architectural design, as shown in Figure 1.

In a previous paper [7] and others as [8], [9], and
[10], it was shown a review about Early Aspects where
solution proposal were divided into Methodological and
Templates ones. The former one describes a method to
early aspects identification, whereas the latter one
describes structures, schemas, taxonomies, patterns and
others to be used as references to guide software
modeling to identity early aspects. Keeping this criterion
in mind, MEAID is classified as a Methodological
solution.

Figure 1 - Early Aspect Scope.

This paper presents a conceptual model of the
Method for Early Aspect Identification and Definition
(MEAID) and details the Identifying Early Aspects
Candidates. It also shows up a set of heuristics to

Domain Analysis
Architectural

Design
Requirements
Specification

Candidate
Aspects

Stable
Aspects

Domain Analysis
Architectural

Design
Requirements
Specification

Candidate
Aspects

Stable
Aspects

identify them, besides to describe a experiment carried
out from Experimental Software Engineering concepts.

The rest of this paper is organized as follows. Section
2 introduces MEAID. Section 3 briefly summarizes the
experimentation realized and its results. Next,
concluding remarks are given in Section 4.

2. MEAID

Nowadays, some researchers are investigating methods,
techniques, and tools for Early Aspect. Several of them
are resumed in [11], but none of them show up heuristics
or Experimental analysis, applying statistics, to
determine their exactly values.

The Method for Early Aspect Identification and
Definition (MEAID) has two main activities: Early

Aspect Candidates Identification and Early Aspects
Definition.

The former one uses two artifacts as input:
Requirements Specification and Heuristics to Identify
Candidates Early Aspects (HIEAC). This activity
enables appropriate requirements identification, showing
to the software engineering that he/she might take
advantage if the implementation was made by using
Aspect-Oriented. The output artifact of this activity is
named Specification of Early Aspects Candidates, as
depicted in Figure 2, which comprises Early Aspects
Candidates found out by this activity. The execution of
this activity consists of applying heuristics detailed in
Table 1, according to the Requirements Specification of
the software under development.

Table 1 - Heuristics Description.

HEURISTICS FORM

HIEAC-1

Rule:
If there are Non-Functional Requirements (NFR) of the same nature where they can be grouped into modules,
packages or components, then each set of this requirements is an EA Candidate (EAC).
Examples:
� If NFR related to Safety can be grouped into modules, packages or components, then each one of these sets of the

same nature is an EAC;
� If NFR related to Distribution can be grouped into modules, packages or components, then each one of these sets

of the same nature is an EAC;
� If NFR related to Persistence can be grouped into modules, packages or components, then each one of these sets

of the same nature is an EAC;
� If NFR related to Transactions can be grouped into modules, packages or components, then each one of these sets

of the same nature is an EAC;
� If NFR related to Concurrency can be grouped into modules, packages or components, then each one of these sets

of the same nature is an EAC; and
� If NFR related to Synchronization can be grouped into modules, packages or components, then each one of these

sets of the same nature is an EAC.

HIEAC-2

Rule:
If there are NFR identified by HIEAC-1 which can be subdivided into smaller parts, then each one of these
subdivisions is an EAC.
Examples:
� If NFR related to Safety can be subdivided into smaller parts, as Authentication, Authorization, Logging,

Cryptography and others, then each one of these subdivisions is an EAC.

HIEAC-3

Rule:
If there are programmable requirements by means of different technologies, then each one of them is an EAC
Examples:
� If Data Transmission requirements can be programmed using Hypertext Transfer Protocol - HTTP, User Datagram

Protocol - UDP, Sockets, Transmission Control Protocol / Internet Protocol - TCP/IP, among others, then these
requirements are EAC;

� If Distribution requirements can be programmed using Common Object Request Broker Architecture - CORBA,
Remote Method Invocation - RMI or Distributed Component Object Model - DCOM, then these requirements are
EAC; and

� If Persistence requirements can be programmed using Prevailed, Hibernate, Java Data Objects JDO or Enterprise
Java Beans - EJB, then these requirements are EAC.

__

__

66 Resende, A. M. P. de et al.

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

Table 1 - Heuristics Description (cont.).

HEURISTICS FORM

HIEAC-4

Rule:
If there are requirements related to system monitoring to fault detection or fault tolerance, then each one of these
requirements is an EAC.
Examples:
� Requirements related to Pre-Conditions - if there are requirements which apply pre-conditions, then each one of

them is an EAC.
� Pre-Condition Example: a) All banking transactions must be encrypted; b) All credit and debit operations using

internet, besides to ask for id and password for internet access, must ask for id and password used in banking
house; e c) It must have at least one registered employee to generate payroll.

� Requirements related to Post-Conditions - if there are requirements which apply post-conditions, then each one of
them is an EAC.

� Post-Condition Example: a) All employees must have an address and a phone number registered; and b)
Employees must be registered with at least 2 minimum salary and medical care coverage.

� Requirements related to Warranty Restrictions - if there are requirements which apply warranty restrictions, then
each one of them is an EAC.

� Warranty Restriction Example: a) If the pressure is over 2000 lbs, set it to 2000; and b) If there is any employee
without a manager, associate to them managers which have fewer employees under supervision.

� Requirements related to Exceptions Treatment - if there are requirements which apply exceptions treatment, then
each one of them is an EAC.

� Exceptions Treatment Example: a) If there is any calculus error, then open an dialog and ask for values to assign to
the variable which has presented the error; and b) If the sensor´s visibility is under 15 meters, slow down the speed
to under 30 km/h.

HIEAC-5

Rule:
If there are requirements related to other requirements pointing out coupling functionalities, then each one of these
requirements observed at least once is an EAC.
PS.: A special care must be taken regarding verbs and nouns which might indicate the same functionality or
requirement, even when they are different. The opposite idea is true as well.
Examples:
� If Safety requirements appear in another requirements and are written in a different way, for instance: a)

Authenticate a user; and b) Check user id and password, then Safety is an EAC.
� If Communication requirements appear in another requirements and are written in an identical way, such as: a)

Send order to headquarters office; b) Send final balance of the day to headquarters office; and c) Send list of
products broken to registration on stock; then Communication is an EAC.

HIEAC-6

Rule:
If there are a set of requirements that can be gathered and implemented as a component to be reused in others
projects, then that requirements set is an EAC.

Examples:
� If the requirements set responsible for automatic riot detection using video can be gathered and implemented as a

component to be reused in others projects, then that requirements set is an EAC.
� If the requirements set responsible for oil pipeline leak detection can be gathered and implemented as a component

to be reused in others projects, then that requirements set is an EAC.
� If the requirements set responsible for authentication and authorization users can be gathered and implemented as

a component to be reused in others projects, then that requirements set is an EAC.

HIEAC-7

Rule:
If there are requirements available in different software editions (eg. home, professional and enterprise) depending on
customer interest, then each one of these requirements is an EAC.
Examples:
� If the requirements set responsible for automatic riot detection using video cannot be implemented in home edition,

but it can be implemented in professional edition, depending on customer´s choice, and it is implemented by default
in enterprise edition, then each one of these requirements is an EAC.

� If the requirements set responsible for oil pipeline detection cannot be implemented in home edition, but it can be
purchased in professional and enterprise editions, then each one of these requirements is an EAC.

� If the requirements set responsible for authentication and authorization users cannot be implemented in home
edition, but it can be implemented in professional edition, depending on customer´s choice, and it is implemented by
default in enterprise edition, then each one of these requirements is an EAC.

__

__

Identification and Definition of Early Aspects - A Prototype of Method 67

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

Table 1 - Heuristics Description (cont.).

HEURISTICS FORM

HIEAC-8

Rule:
If there are maintenance requirements that are neither part of the standard system solution nor of its editions,
however these requirements need to be implemented in order to accomplish a customer´s customization, and the
implementation of these requirements necessary add new attributes, variables, methods, relationships, classes and
functionalities, then each of these maintenance requirements is an EAC.
Examples:
� If a maintenance requirement, involving software improvement, request for implementing a new functionality to open

doors automatically, and new attributes, methods needed to be declared and that functionality will not be
incorporated into the standard solution, then it is an EAC.

� If a maintenance requirement, involving adaptation, request to change GPS by GLONASS standard to capture
latitude, longitude and altitude of a certain vehicle, and that adaptation will not be incorporated into the standard
solution, then it is an EAC.

HIEA- 9

Rule:
If there are requirements which represent messages exchanges in object-oriented paradigm, involving systems,
subsystems, modules, components and others, and these messages generate coupling, then each of these
requirements is an EAC.
Examples:
� If there are requirements which establish messages among Security, Persistence and Logging module, and this

generate coupling, then each of these requirements is an EAC.
� If there are requirements which establish messages among Accounting, Human Resources, Marketing and Selling

modules, generating coupling, then each of these requirements is an EAC.

HIEAC-10

Rule:
If there are requirements of subsystems, packages, components, functionalities and others, under experimental or
temporary conditions, or when are frequently changed, then each one of these requirements is an EAC.
Examples:
� If a requirement which request for a tax implementation is a temporary functionality, then it is an EAC.
� If autonomous navigation requirements set is a vehicle software module under testing, then that requirements set is

an EAC.

HIEAC-11

Rule:
If there are requirements describing 24x7 functionality, or 24x7 functionalities that need to be changed, then that
requirements set is an EAC. (Note: 24x7 functionality are functionalities that need to support operations 24 hours per
day during 7 days per week).
Example:
� If a requirement to log phone calls duration is needed to work 24 hours per day and 7 days per week, then it cannot

stop and it is an EAC.

HIEAC-12

Rule:
If there are requirements triggered by other requirements, then each one of these requirements is an EAC.
Example:
� If a requirement to count phones calls minutes is triggered after the requirement to complete the phones calls, then

the requirement to count phones calls minutes is an EAC.

HIEAC-13

Rule:
If there are requirements which describe business rules, then each of them is an EAC.

Examples:
� If a requirement “If a segmentation algorithm of images needs to be triggered by camera 1, then run algorithm 1,

otherwise run algorithm 2” is a business rule, then it is an EAC.
� If a requirement “Financial transactions over US$100.000,00 should be logged and information sent to Federal

Police” is a business rule, then it is an EAC.

HIEAC-14

Rule:
If there are requirements that track the control-flow of a system or even identify the requirement that is responsible for
trigger another one, then each of them is an EAC.

Examples:
� The requirement “Always that the temperature of stove exceed 3200ºC, log every functionalities triggered by system

operator” is a an EAC, because it needs to keep track about the established parameters.
� The requirement “If the moving detection algorithm detects something using camera 1, then cameras 2, 3, 4, and 5

need record everything by 20 minutes” is an EAC, because it needs to identify the camera responsible for triggering
it.

The EA Definition uses Specification of EA
Candidate and Specification of Decision Equation
artifacts as input. Such an activity enables an appropriate
definition about which requirements are more qualified

and present more advantages to be implemented as
aspects, previously classified as EA Candidates by the
earlier activity. The main focus of this activity is to
assign scores to each of EA Candidates identified by the

__

__

68 Resende, A. M. P. de et al.

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

previous activity. In the EA Definition activity, the
higher the score assigned, the less will be the involved
risks regards with the use of AO, improving chances to
take competitive advantages using aspects. The
execution of EA Definition activity consists of applying
metrics and a Decision Equation, which are part of the
Decision Equation Specification artifact, to each one of
EA Candidates listed during Specification of EA
Candidates. This way, the Specification of EA artifact is
generated, as depicted in Figure 2.

The focal point of this paper is to present the first
activity of the MEAID named EA Identification.

MEAID comprises a method, which guides the
software engineer to use the Requirements Specification
and Heuristics to Identify EA Candidates (HIEAC)
artifacts as inputs to the Identification of EA Candidates
activity. This generates the Specification of EA
Candidates as an intermediate output to MEAID.

Figure 2 - MEAID´s Conceptual Modeling.

2.1 EA Candidates Identification

Aiming to support the Identification of EA Candidates,
Table 1 shows up heuristics proposed on this work and
inserted into an artifact named Heuristics to
Identification of EA Candidates (HIEAC).

These heuristics enables the identification of EA
Candidates when correctly applied into the
Requirements Specification phase of a software system
development, supporting software engineering
professionals for reducing of empirical and subjective
decisions.

The tabular notation, used in past to describe
heuristics for Object Oriented Paradigm, has been
adopted to describe MEAID´s heuristics. This way, the

second column has been splitted into three rows to
describe such heuristics by means of their rules and
examples.

This notation was adopted from [11] and employed
to describe methods related to OO, as illustrated in
Table 2. The authors encouraged MEAID users to
maintain the example and justification fields up-to-date,
as each new application of the method is initiated.

Table 2 - Model to Describe Heuristics.

Abbreviation
Rule:
Example(s):
Justification(s):

The fields in Table 2 are:

� Abbreviation - represents a heuristic unique
identifier;

� Rule - describes the practical rule to be applied by
the software engineering in order to accomplish the
expected results. For instance, this field can report
the practical rule to so that it can aid to identify EA
Candidates. Therefore, new EA can emerge during
each application of this rule. In this case, software
engineering shall carefully examine these new
examples, so that they can be added to the Example
field, aiming to be reused in future projects;

� Example(s) - report results discovered by earlier
application of heuristics indicated by the Rule field.
It enables the activity speed up to identify EA
Candidates during the Aspect-Oriented Software
Development (AOSD). Nevertheless, the Example
field must not replace the Rule one, because the
abstraction level of its description enables the
appearance of new examples, due to particularities of
each system;

� Justification(s) - exhibit fundamentals, examples or
bibliographic references which justify the heuristic
development as well as its application. Due to lack of
space, this paper omits this field.
Despite heuristics justifications are based on [4] and

[13], other documents were used to extract heuristics to
indicate which requirements are potential enough to be
implemented as aspects. Among these documents we can
cite: programs developed by this paper´s first author,
during the learning process as well as investigations
about AO; scientific papers, such as [14]; technical
books, such as [4], [15], [16], and [13]; and technical
and user programming language manuals, such as [17],
[18], and [19].

An additional effort has been made to select the best
papers which give the theoretical foundations to each
developed heuristic. Anyway, this comprises a hard

Specification
of Early
Aspects

Candidates

Specification
of Early
Aspects

Candidates

AnalystAnalyst
Identifying

Early
Aspects

Candidates

Identifying
Early

Aspects
Candidates

Requirements
Elicitation

Requirements
Elicitation

Heuristics for
Identifying Early

Aspects
Candidates -

HIEAC

Heuristics for
Identifying Early

Aspects
Candidates -

HIEAC

Specification
of Early
Aspects

Specification
of Early
Aspects

Definition of
Early Aspects
Definition of

Early Aspects

Specification of
Decision
Equation

Specification of
Decision
Equation

__

__

Identification and Definition of Early Aspects - A Prototype of Method 69

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

work, because the success of coding a requirement as an
aspect depends on the technology used.

The authors of this paper are evaluating this method
and believe that it can be necessary to break down the
Justification into sub-items. This way it can enables to
identify different technologies to program results of a
heuristic using each of them. These can be based on the
fact that these technologies are still in the development
process, have distinct characteristics and AO are not yet
well consolidated.

2.1 EA Definition

Aiming to define EA using EA candidates identified in
previous activity, six technical factors and one
organizational factor have been proposed, in order to
reduce the risks involving implementation of
requirements applying AO technologies.

The six technical factors are Documentation (Doc),
Previous Experience (PE), Tangle Requirements (TR),
Spread Requirements (SR), Interest in Components (IC)
and Adjustment (Ad) and one organizational factor is
AO Importance (AOI). Initially, these seven factors
composed the criteria to understand why and when a
requirement could be implemented applying AO
technologies with low risks.

In order to calculate Adjustment value, It was
developed the following equation:

Equation 1 - Calculating Adjustment Factor.

The variables in Equation1 are:
� Ri � represents the requirement under analysis;
� Adjusted_Heuristics � Amount of heuristics that the

requirement Ri satisfied;
� Sum_of_Heuristics � Current value is 14 (Table 1).

Likert Scales have been developed to support
professionals on quantifying others Factors, as showed
on figures below.

For Documentation factor, use the Likert Scale
showed in Figure 3 to answer the following question: Is
there a documented solution for requirement under
analysis?

For Previous Experience factor, use the Likert Scale
showed in Figure 4 to answer the following question:
What is the previous experience of development team?

For Tangle Requirements, Spread Requirements,
Interest in Components and AO Importance factors, use
the Likert Scale showed in Figure 5 to answer the
following questions, respectively: (Tangle

Requirements) What is the tangling level of requirement
under analysis? (Spread Requirements) What is the
spreading level of requirement under analysis?

 Figure 3 - Likert Scale for Quantify Factors.

Figure 4 - Likert Scale for Quantify Factors.

(Interest in Components) What is the Interest level in
transform the requirement under analysis in a
component? (AO Importance) What is the strategic
value of applying AO technologies to implement the
requirement under analysis?

Figure 5 - Likert Scale for Quantify Factors.

Nowadays, several researchers, engineers, analysts,
developers and so on are experimenting AO
Technologies in your business all over the world. So, get
answers for each question of all factors, considering
each requirement of system under analysis, is very
important to investigate and determine risks levels.

The Decision Equation, showed in Equation 2, was
developed to support professionals on determining risk
levels of each requirement and answer if the requirement
could be implemented applying AO technologies.

To elaborate the Decision Equation, Technical and
Organizational Factors were reclassified in Decision and
Weight Factors. Decision Factors describe factors able
to avoid use of AO Technologies if their value is zero. In

U
nk

no
w

n
or

Th
er

e
Is

n’
t

Pa
rti

al
 a

nd
 P

oo
r

Pa
rti

al
 a

nd
 G

oo
d

Sa
tis

fa
ct

or
y

0 1 2 3 4

R
eg

ul
ar

D
o

n
’t
 e

x
is

t

L
o

w
 o

r
W

e
a
k

R
e

g
u

la
r

E
x
c
e

lle
n

t

V
e

ry
 G

o
o

d

D
o
n

’t
 E

x
is

t

W
e
a
k

R
e

g
u

la
r

V
e

ry
 H

ig
h

0 1 2 3 4

H
ig

h4*
__

)(_
)(

HeuristicsofTotal

RiHeuristicsAdjusted
RiAd �

__

__

70 Resende, A. M. P. de et al.

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

other case, the risks value increase or decrease according
with directly of factors value.

The Decision Factors are Tangle Requirements,
Spread Requirements and AO Importance. The Weight
Factors are Documentation, Previous Experience,
Interest in Components and Adjustment.

Equation 2 - Decision Equation.

As shown in Figure 6, nine curves are engaged to
define the Decision Equation. Graphically Moderate
Curve represents Decision Equation with exponent 1
(one). Curves named Bold, Bold+ and Bold++ represent
Decision Equation with exponent 0.75, 0.55, 0.35,
respectively. Curves named Conservative,
Conservative+ and Conservative++ represent Decision
Equation with exponent 1.4, 1.8, 2.2, respectively.

Curves named Superior Edge and Inferior Edge
define thresholds that we need to respect to reduce risks.

For example, if the result of Decision Equation, for some
requirement, is under Inferior Edge, then the developer
should not use OA Technology to implement it. If the
result of Decision Equation, for some requirement, is
above Superior Edge, then the developer should use OA
Technology to implement it, because the risks are
minimal.

However, there is a region in graphic considered
Critic Region that is located between Superior and
Inferior Edges. When the result of Decision Equation,
for some requirement, is in Critic Region, then the
developer should examine the value of each of Factors
and determine whether is worth apply OA Technology to
implement the requirement. As near the result equation
is from Superior Edge, lower is risks and vice-versa.

Prototypes of AO System were used to define Curves
values in order to research group determine weights,
define what factors are decision factors or Weight
Factors, propose Superior and Inferior Edges.

The Decision Equation has been submitted in
sensitivity analysis and the expected behavior was
achieved. It could have their factors and weights
changed to represent, more correctly, the Enterprise
Technology Use Politics, after adequate investigation.

Figure 6 - Decision Equation and Variations3. Experimentation and Results.

The experimentation to validate MEAID has been
applied at the Federal University of Lavras, involving 1

associate professor, 3 graduated and 26 undergraduate
Computer Science students.

�
�

�
�
�

�
���

�������

�
�
�

�

�

�
�
�

�

� ����
�

)(16

)()()()(

*
12

]
64

**
[*][

*10)(

����
���� AdICDocPE

OAISrTr
OAISrTr

xS

0,00
1,00
2,00
3,00
4,00
5,00
6,00
7,00
8,00
9,00

10,00
11,00

0 1 2 3 4 5 6 7 8 9 10

Values sets of Decision and Weight Factors

S
(x

)

Conservative Conservative+ Conservative++

Bold Bold+ Bold++

Moderada Superior Edge Inferior Edge

__

__

Identification and Definition of Early Aspects - A Prototype of Method 71

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

The first day was allocated to AO training, whereas

the experimentation was applied in the second day. The
collaborators were separated into 2 groups, called
Control Group and Experimental Group. The Control
Group has applied the Intuitive Method (IM), and it was
used to compare efficacy and efficiency from the
Experimental Group, which has applied MEAID. By
comparing results of these groups, it was possible
evaluate which group has achieved a better efficacy and
efficiency during the Candidate Early Aspect
Identification activity.

Table 3 presents a set of metrics created and used as
parameters for comparing IM and MEAID.

Table 4 and Table 5 summarize results analysis
involving the two methods applied. Both groups
received the same AO training at the same time. IM´s
appliers only have used knowledge learned during AO
training and their intuition to classify requirements as
Early Aspect Candidate, whereas MEAID´s appliers
have been used to perform the same activity.

IM´s appliers have justified, into filled forms, why
they believe that a requirement was an EAC. This way,
Rough Results are the ones calculated taking into
account answers without consider such a justification.
The Refined Results were calculated by considering
correct appliers´ justifications.

Table 4 and 5 summarize results obtained after
applying Student’s T-Test.

Table 3 - Metrics used to compare IM and MEAID.

TEAF - Total Early Aspects
Found

CEi - Compared Efficiency

ATEAI - Average Time for
Early Aspects Identifying

Errors - Errors Amount

CEa - Compared Efficacy ET - Errors Tax

Table 4 - Summary of Analysis about Intuitive Methods Results
(Rough Data) versus MEAID Result (Refined Data).

Considering the Decision Equation, superior and
inferior edges had been defined after some Sensitivity

Analysis application. Each factor assumed all values
possible, considering 10% of variation. For example, all
factors received value zero and the Documentation
(Doc) factor received values 0, 0.1, 0.2, 0.3 until max
value 4. Following, all factors received 0.1 and
Documentation received values 0, 0.1, 0.2 until max
value 4. All factors were frozen in some moments and
modified in others moments, in order to test all possible
arrangement.

Table 5 - Summary of Analysis about Intuitive Methods Results
(Refined Data) versus MEAID Results (Refined Data).

Determine the best value to superior and inferior
edges is a hard task yet, and new discussions are
necessary to determine a better way or improvements in
method.

4. Conclusion

This paper described the activities Early Aspects (EA)
Candidates Identification and EA Definition comprised
by Method for Early Aspect Identification, showing
Heuristics and a Decision Equation developed to support
it.

This paper represents a piece of results from an
Doctoral Thesis and is based on “need of Scientific and
Technological Software Engineering Community to have
a systematic for identifying and defining of Early
Aspects using Requirements Specification, in order to
increase efficacy and efficiency of Aspect Oriented
Software Development, reducing empirical and
subjective decisions”.

It has shown results from new method
experimentation and its evidences to increase efficacy
and efficiency of Early Aspects Identification activity,
fulfilling an important gap of AO. MEAID provides
reduction of empirical and subjective decisions, because
Heuristics aid to identify reasons that lead software
engineer to classify requirements as an Early Aspect
Candidate.

Metric
MEAID Diagnostic

based on Averages

Intuitive

Method

(IM)

MEAID
T-Test

(5%)

TEAF 2,78 times better 10,43 29 99,97

ATEAI 20% of time of IM 12,12 3,42 **

CEa 2,49 times more efficacy 28,19 61,7 99,79

CEi 2,64 times more efficient 5,79 15,34 99,91

Errors 3,29 times more amount

errors

31,86 105 **

ETx Performed ¼ of IM erros 56,89 13,39 100

** Collected data didn't fulfill statistical requirements for applying T Test

Metric
MEAID Diagnostic

based on Averages

Intuitive

Method

(IM)

MEAID
T-Test

(5%)

TEAF 4,61 times better 6,29 29 99,99

ATEAI 13% of time of IM 20,63 3,42 **

CEa 3,63 times more efficacy 16,99 61,7 99,99

CEi 4,37 times more efficient 3,49 15,34 99,97

Errors 3,40 times more amount

errors

30,86 105 **

ETx Performed ¼ of IM erros 55,1 13,39 100

** Collected data didn't fulfill statistical requirements for applying T Test

__

__

72 Resende, A. M. P. de et al.

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

Considering the Early Aspects Candidates

Identification activity, Student’s T-Test has been applied
and showed evidences that MEAID is more effective and
efficient than the Intuitive Method, with trustworthiness
higher than 99.7%.

Considering the Early Aspects Definition activity, a
Sensitivity Analysis has been applied, based on AO
prototypes, for defining of references values able to
support what requirement should be implemented
applying AO Technologies.

The main advantages shown by MEAID were:
� Use of heuristics to identify EAC aiming to: a)

transfer AO technology to organizations; and b)
teach AO paradigm to students, teachers, researches
and so on;

� Use Decision Equation to quantify the risks of apply
OA Technology for implementing requirements;

� Reduction of empirical and subjective decisions by
means of heuristics that facilitate to understand why
a given requirement was classified as an EAC;

� Reduction of empirical and subjective decisions by
means of Decision Equation that facilitate to
understand why developer should use AO
Technology for implementing requirements;

� Increase the amount of Early Aspect identification up
to 4.61 times;

� Reduction in 83% of the average time for EAC
Identification;

� Increase in the Efficacy and Efficiency of the Early
Aspects Identification activity; and

� Reduction in Tax Errors - Etx;
The main disadvantages identified in MEAID

include:
� Lack of assurance that all of the Early Aspects can be

found; and
� Increase the chances of EAC be wrongly found.

Anyway, this disadvantage is reduced or avoided by
following an activity called Early Aspect Definition,
not explained in this paper due to lack of space.
After 5 months analyzing experimentation results

performed at Federal University of Lavras, there are
intentions to apply MEAID in software industry.
Considering that undergraduate students enrolled in first
the period have applied MEAID correct and
successfully, professionals of Software Engineering area
might be apply it easier and collect even more
expressive results. However, it is necessary to adapt and
incorporate it into an organizational software
development process before its application.

The heuristics set of the MEAID´s Early Aspects
Candidate Identifying can be applied to help students

learning AO paradigm as well as to find out Early
Aspects faster and easier, similarly to OO heuristics.

It was hard define the values for superior and inferior
edges, so it is very important consider new approaches,
in order to allow comparisons among them and choose
better solution.

References

[1] Ossher, H., Kaplan, M., Katz, A., Harrison, W.,
and Kruskal, V. (1992) “Specifying subject-
oriented composition”. TAPOS, 2(3):179-202.
Special Issue on Subjectivity in OO Systems, 1992.

[2] Ossher, H. and Tarr, P. (1999) “Using subject-
oriented programming to overcome common
problems in object-oriented software
development/evolution”. In International
Conference on Software Engineering, ICSE’99,
ACM, 1999.

[3] Miller, S. K. (2001) “Aspect Oriented
Programming Takes Aim at Software Complexity”.
Magazine IEEE’s Computer, vol.34, no.4, pp.18-
21, April, 2001.

[4] Resende, A. M. P. and Silva, C. C. (2005)
“Programação Orientada a Aspectos em Java”.
Published by Brasport Livros e Multimídia Ltda,
Rio de Janeiro, March 2005.

[5] Sardinha, A.; Chitchyan, R.; Weston, N.;
Greenwood, P. and Rashid, A. EA-Analyzer:
Automating Conflict Detection in Aspect-Oriented
Requirements. In ASE '09: Proceedings of the 2009
IEEE/ACM International Conference on
Automated Software Engineering . November
2009.

[6] Sampaio, A. and Rashid, A. Mining early aspects
from requirements with ea-miner. In ICSE
Companion '08: Companion of the 30th
international conference on Software engineering.
Leipzig, Germany. May 2008.

[7] Resende, A. M. P.; Silveira, F. F.; Cunha, A. M.
(2005) Early Aspects: Some Analysis, Trends and
Perspectives. Published in the Proceedings of the
Early Aspects Workshop, held in conjunction with
OOPSLA'05 - Object-Oriented Programming,
Systems, Languages And Applications, San Diego,
California, USA, October, 2005

[8] Rashid, A. and Chitchyan, R. Aspect-oriented
requirements engineering: a roadmap. In EA '08:
Proceedings of the 13th international workshop on
Early Aspects. ACM. Leipzig, Germany. 2008

__

__

Identification and Definition of Early Aspects - A Prototype of Method 73

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

[9] Chitchyan, R.; Greenwood, P.; Sampaio, A.;

Rashid, A.; Garcia, A.; Silva and Lyrene
Fernandes. Semantic vs. syntactic compositions in
aspect-oriented requirements engineering: an
empirical study. In AOSD '09: Proceedings of the
8th ACM international conference on Aspect-
oriented software development. March 2009.

[10] Zambrano, A.; Fabry, J.; Jacobson and G. Gordillo.
S. Expressing aspectual interactions in
requirements engineering: experiences in the slot
machine domain, SAC '10: In Proceedings of the
2010 ACM Symposium on Applied Computing.
Sierre, Switzerland. March 2010.

[11] Araújo, J. et al. Early aspects: the current
landscape. Technical Report COMP-001-2005,
Lancaster University, England, 2005.

[12] PUC-RIO (2005). Requirement Models by means
of Business Process. 2005. Lesson Notes of subject
called INF1364: Business and System Modeling,
taught by Prof. Pedro Oscar de Souza Cruz. URL:
<http://www.inf.puc-rio.br/~pedro/INF1364/
NotasAula-Modelo Requisitos.pdf>. Accessed: jan
07-05.

[13] Laddad, R. (2003) AspectJ in action: practical
aspect oriented programming. New York: Manning
Pub. 2003. 512p.

[14] Hannemann, J.; Kiczales, G. (2002) Design pattern
implementation in java and AspectJ. Proceedings
of the ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, 17th., 2002, Seattle.
Proceedings…Seattle, USA: OOPSLA, 2002.
Aspectwerkz. (2005) Plain Java AOP: Overview.
Design and Development Site of
ASPECTWERKZ, in URL:
<http://aspectwerkz.codehaus.org/> accessed in:
nov. 2005.

[15] Jacobson I.; Ng, Pan-wei. (2005) Aspect-oriented
software development with use cases. Boston:
Addison-Wesley, 2005.

[16] Filman, R. E.et al (2004). Aspect-oriented software
development. Boston: Addison-Wesley, 2004.
800p.

[17] The AspectJ Project. (2003) AspectJ Project Site,
Available in URL: <http://www.eclipse.
org/aspectj/>. Access since: march, 2003.

[18] Jasco Publications. (2005) System and software
engineering lab. Site of JAsCo System and
Software Engineering Lab

at:<http://ssel.vub.ac.be/jasco/publications>.
Accessed in 06 october, 2005.

[19] Aspectwerkz. (2005) Plain Java AOP: Overview.
Design and Development Site of
ASPECTWERKZ, in
URL:<http://aspectwerkz.codehaus.org/> accessed
in: nov. 2005.

__

__

74 Resende, A. M. P. de et al.

INFOCOMP, v. 9, n. 2, p. 65–74, jun. 2010

