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Abstract. Data mining is used to extract potential information from data base. Rule induction is used
to extract information from data base and display it in IF-THEN rule format. First the classification
algorithm builds a predictive model from the training data set and then measure the accuracy of the
model by using test data set.This work proposes a hybrid rule induction algorithm using Cooperative
Particle Swarm (PSO) with Tabu search (TS), and Ant Colony Optimization (ACO). Real world data
base consist of both nominal and continuous attributes. ACO based classification algorithms perform
well in nominal data base. PSO based classification algorithms perform well in continuous data base
where it converts nominal attributes into numerical values. In conventional PSO, there is no guarantee
for local optimal solution. So, the proposed algorithm use tabu search in PSO to improve the search
capability and integrate pheromone concept of ACO to handle real world classification problems. It
uses cooperative concurrent PSO model to implement the algorithm and run two tasks simultaneously in
parallel machines. The output of the work compares with the existing algorithm performance in several
public domain data sets. The comparison results provide a evidence that: (a) The proposed algorithm is
competitive with existing algorithm with respect to predictive accuracy; and the rule lists discovered by
the algorithm are considerably simpler (smaller) than those discovered by the existing algorithm and (b)
Reduce the execution time of the algorithm.
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1 Introduction

Data mining is a multi-disciplinary field which aims to
extract knowledge from databases. The work addressed
the classification task of data mining. The aim of classi-
fication learning algorithm is to build a classifier model
from a training set which help to predict the new records
The discovered knowledge[19] is often represented in
the form of IF (conditions) THEN (class) which has the
advantage of representing a comprehensible model to
the user. The predictive ability of the classification al-

gorithm is typically measured by its predictive accuracy
on the testing examples. However, these rules need to
be simple and comprehensive. Otherwise, a human is
unable to comprehend them.

2 Related work

2.1 Ant Colony Optimization

ACO based classification algorithm called Ant-Miner
was developed by [13], the result shown to be it is very
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competitive with the well-known C4.5 [15] and CN2
[2] classification-rule discovery algorithms. But Ant-
Miner support only nominal attributes. It uses C4.5
discretization technique to discretize the continuous at-
tribute into nominal attribute. A potential disadvantage
of this approach is that less information will be avail-
able to the classifier since the discrete intervals have a
coarser granularity which can have a negative impact on
the accuracy of the discovered knowledge. It generates
ordered rule set. In [8] the authors extended the Ant-
miner algorithm for mixed variables. It uses Gaussian
Probability Density Function (PDF) to create the range
for numerical values instead of converting into nominal
values. It generates an unordered rule set. It has a limi-
tation. It takes time to normalize the pheromone values
between continuous attributes and nominal attributes.

2.2 Particle Swarm Optimization

The particle swarm optimization (PSO) algorithm was
developed by [5].It is attracted by more researchers due
to its simple concept. The algorithm has been success-
fully applied to several minimization optimization prob-
lems and neural network training. Particle swarm based
classification data mining algorithms [17] are compet-
itive with other evolutionary techniques and industry
standard algorithm such as the J48, a Java implemen-
tation of C4.5 A standard Binary/Discrete PSO devel-
oped by [6], does not deal with categorical attributes in
a natural fashion when compared to ACO. In standard
PSO, binary bit string representation is used to encode
the categorical attributes such as true or false.It was de-
signed to cope with binary valued attributes.

It was designed to cope with binary valued attributes.
It does not support multi valued categorical attributes.
The authors [17] extended the standard binary PSO to
cope with multi valued categorical attributes. The algo-
rithm assign an index number to each value of a cate-
gorical attribute and then the index value is converted
into a binary string. An extra bit is added to each at-
tribute to decide if that attribute is to be included in the
resulting rule or not. Once a categorical attribute has
been converted into a binary string, the standard binary
PSO can then be applied. This encoding approach in-
troduces some problems. The interactions between the
bits create an extra layer of complexity and confusion
for the algorithm, because PSO algorithm finds the op-
timal value of each bit individually. The numerical in-
dex assigned to a categorical value, and the subsequent
binary encoding scheme will affect the result of the par-
ticle interaction. There is no ordering in categorical at-
tribute. In [3] the authors said that PSO is suitably chal-
lenged for two class problems, no clear conclusions can

be drawn for problems with more than two classes.
In PSO, the particles are âflownâ through the search

space by updating the position of the ith particle at time
stamp t according to the following equation:

Xi(t + 1) = Xi(t) + vi(t + 1) (1)

Where Xi(t) and Vi(t + 1) are vectors to represent-
ing the current position and velocity respectively. The
velocity updates are governed by the following equa-
tion:

vi(t + 1) = wvi(t) + C1r1(pi−xi(t)) + c2r2(pg−
xi(t)) (2)

where 0w < 1 is an interia weight determining how
much of the particleâs previous velocity is preserved,
and c1,c2 are two positive acceleration constants, r1,
r2 are two uniform random sequences sampled from
U(0, 1), pi is the personal best position found by ith
particle and pg is the best position found by the entire
swarm so far. After some iterations, the personal best
position of the particle will gradually move closer to
the global best position. The particle will eventually
converge on position of the global best particle. At this
point, the particle will not be able to explore the search
space, canât improve its solution. There is no guarantee
that the position on which the particle has converged is
a local minimum or global minimum.

2.3 Cooperative coevolution model

Coevolution can be classified into two group namely
competitive coevolution and cooperative coevolution.
While the former tries to make individuals more com-
petitive through evolution, the latter aims to find indi-
viduals from which better systems can be constructed.
Coevolutionary frameworks increase the efficiency of
traditional evolutionary algorithms. The basic approach
of cooperative coevolution is to divide a large system
into many modules and evolve the modules separately.
These modules are then combined again to form the
whole system. The cooperative coevolutionary algo-
rithms involve a number of independently evolving species
that together form a complex structure for solving dif-
ficult problems. The fitness of an individual depends
on its ability to collaborate with individuals from other
species. The proposed algorithm handles multiple in-
stances and run in parallel machines.

The particle swarm optimizer (PSO) is a stochastic,
population-based optimization technique that can be ap-
plied to a wide range of problems, including neural net-
work training. Most stochastic optimization algorithms
including particle swarm optimizers (PSOs) and genetic



algorithms (GAs) suffer from the âcurse of dimension-
ality,â which simply put, implies that their performance
deteriorates as the dimensionality of the search space
increases. In [14] the authors partition the search space
by splitting the solution vectors into smaller vectors.
Each of these smaller search spaces is then searched by
a separate GA; the fitness function is evaluated by com-
bining solutions found by each of the GAs representing
the smaller subspaces. Potter found that this decompo-
sition lead to a significant improvement in performance
over the basic GA. The main difference between the
CPSO and implementation of the cooperative GA [14]
is that the optimization process of a PSO is driven by the
social interaction of the individuals within that swarm;
no exchange of genetic information takes place. In con-
trast, the cooperative GA is driven by changes in ge-
netic or behavioral traits within individuals of the pop-
ulations.

The authors present a cooperative coevolutionary al-
gorithm with improved performance on many bench-
mark functions in [14]. The approach was also success-
fully applied to applications like string matching and
neural network design. In [7] the authors design a coop-
erative coevolution model to speed up the convergence
of a fast evolutionary programming for solving large-
scale problems with dimensions ranging from 100 to
1000. In evolutionary optimization the computational
cost is measured in terms of time and hardware, it in-
creases as the size and complexity of the problem in-
crease. One approach to overcome such a limitation is
to exploit the inherent parallel nature of EA(Evolutionary
Algorithm) by formulating the problem into a distributed
computing structure suitable for parallel processing i.e.,
to divide a task into subtasks and to solve the subtasks
simultaneously using multiple processors. In [16] the
authors defined four possible strategies to parallelize
EAs, i.e., global parallelization, fine-grained paralleliza-
tion, coarse-grained parallelization, and hybrid paral-
lelization.

In global parallelization, only the fitness evaluations
of individuals are parallelized by assigning a fraction of
the population to each processor. The genetic operators
are often performed in the same manner as traditional
EAâs since these operators are not as time-consuming
as the fitness evaluation. This strategy preserves the
behavior of traditional EA and is particularly effective
for problems with complicated fitness evaluations. The
fine-grained parallelization is often implemented on mas-
sively parallel machines, which assigns one individual
to each processor and the interactions between individ-
uals are restricted into some neighborhoods. In coarse-
grained parallelization, the entire population is parti-

tioned into subpopulations. This strategy is often com-
plex since it consists of multiple subpopulations and
different subpopulations may exchange individuals oc-
casionally (migration).

3 Problem definition

In PSO, when a particle discovers a good solution, other
particles gather around the solution (gbest) too. There-
fore they cannot escape from a local optimal solution.
Consequently PSO cannot achieve global searches. In
[12] the authors proposed a hybrid PSO/ACO Algo-
rithm for discovering classification rules in Data Min-
ing. The algorithm first generates a nominal rule and
then adds continuous attributes with that rule in sequen-
tial order. The sequential approach takes more time and
there is no interaction between rules. The proposed pro-
vide a solution for the above problem. It integrates Tabu
search in PSO to explore the search space efficiently,
and use cooperative coevolution computational model
to create the interaction between swarms. It uses mul-
tiple swarms (or sub-swarms) for searching a solution.
The swarms exchange information after some iteration.
The proposed algorithm use parallel cooperative coevo-
lution computational model.

4 Implementation

It uses concurrent PSO (CONPSO) to implement the al-
gorithm. It uses two swarms concurrently for search a
solution in the solution space. The swarms exchanged
their global best solution. After every exchange point,
the two swarms were to track the better global best found.
The swarm1 handles nominal attributes and swarm2 han-
dles continuous attributes. The work implements CONPSO
in parallel machines to improve the performance of the
existing algorithm and reduce the execution time.

4.1 Cooperative coevloution approach

First, vertically partition the given data into two groups
(i.e) nominal and continuous attributes and then eval-
uate simultaneously by using individual swarms. The
proposed algorithm uses two swarms. Swarm1 handles
nominal attributes and swarm2 handles continuous at-
tributes.

Initialize ruleset RS = Φ
For each class C
PS=Training examples belonging to class C
Vertically partition PS into two (nominal attributes and
continuous attributes)
Initialize the two swarms
iter_number=1, rule_index=1;
Repeat



Run the two swarms concurrently i.e
PSO/ACO & PSO
Send the best rule to Cooperative_module
IF the current trule is not same as previous rule
THEN
IF (Laplace corrected confidence of rule R > Rule
threshold)
THEN
Add rule R to the rule set RS.
END IF
ELSE
increment rule_index value by one.
END IF
Iter_number=iter_number+1
UNTIL (rule_index≤ userdefinedvalue‖ iter_number
≤Max Iterations
End For.
Order rule in RS by descending order.
Prune RS removing unnecessary terms/rules.
Cooperative_module( ) Begin Receive rules from two
swarms and generate a
single rule R.
Prune the rule R based on Q value
Return (R)
End

4.1.1 Hybrid PSO and ACO algorithm

It uses pheromone updating in PSO for handling nom-
inal attributes. Each particle in the population has a
collection of n pheromone matrices (each matrix en-
codes a set of probabilities) where n is the number of
nominal attributes in a data set. Each particle can be
decoded probabilistically into a rule with a predefined
consequent class. Each matrix has two entries stand
for an off state and on state. If the off state is (prob-
abilistically) selected then the corresponding (seeding)
attribute-value pair will not be included in the decoded
rule. If the on state is selected then the correspond-
ing (seeding) attribute-value pair will be decoded in the
rule. The attribute-value pair (term) is dependant on
the seeding values. The particles are initialized by ran-
domly selected examples. From that the particle decode
a rule with attribute-values equal to the seeding terms,
or to a rule without some or all those terms.
FOR i = 1 to no_of_iterations
REPEAT for Maxiterations
FOR every particle x in swarm1
Set Rule Rx = âIF Φ THEN Câ
FOR every dimension d in x
Use roulette selection to choose the state
END FOR
Calculate Quality Qx of Rx

P = x’s past best state
Qp = P’s quality
IF Qx > Qp THEN
Qp = Qx

P = x
END IF
END FOR
FOR every particle x
P = x’s past best state
N = the best state ever held by a neighbour of x
according to Nâs quality QN
FOR every dimension d in x
IF (Pd = Nd) THEN Qp increases pheromone
entry corresponding to the value of Nd in
the current xd

ELSE IF (Pd = off AND seeding term for xd is
not equal to Nd ) THEN Qp increases
pheromone entry for the off state in xd

ELSE Qp decreases pheromone entry
Corresponding to the value of Nd in
the current xd

END IF
Normalize pheromone entries
END FOR
END FOR
END REPEAT
RETURN best rule discovered R1

END FOR

The output of this algorithm is like

IF Anom1 AND Anom2 THEN class C

where Anom1 and Anom2 are nominal attributes and
C is a predicting class.

4.2 Pheromone updating

In [12] the authors said that the pheromone updating
procedure is influenced by two factors, the best state
of a particle x has ever held (P) and the best state ever
held by a neighbor particle N. After update pheromo-
ne value, the algorithm will normalize the entries in
pheromone matrix. If any entry has a value less than
a predefined minimum pheromone value, then it is set
to the minimum amount (0.01).

Next, check the amount of pheromone in the ma-
trix becomes less than 1.0 as long as both entries have
greater than zero amount of pheromone. In this case
the algorithm normalizes both the entries. It is similar
to Min-Max ant system. Table 1 shows the pheromone
updating strategies.



Table 1: Different pheromone updating scenarios.
Term Seeding Pd Nd Outcome
for xd for entries

in xd

value=w (on) (on) on pheromone
value=w value=w increased off

off pheromone
decreased

value=w (on) (on) on pheromone
value=w value<>w increased off

pheromone
increased

value=w (on) off On heromone
value=w decreased off

pheromone
increased

value=w off (on) On pheromone
value=w increased off

pheromone
decreased

value=w off (on) On pheromone
value<>w decreased off

pheromone
increased

value=w off off On pheromone
increased off
pheromone
decreased

4.3 Rule pruning procedure

Rule pruning procedure improves the quality of a rule
by removing irrelevant terms from the rule antecedent
and use to solve overfitting problem. The Laplace-corrected
confidence is used to measure the quality of a rule.
Laplace corrected Confidence= |termij ,k|+1

|term
ij |+no−of−classes

(3)

RuleConfidenceThreshol= MAX(0.4,|K|)
|trainingset| (4)

Where |k| is the no of training cases belong to C and
0.4 is user-defined value.

The discovered rules are evaluated by using the con-
cept:

If Laplace-corrected confidence is greater than Rule
Confidence Threshold then the rule will be added to the
rule set otherwise ignore the rule.

The rule set cleaning routine is used to clean the rule
set. It follows the rule:

• There is a previous rule in the rule set that has a
subset of the ruleâs attribute.

• If it predicts the same class as the default rule and
is located just before it.

4.4 PSO with Tabu search â Continuous attribute

The output of the rule contains only continuous attributes.
TS is used to improve the search capability of PSO.
Tabu list prevents the cycling search. Here, Tabu search
is used to improve global search solution.

The number of particles is defined by N and the
number of dimension in the solution space is D. The
variables count_P and count_G, tabu_P and tabu_G used
to check the updated value of pbest and gbest. At initial
stage, count_P and count_G are set to 0.

If pbest_ij and gbest_ij are not updated. Then the
value of count_P and count_G will be incremented by
one. Otherwise set to zero.

The update equation of velocity is different by the
value of tabu_Pij and tabu_Gij:

(i) If tabu_Pij and tabu_Gij=0 then equ.(1) will be ap-
plied to update the velocity.

(ii) If tabu_Pij=1 and tabu_Gij =0 then equ.(5) will be
applied to update the velocity.
vi(t+1) = vwi(t)−c3(pi−xi(t))−c2rand(pg−
xi(t)) (5)

(iii) If tabu_Pij =0 and tabu_Gij =1 then equ.(6) will
be applied to update the velocity.
vi(t + 1) = vwi(t) + C1rand(pi − xi(t))−
c4rand(pg − xi(t)) (6)

(iv) If tabu_Pij =1and tabu_Gij =1 then equ. (7) will
be applied to update the velocity.

vi(t + 1) = vwi(t)− C3(pi − xi(t))−
c4(pg − xi(t)) (7)

Xi(t + 1) = Xi(t) + vi(t + 1) (8)

c3 = Vmaxexp
(

pi−xi(t)
xspan

)
(9)

c4 = Vmaxexp
(

ps−xi(t)
xspan

)
(10)

Step 1: Initialize each particle in Swarm2
Step 2: For each particle x in the swarm
FOR each continuous attribute d of x
Find the lowest and highest value of each
d from the training examples.
Find the range of each d
Set initial position
(i.e) Upper bound = the value of a randomly chosen
seed
exampleâs d +range for that attribute
Lower bound= the value of a randomly Chosen seed



exampleâs d-range for that attribute
IF (seeding position is outside the range of the values
seen in the data set )THEN
Set upper bound= Highest value
Set lower bound=Lowest value
END IF END FOR Step 3: Generate a rule (Rx) and
calculate quality Q
Step 4: Find best position of a particle (Pi) and global
best(Pg)
Step 5: Check the updating value of Pi and Pg .Based
on the value apply equations (1)-(2) (5)-(9).
Step 6: Repeat step 1 to 5 until it reach the maximum
iteration value.
Step 7:Return Rule(R2).

The output of this algorithm is like:
IF Acont1 AND Acont2 THEN class C

where Acont1 and Acont2 are continuous attributes
and C is a predicting class.

The algorithm first finds the maximum and mini-
mum value of each continuous attribute. Next, finds
the range of each attribute. From that initialize the up-
per bound and lower bound of all attributes. Based on
particles best position, add attributes to the rule. If the
particle has same value for global best and local best
then it apply TS to explore the search base.

5 Computational Results and Discussion

The performance of the algorithm was evaluated using
eleven public-domain data sets from the UCI (Univer-
sity of California at Irvine) repository. The performance
of the parallel implementation is evaluated against se-
quential approach. The existing algorithm PSO/ACO
uses the excellence of Particle Swarm Optimization and
Ant Colony Optimization to discover classification rules
form data set. It first finds rules based on nominal at-
tributes and then add continuous attributes in sequen-
tial order. But,the proposed algorithm use Cooperative
frame work to implement the algorithm and also inte-
grates tabu search in PSO to improve the search quality.
It vertically partitions the attributes into two groups and
then swarms are initialized.

The partitioning is used to solve cure dimensionality
problem. Another enhancement is swarms are divided
into two groups. Each group performs a separate task.
The two swarms simultaneously execute the algorithm
and exchanging their global best. From the result the
work identified that the concurrent implementation re-
duces the execution time by 10%-25% , improves the
accuracy of the algorithm, and generates comprehen-
sible rule set. The algorithm adopted message passing

interface technique to pass information between proces-
sors. Table 1, Tables 2, 3 and 4 illustrates the predictive
accuracy and simplicity of the algorithm.

Studentâs t-test is used to compare the performance
of the algorithm. Each entry in the Table 2 shows the
average value of the accuracy obtained via the cross-
validation procedure followed by the standard devia-
tion. In all tables the bold entry indicates that the accu-
racy of the proposed algorithm was significantly greater
than the accuracy of the existing algorithm for that dataset
with the significance level Î± = 5%.Theproposedalgorithmgeneratessimpleruleseteventhoughitproducesthesimilaraccuracyinsomedatasets.Fromtheresultsobservedthatthatthecoevolutionapproachgeneratesaccurateandsimplerulesetinshorttimeandalsosolvetheoverfittingproblem.Itissuitableformedicaldatabaseandbusinessdatabase.Iteasilyhandleslargesizeofdatasets.

Table 2: Predictive Accuracy.
S.No Data Set PSO HPSACO With

coevolution
1 BreastCancer 72.62± 6.84 94.27± 2.05

2 Wiscosin Breast 93.42± 3.79 98.25± 1.01
Cancer

3 Diabetes 72.67± 4.98 80.64± 1.95

4 Heart-c 77.38± 5.45 88.25± 5.75

5 Tic-Tac-Toe 100± 0 98.09± 0.97

6 Zoo 97.18± 6.25 98.25± 1.23

7 Iris 94.67± 5.26 99.25± 1.6

8 Mushroom 99.9± 0.11 98.75± 1.01

9 Crx 85.6± 2.84 92.65± 1.02

10 Ionosphere 88.06± 4.91 97.62± 1.05

11 Glass 70.95± 7.5 76.02± 3.21

Table 3: Rule Set Size.
S.No Data Set PSO HPSACO With

coevolution
1 BreastCancer 12.4± 2.27 10.2± 3.25

2 Wiscosin Breast 9.9± 1.6 6± 1.2
Cancer

3 Diabetes 33.4± 1.43 12.67± 1.23

4 Heart-c 12.6± 0.84 8.6± 0.45

5 Tic-Tac-Toe 9.0± 0 11.7± 2.78

6 Zoo 7.1± 0.325 7.6± 1.37

7 Iris 3.0± 0 6.5± 1.65

8 Mushroom 8.7± 0.48 8.25± 1.78

9 Crx 22.5± 3.1 13.67± 1.43

10 Ionosphere 3.6± 0.97 5.8± 1.5

11 Glass 20.4± 1.35 15.35± 1.97

6 Conclusion

Classification is a predictive task of data mining. Clas-
sification algorithms build a model to predict the char-
acteristics of new examples in the data base. The cur-
rent work developed a new algorithm for generate an
unordered rule set for mixed variables. The performance



Table 4: Rule Size.
S.No Data Set PSO HPSACO With

coevolution
1 BreastCancer 1.73± 0.26 1.5± 1.25

2 Wiscosin Breast 1.17± 0.09 1.02± 0.03
Cancer

3 Diabetes 3.88± 0.29 1.54± 0.65

4 Heart-c 3.33± 0.19 2.7± 0.23

5 Tic-Tac-Toe 2.67± 0.0 2.5± 0.11

6 Zoo 1.14± 0.18 1.45± 0.12

7 Iris 0.93± 0.14 1.05± 0.06

8 Mushroom 1.86± 0.18 2.35± 0.43

9 Crx 2.94± 0.28 2.42± 0.63

10 Ionosphere 3.33± 0.79 1.4± 0.17

11 Glass 3.11± 0.18 1.97± 0.06

of the proposed algorithm is evaluated based on predic-
tive accuracy, rule set generation, and speed.

From the results the work observed that the algo-
rithm produce better accuracy results in six data sets. In
the remaining data set, it produces the similar predic-
tive accuracy. Even though it produces similar predic-
tive accuracy, it generates comprehensible rule sets for
more data sets. Moreover, execution time has been re-
duced since it handles both attributes simultaneously in
parallel machines.

The work concluded that the proposed algorithm is
comparative to existing algorithm with respect to pre-
dictive accuracy , comprehensibility and execution time.
The concurrent implementation reduces the execution
time by 10%-25%.It is suitable for all data sets. The
performance of the proposed work enhanced the exist-
ing algorithm performance by using tabu search . In
future, we are going to implement the same concept for
other data mining tasks like association rule, clustering
etc.
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