On the Hyperbox — Hyperplane Intersection Problem

CARLOS LARA
JUAN J. HLORES
FELIX CALDERON

Division de Estudios de Posgrado
Facultad de Ingenieria Electrica
Universidad Michoacana
Edificio DEP-FIE, Ciudad Universitaria
58060, Morelia, Mexico
(larac, juanf, cal deron) @m ch. nx

Abstract. Finding the intersection between a hyperbox and a hypegptan be computationally ex-
pensive specially for high dimensional problems. Naivedatgms have an exponential complexity. A
border node is a node (in the graph induced by the hyperba)radxt to the intersection of the hyper-
box and the hyperplane. The algorithm proposed in this paggements a systematic way to efficiently
generate border nodes; given a border node, a subset dfiddeir edges is explored to determine one or
more intersections. This systematic exploration allowsou®cus on the border region, discarding the
two regions before and after the plane. Pruning those regiooduces a computational cost linear on
the number of vertices of the hyperpolygon that represéetatersection.

Keywords: hyperbox, hyperrectangle, hyperplane, vector, graplchesy

(Received May 15, 2009 / Accepted August 11, 2009)

1 Introduction

The problem we are addressing in this paper is to de-
termine the intersection between a hyperbard a hy-
perplane. A simple example of the intersection between
a cube and a plane is shown in Figure 1. The intersec-
tion of box B and planeP describes a polygonal region
that is a subset of. This region can be represented
by the sequence of points, .. ., cs (i.e. the vertices of
the intersection polygon). As can be seen in Figure 1,
the vertices of the intersection polygon lie on the edges
of Box B (perhaps on vertices at the end of edges). A
naive algorithm [1, 7] to find the points takes each
edge and finds the point that intersects the plane with
that edge (if any).

The general problem consists of finding the inter-
section between a hyperbox and a hyperplane. A h)p—.

Figure 1: Intersection between a bd® and a plane”

erbox is a generalization of the rectangle:tdimen-
sions. A hyperplane in the same space has 1 di-

1A hyperbox is an n-dimensional body similar to a hypercubeMensions. Since the numper of edges of a hyperbox is
except that its sides are not necessarily of the same length n2"~! [5}/2], the computational cost of the naive algo-

(larac,juanf,calderon)@umich.mx

rithm is exponential with respect to the problem’s di-Their motivation leads to the field of computer graph-
mensionality. ics and 3D rendering. Given that their application deals
Hyperboxes appear in the mathematical progranenly with 3D objects, their work was not extended to
ming formulation of many combinatorial optimization intersections im dimensions. Instead of providing a
problems, in which solutions can be represented by bgeneral algorithm, authors analyze all possible scenar-
nary vectors [10]. In such formulation, the decisionios for the 3D case. With respect to the general problem
variables can assume values in the intef@all] and of determining the position of all corners of the inter-
correspond to the solution components; hyperplanes ceection of a hypercube with a hyperplane, at the mo-
respond to constraints, and the hyperbox — hyperplamaent of writing this paper, to the best knowledge of its
intersection represents feasible solutions [1]. The inteauthors, there are no publications providing a general
section between a hyperbdx and a hyperplan® de- algorithm to solve it.
scribes a hyperpolygon. The problem addressed by this
paper is to compute the vertices of that hyperpolygon.3 gasic Definitions
This paper is organized as follows, Section 2 presents)
related work. Sectioh 3 introduces some basic definf* ¢losed hyperbofor hyperrectangle) in an _
tions; Section 4 states the hyperbox—hyperplane inteap_—dlmensmnal real spaceis defined as the cartesian prod-
section problem: Sectidn 5 introduces a naive solutioHCt Of 7 intervals, that is
to solve the problem; Section 6 introduces the proposed "
algorithm; Section [7 discusses the experimental results; B =lay,bi] x ... x [an, b] C R @

finally, Section 8 concludes our work. Apointz = (z1,...,,) € R" is inside hyperbox

BifVie{l,...,n}a; <x; <b;. The values,; andb;
2 Related Work are thelower andupperlimits of the i~th dimension of
Detecting whether two geometric objects intersect ané: respectivelyl’(B) is the set of vertices of Hyperbox
computing the region of intersection are fundamentaf; & pointz = (z1,...,xn) is avertexof B (i.e. z €
problems in computational geometry. Geometric in¥ (B)). if Vi € {1,....n}x; € {a;,b;} [4].
tersection problems can be found in a number of ap- FunctionL associates a labélto every vertex &
plications: geometric packing and covering, wire and’ (B), suchthat; = 0if v; = a; andl; = 1if v; = b;;
component layout in VLSI, map overlay in geographidrom this point on, we will refer to a vertex by its vertex
information systems, motion planning, collision detecfepresentation or by its associated labél(v). v andv
tion, etc. are adjacent vertices of the graph induced by the hyper-
There are two main streams of work related to th®0x B if they differ exactly in one position. That is, if
formulation of the algorithm presented in this paper? = L(u) andg = L(v), and3lj € {1,....,n}p; =7,
The first one deals with the combinatorial problem ofndVi # j p; = gi; [u, v] is an edge of that graph.
counting how many vertices or corners there are in the A k—dimensional hyperplanean be defined in an
convex hyperpolygon resulting of the intersection of g—dimensional space by a set(ef— k) non-degenerate
hyperbox and a hyperplane. The second one deals wif€ar equations. Consequently, @n— 1)—-hyperplane
the problem of determining the exact location of all cor@f simplyhyperplanes defined by a single linear equa-
ners of the intersection. tion. In the following we define an hyperplane by the
In the first stream, Harary et. al. [4], present a combnear equatiof
prehensive survey of the theory of hypercube graphs.
Although their paper does not contribute to the solu- ZL — o)
tion of our problem, their compilation of concepts is in-
sighting. Sykora and Vrto [8] provide tight bounds for _ o
the number of crossings of a hypercube and cube coRefinition 1. A hyperboxB |s_located at the originif
nected cycles. This problem has important application$ € {1,---,n}a; = 0. Thatis, the hyperbox has the
in printed circuit board layout, VLSI circuit routing, form B = [0,b1] x ... x [0,by]; where(by, ..., by) is
and automated graph drawing (see also [9]). Mount[6'€ upper corner oB.

solves a number of intersection problems which mainlbefinition 2. An ordered hyperboss a hyperbox at

involves 2D polygons. the origin such that the coordinates of its upper corner
In the second stream, and more related to our worl§

) . . atisfyb; < by < ... <b,.
Rezk and Kolb[7] provide a solution algorithm for com- by < by < -
puting the intersection of a box with a plane in 3D. 2A generalization is discussed in section 6.3

planeP. There may be more than one way to represent

(0,0,b3) (0, b2, b3) . .
a hyperpolygon; the one we have chosen is by its ver-
(b1, b2, bs) tices (i.e.C = {¢; |i=1,...,m}, see Figure1). The
(81,0, b2) vertices of the intersection polygon lie on the edges of
(00,9 (0, b2,0) the hyperbox (perhaps on vertices at the end of edges).

Since the number of edges onanrdimensional hy-
perbox isn2™ 1, checking every edge is not an efficient
(b1,0,0) (b1, b2,0) option. This paper presents an algorithm to determine
all vertices of the intersection on tim@(nm), where
m is the number of vertices of the intersection polygon.

(a) A hyperbox

(0,0,b3) (0, b2,b3)

5 Naive Algorithm

This approach presentedin[1, 7], uses a parametric rep-
(0,bs,0) resentation for an edge. That is, given two adjacent ver-
ticesv = (v1,...,v,) andu = (uq, ..., u,) of the hy-
perbox, the edge,, is given by

(0,0,9)

(b, *, *)
(b) Grouping nodes that start with

Figure 2: A single s—face represents several vertices eun(t) = v+ t(u—v) 3)
wheret € [0,1]. When the edge intersects the hyper-

Our approach consists of processing vertices of Blanebthe*n_ thé corppg%entsd@jq) Isgm ?(g*tm' Replac-
hypercube instead of its edges. There Zitevertices, Ing ¢ by #* In Equation 3 and solving
then we are interested on properties of vertex subsets n

id ti i * o — Z‘:l Uj

that avoid time complexity. The vertex set represen- = =l
tation used in this paper is related to the concept of iz (Ui — i)
squashed cubes introduced by Graham and Pollak in | 1= ¢ [0, 1] there exists an intersection between
[3]. Consider the example of Figure 2. The fourveruce%dge% and the hyperplane.

(4)

that startwithb, , i.e. {(b1,0,0), (b, 0,b3) , (b1, b2,0), Algorithm[1 traverses all edges; if an intersection is
(br, b2, b3)} (Figure 2(a)) are represented by the s—facg, ng, the corresponding vecter, (+*) is added to list
(b1, *,*) (Figure 2(b)). £, containing all results.

Definition 3. A squashed facer s—faceof an y .
n—dimensional hyperbak is an n-tuple Algorithm 1 Naive(B, a) _

s = (s1,...,s,) Wheres; € {0,1,}. We say thag; Input: A hyperbox 5 and the hyperplane defined by
is defined ifs; € {0,1}, it is undefined ifs; = . An Output: L, the list of solutions for the intersection of
s—faces represents a sdt (s) C V(B) whose elements B anda

are those vertices obtained by replacing every unde-1* L—{}

fined variable by0 or 1. If s = (by,....bj,,...,%), 2 Computethe edges(5)

the cardinality ofV/(s) is [V (s)| = 2"7. Just like ev- & forall e,, € E(B)do

ery vertex has an associated label, the label associated® ~ Computel” with Equation 4

to an s—face is itself. 5. if0<t* <1then
6: L — LU ey, (tr)
7: end if

4 Problem Statement s end for

Let B = [a1,b1] X ... X [an,b,] C R™ be ann— 9: return £

dimensional hyperbox, andl the hyperplane satisfying

the constrain®"" | z; = a. Clearly, P hasn — 1 di-

mensions. Hyperbo® and hyperplané’ intersect at a

region that is a subset @f. That region is a hyperpoly-

gon onn — 1 dimensions. This section describes the proposed algorithm to com-
The problem addressed by this paper is to compufaute the intersection of hyperplaftand hyperbox3.

the intersection between a hyperbé&xand a hyper- For simplicity, to explain the algorithm we consider the

6 Proposed Algorithm

case of an ordered hyperbox located at the origin. Gen- Our strategy consists of partitionifig(s) in such a
eralizations of this case are discussed in section 6.®ay that at least one component of this partition
There are some preliminary definitions that need to b& ((v1, ..., vk, *,...,%)) C V((v1,...,v5,%,...,%))
stated, and which will lead in our way to describing thgwhere;j < k) satisfies Equation 5. On the other hand,
intersection algorithm. it is desirable for the partition to have a small num-
Any intersection point € C can be found by locat- ber of components. The following lemma states that
ing an adjacent vertex © As an example, the intersec- any s—facdwv;, ..., v;, *,...,*) can be partitioned into
tion ¢g in Figure 1 can be reached from one of the twd: — 5 + 1 components, containing the squashed face
adjacent vertices or v’. Vertexv is over the planex (vy,..., vk, %, ..., %).
(is a high border vertex) while’ is under the plane (is
a low vertex) . Aborder vertex is a vertex under the
plane from which one or more solutions can be reached. = (U1, ., Uk, %, .
Since any intersection point is restricted by Equation such thatV() CVI(s)
(

Lemma6.2. Lets = (vy,...,v;,%,...,%*) and
) be two s—faces where< k

then

a border vertex is defined formally as: P(s,8") = V(01 .y ks 5, - o, %))U

Definition 4. A nodev = (v1,...,v,) is alow bor- .

der vertex or simply border vertexif 3k, v, = 0 A _
Yiiv<a<bg+d>r v Z—:H_l V(01,0 01T, %, ..., %))
Definition 5. Anodew = (wy, ..., wy) is ahigh bor- s 3 partition of V' (s).
dervertexf 3k, wy, = bpAY i w; > o> (D00 wi)—
b Proof. Vie {(j+1),.. ..k} V((v1,.. ., 0i—1,%,...,%))
]) =V (1,0 01,0, %,...,%)) U
We select low border vertices (border vertices) G/ (v, ..., 01, Ti %, ., %)) O

find intersections, another option is to use high bor-

der vertices. The two approaches are equivalent: when The following corollary is a direct consequence of
low border vertices are used, a quantity is added to odeemmas 6.1 and 6.2,

dimension to reach the intersection point; and whe _ .
high border vertices are used, a quantity is subtracte%OrOIIary6 3. The following cases state the conditions

to reach the intersection point. Next section discussé ENSUre thatan s—face= (v, ..., v;, , ..., x) con-
how to take advantage of both options. tains at least one of the vertices of the hyperplane—

hypercube intersection:
Lemma 6.1. Let B be an ordered hyperbox, and=

(v1,...,0;,% ..., %) a squashed face with < n de- 1. Whenj = n. The subset of nlodes is a siqgle

fined variables. If vertex. A vertew = (vy,...,v,) is a solution if
' v; = a, otherwise at least one solution is at
;Ll ; herwi I lution i

J its edges ifE;-Ll vj < aand3dv; € {v1,...,v,}

> v a<bj+1+zvz ©) "

— — (vi =0) A (bi >a—35 vj). Namely, the so-
then3lv € V(s) Y27, v; < a. In other wordss has a lution s at(vy, .., Vi1, & = 3V, Vi1, Un).
unique border vertex. 2. Whenj < n and Equation|5 holds If a =
Proof. Let bev = (v, ...,v;,0) € V(s), then J_,v; the Border Vertex is the unique solution,

n otherwise the solutions can be found by exploring
S =37 v < a. AlsoletY =V(s)\ {v}
thé:ii leiY 2’: L= —> ' becaLse - o adjacent edges of the Border Vertexsof
Y i=1 Yi « u
Yy = (y1,.-yn) €Y, Fk e {(j+1),..,n}, yp = 3. Whenj < n and Equation 5 does not holdSolu-
by, bj41 < ... < by, for an ordered hyperbox and tions exists iy 7_, v; < « and
a<bj+ Zl L0 SO < by + 37 v O I vi+ 31 b > a. Tofind solutions, a

partition of the subset of nodes using Lemma 6.2
must be done to find subsets of nodes that match
with one of the previous cases.

Lemma 6.1 is very useful to find solutions in a sys-
tematic manner, but in general an s—face does not sat-
isfy the condition expressed by Equation 5. Exploring
the2"~7 nodes inV () to find solutions can be compu- Given a hyperbox3 and a hyperplane defined by
tationally expensive. «, Algorithm[2 determines all vertices of their inter-

section. At Step 1£ and F are initialized; £ is a

Algorithm 2 EXPLOREBN(B, «, s)
Input: An ordered hyperbox3 located at the origin v2 \ B V3
with coordinates of the upper cornfri, ..., b,),
and the hyperplane defined hy
Output: Solutions for the intersection d@® anda ad-
jacent or at the vertices (s) \
L L—{LF—{(x....,%)}
2: while F # {} do
3: v < pop(F)
4 j < number of defined variables of
5: w «— (v1,...,0;,0,...,0)
6

) V1

Figure 3: The intersection of a rectangle and a linea. It is easier
to find the intersection vertices starting framthan starting fromg.

Compute maximunk < n st Y7 v + In order to find the complete set of solutions for the

Zf:jH b; <« case that < n, firstv is partitioned based on the s—
7: Vie{(j+1),....ktw; < b; face that contains the border node (Line 11) and then
8: L — LU FINDSOLUTIONS(w, B,) the unexplored parts d?(v,v’) are pushed onto Stack
9 if k& < nthen > Partition is needed F (Line[12). Algorithm 3 is an auxiliary procedure to
10: v = (U1, 05, b, Dy % %) compute all solutions adjacent to or at vertex
11 Z — P(v,v") >Lemmad 6.2
12: forall = € Z\ {v"} push(7F, 2) 6.1 Improving E XPLOREBN
ij endevl?/(rj]i:; Using low border vertices is not always the best option,
15: return £ Figure 3 illustrates this situation. The two intersections

marked with a circle can be found from the low border
verticesv; andwvy or from the single high border vertex

list to save the hyperbox-hyperplane intersection ver’3: The co_mplexny of the algorithm is reduced _Wheq
tices. while F is a stack that indicates which s—facednore solutions are found from less border vertices, it
need to be explored. After the initialization, the valud"€ans that for some instance problems it is better to
k < nis calculated at Ling 6 this value is the numbetS€ high border vertices. Instead of reaching solutions
of variables that can be set to the upper limit without exPY SUbtracting quantities iteratively from the upper cor-
ceeding they value. Whenk — n, a single vertex was "M€" next lemma describes how to convert an instance

found, and wherk < n, an s—face with the border node ProPlém in another equivalent one.

w = (Ul» ceey vja bj+17 ceey bk:707 . ,0) WaS found.) In Lemma 6.4. Let ¢ = (Cl, o Cn) be a g|Ven solu-
both cases, Linel8 computes the solutions by calling ﬂ}?on of the intersection between the hyperbBxand
procedure FNDSOLUTIONS. hyperplanex, its complement’ = (¢}, ..., ¢,) where

¢i = b; — ¢; is a solution of the intersection between

Algorithm 3 FINDSOLUTIONS (v, B,) tzh:en hybpe_rboxB and hyperplane with parameter =
Input: An ordered hyperbox3 located at the origin =10 T
with coordinates of the upper corngfi,....b,), Proof. It is important to note that if there exists a so-

the hyperplane defined by; and a vertexv = |ytion of B anda then0 < a < S o bi. A so-
(v1,.. -,vn)- _ lution ¢ = (eq,...,¢,) Must live in some edge, then
Output: Solutions adjacent to or at ¢ = (c},...,c,) also lives in some edge because ex-
1: £/<— {} 5 ists a unique coordinate; such thate;, ¢, € [b;,b;],
20— a—),V and¥j # i c;,c. € {b;,b;}. AsS " ¢, = a then
3: if o = 0then > v is a solution vertex «n],7&_ 0 {bs- Ji nZl:l n B
i Zi:1 G = Zi:1 (bi —¢i) = Zi:l bi — Zi:l Ci =
4: £<—{U} Zn bifoz:o/ 0
5 else =1
& forall i e {1,.. ok | b > o', v; = 0} do Using Lemma 6.4 one can find the solutions for the
7: t—wvtp—a, L= LU{t} intersection ofB and«a by solving the intersection of
8 de.nd for B and the hyperplane defined by = 327", b; — «
o: end if and then mapping the solutionsto ¢. To choose be-
10: return £

tween solving the direct or the indirect problem, Figure

[Jillustrates that one can reach more solutions from bor- These pre- and post-processing mappings allow us
der nodes closer t(, ...,0) or (b1, ...,b,). Based on to solve the general problem, concerning the intersec-
the k value calculated at Lirlel 6 of Algorithim 2, we de-tion of any hyperbox with any hyperplane, without chan-
cide to solve the direct or the indirect problem. As aging the overall time complexity.

rule of thumb is better to solve the direct problem when

k<n-—k. 7 Experimental Results

In order to evaluate the proposed algorithm, we create

_)) random instance problems. In the first test we create a
To determine the time complexity of the proposed algohyperbox of dimensiom = 20 (by considering each

6.2 Computational Complexity

rithm, we use Lemma 6.5 upper limit as an independent random variable with a
Lemma 6.5. Lets = (v1,...,vj,%,...,%), uniform distribution), then we increment iteratively the
§' = (U1, U, Wit 1, - .., Wi, %, . . ., %) e two s—faces parameterx from 0 to 377" | b;. For every plane the
such thatt < n ands’ has a single border node, then intersection points were found. Figure 4 shows the re-
each element dP(s, s’) has at least one solution. sults for this test. The computational cost for the naive

algorithm is constant, since all the2"~! edges must
be explored to find the (potential) intersection points.
The proposed algorithm exhibits a linearly bounded be-
Havior with respect to the number of solutions: this is a
consequence of the fact that only the strictly necessary
nodes were explored.

The second test consists of finding the solutions by

A direct consequence of Lemma B.5 is that everyarying the dimension of the problem. Again for each
s-face pushed into the stadk (Algorithm|[2], Line[12) dimension we generate a random hyperlbx-or each
produces at least one solution. Steps 13 of Algdayperbox the alpha value was incremented froro
rithm[2, including the execution ofIRDSOLUTIONS, ..., b;. Figure 5(a) shows the results for this test with-
costO(n). Given that each iterative step finds one oput the improvement proposed in Section 6.1; the elapsed
more solutions, the while loop will be executed at mostime depends on the number of solutions for each bor-
m times, wheren is the number of solutions. Then theder node. The elapsed time also depends on the median

Proof. If k < n thens’ has at least one undefined vari-
able,vi € {(j+1),...,k} an element ofP(s,s’) is
obtained by placingu; at thei—th position ofs’. Be-
causes’ has one or more solutions, and for an ordere
hyperboxw, < b,, then each element (s, s’) has at
least one solution.

complexity for the proposed algorithm@(nm). distance of the border nodes (0, .. .,0); then there
are two curves for each dimension. Upper curve grows
6.3 Extensions above linear because tlheplane for these instances is

closer to the upper node of the hyperbox, therefore, we

The basic method presented in Algorithin 2 seems to tﬁand less solutions per border node. Figure 5(b) is the

limited to an ordered hyperbox aqd a hyperpla}ne in thSame experiment with the improvement implemented.
form of Equatiori 2. However, this shortcomings cant tis. when thex plane is closer to the upper node

be overcome by stralghtforward ext.en5|ons to the basbcf the hyperbox, the search starts from there, instead of
method. These extensions, include:

Scaling A problem with a hyperbo® = [0,b1]x...x .
[0,b,,] and a hyperplane in the forin)"_, 8;z; = B
as.tVied{l,...,n} B; # 0 can be mapped to
oneoftheformy z; = awith B* = [0, 81b1]x 10°

... x [0, B,b,]. Every solutionc* = (cj,...,ck) A
maps to the solution = (%, e ;ﬂ) in the orig- E 10 F T
inal problem. F '

101 L

Translation A problem with a hyperboB = [a1, b1]x
. X [an, by] and a hyperplane in the form -
>.i_, @ = a can be mapped to one of the form 10505 08 10 12 14 16
S ar =a—y_ . a;with B* =[0,b; — a1]x NUMBER OF SOLUTIONS(x 106)

...x[0,b,, — a,]. Every solutiore* = (cj, ..., ck)

5 Cp

maps to the solution= (¢} + ay,...,¢} + a,)in Figure 4: Naive algorithm (crosses) against&.oREBN algorithm
the original problem. (dots) forn = 20.

1800 50 T T T T T
1600fn = 225 T
n=24 | =
1400} + e
— 1200} 4 (t
| -
£ 1000} e . J
= + | ‘
" e00f + L .
a00} o + i
>'>>|>
200} 5 0 _
O 1 1 1 1 1 1
0 05 1.0 15 2.0 25 3.0
NUMBER OF SOLUTIONS(x107)
(a) Initial version
1800 =20 L T T T T T
1600 =220 g
n=24+
1400 JF -
|
—~ 1200} s -
4,7
E 10001 PR -
w ##
S 800} 4 -
" 600f . H1 -
|
N - i
400 e
Pt
200 i .
O 1 1 1 1 1 1
0 0.5 1.0 15 2.0 25 3.0

NUMBER OF SOLUTIONS(x107)

(b) Using improvement proposed in Section 6.1

Figure 5: Behavior of the KPLOREBN algorithm for different di-
mensions.

starting from the origin. This improvement allows us

to compute the intersection i (mn) time in the worst
case, yielding cheaper computational cost.

8 Conclusions

ematica and can be found at
http://1sc.fie.um ch. nk/~juan/ hypercubes.

References

[1]

(2]

(3]

[4]

[5]

[7]

(8]

This paper presents an algorithm to compute the inter-
section between a hyperbox and a hyperplane. This
problem arises from many optimization problems where

the hyperbox represents the operation region (searc

space) and the hyperplane represents an equality con-

straint.
The difference in time achieved by AlgorithmxE

PLOREBN was considerable with respect to the naive
algorithm — see Figure 4. The algorithm exhibits a tim¢10] Wolsey, L. A. and Nemhauser, G. L.Integer

complexity ofO(mn), wherem is the number of solu-
tions andn the problem’s dimensionality. A further im-

provement allows the algorithm to achieve a time com-

plexity lower than that.

The algorithm was implemented in Java and Math-

Calderon, F., Fuerte-Esquivel, C. R., Flores, J. J.,
and Silva, J. C. A constraint-handling genetic al-
gorithm to power economic dispatch. MICAI

'08: Proceedings of the 7th Mexican International
Conference on Artificial Intelligencgpages 371-
381, Berlin, Heidelberg, 2008. Springer-Verlag.

Garbano, M., Malerba, J., and Lewinter, M. Hy-
percubes and pascal’s triangle: A tale of two
proofs. Math. Mag pages 216—-217, 2003.

Graham, R. and Pollak, H. On embedding graphs
in squashed cube$pringer Lecture Notes Math
303:99-110, 1972.

Harary, F., Hayes, J. P., and Wu, H.-J. A survey
of the theory of hypercube grapiSomput. Math.
Applic, 15(4):277-289, 1988.

Klavzar, S. Counting hypercubes in hypercubes.
Discrete Mathematics306(22):2964—2967, 2006.

Mount, D. M. Geometric intersection. In Good-
man, J. and J. O’'Rourke, editor§he Hand-
book of Discrete and Computational Geometry
CRC Press LLC, Boca Raton, FL, pages 615-630,
1997.

Rezk-Salama, C. and Kolb, A. A Vertex Program
for Efficient Box-Plane Intersection. IAroc. Vi-
sion, Modeling and Visualization (VMVpages
115-122, 2005.

Sykora, O. and Vrto, I. On the crossing num-
ber of hypercubes and cube connected cycles. In
Schmidt, G. and Berghammer, R., editofspc.
17th Intl. Workshop on Graph Theoretic Concepts
in Computer Science WG'9LNCS 570, pages
214-218, Berlin, 1992. Springer-Verlag.

fg] Wang, R. L. and Okazaki, K. Solving the mini-

mum crossing number problem using an improved
artificial neural network. IHCMLC, pages 797—
803, 2005.

and Combinatorial Optimizatianlst ed. Wiley-
Interscience, November 1999.

http://lsc.fie.umich.mx/~juan/hypercubes

	Introduction
	Related Work
	Basic Definitions
	Problem Statement
	Naive Algorithm
	Proposed Algorithm
	Improving ExploreBN
	Computational Complexity
	Extensions

	Experimental Results
	Conclusions

