
On the Hyperbox – Hyperplane Intersection Problem

CARLOS LARA

JUAN J. FLORES

FELIX CALDERON

Division de Estudios de Posgrado
Facultad de Ingenieria Electrica

Universidad Michoacana
Edificio DEP-FIE, Ciudad Universitaria

58060, Morelia, Mexico
(larac,juanf,calderon)@umich.mx

Abstract. Finding the intersection between a hyperbox and a hyperplane can be computationally ex-
pensive specially for high dimensional problems. Naive algorithms have an exponential complexity. A
border node is a node (in the graph induced by the hyperbox) ator next to the intersection of the hyper-
box and the hyperplane. The algorithm proposed in this paperimplements a systematic way to efficiently
generate border nodes; given a border node, a subset of its incident edges is explored to determine one or
more intersections. This systematic exploration allows usto focus on the border region, discarding the
two regions before and after the plane. Pruning those regions produces a computational cost linear on
the number of vertices of the hyperpolygon that represents the intersection.

Keywords: hyperbox, hyperrectangle, hyperplane, vector, graph searching

(Received May 15, 2009 / Accepted August 11, 2009)

1 Introduction

The problem we are addressing in this paper is to de-
termine the intersection between a hyperbox1 and a hy-
perplane. A simple example of the intersection between
a cube and a plane is shown in Figure 1. The intersec-
tion of boxB and planeP describes a polygonal region
that is a subset ofP . This region can be represented
by the sequence of pointsc1, . . ., c6 (i.e. the vertices of
the intersection polygon). As can be seen in Figure 1,
the vertices of the intersection polygon lie on the edges
of Box B (perhaps on vertices at the end of edges). A
naive algorithm [1, 7] to find the pointsci takes each
edge and finds the point that intersects the plane with
that edge (if any).

The general problem consists of finding the inter-
section between a hyperbox and a hyperplane. A hy-

1A hyperbox is an n-dimensional body similar to a hypercube,
except that its sides are not necessarily of the same length

x
y

z

B
c1

c2 c3

c4

c5v

v′

c6

P

Figure 1: Intersection between a boxB and a planeP

perbox is a generalization of the rectangle ton dimen-
sions. A hyperplane in the same space hasn − 1 di-
mensions. Since the number of edges of a hyperbox is
n2n−1 [5, 2], the computational cost of the naive algo-

(larac,juanf,calderon)@umich.mx

rithm is exponential with respect to the problem’s di-
mensionality.

Hyperboxes appear in the mathematical program-
ming formulation of many combinatorial optimization
problems, in which solutions can be represented by bi-
nary vectors [10]. In such formulation, the decision
variables can assume values in the interval[0, 1] and
correspond to the solution components; hyperplanes cor-
respond to constraints, and the hyperbox – hyperplane
intersection represents feasible solutions [1]. The inter-
section between a hyperboxB and a hyperplaneP de-
scribes a hyperpolygon. The problem addressed by this
paper is to compute the vertices of that hyperpolygon.

This paper is organized as follows, Section 2 presents
related work. Section 3 introduces some basic defini-
tions; Section 4 states the hyperbox–hyperplane inter-
section problem; Section 5 introduces a naive solution
to solve the problem; Section 6 introduces the proposed
algorithm; Section 7 discusses the experimental results;
finally, Section 8 concludes our work.

2 Related Work

Detecting whether two geometric objects intersect and
computing the region of intersection are fundamental
problems in computational geometry. Geometric in-
tersection problems can be found in a number of ap-
plications: geometric packing and covering, wire and
component layout in VLSI, map overlay in geographic
information systems, motion planning, collision detec-
tion, etc.

There are two main streams of work related to the
formulation of the algorithm presented in this paper.
The first one deals with the combinatorial problem of
counting how many vertices or corners there are in the
convex hyperpolygon resulting of the intersection of a
hyperbox and a hyperplane. The second one deals with
the problem of determining the exact location of all cor-
ners of the intersection.

In the first stream, Harary et. al. [4], present a com-
prehensive survey of the theory of hypercube graphs.
Although their paper does not contribute to the solu-
tion of our problem, their compilation of concepts is in-
sighting. Sykora and Vrto [8] provide tight bounds for
the number of crossings of a hypercube and cube con-
nected cycles. This problem has important applications
in printed circuit board layout, VLSI circuit routing,
and automated graph drawing (see also [9]). Mount[6]
solves a number of intersection problems which mainly
involves 2D polygons.

In the second stream, and more related to our work,
Rezk and Kolb [7] provide a solution algorithm for com-
puting the intersection of a box with a plane in 3D.

Their motivation leads to the field of computer graph-
ics and 3D rendering. Given that their application deals
only with 3D objects, their work was not extended to
intersections inn dimensions. Instead of providing a
general algorithm, authors analyze all possible scenar-
ios for the 3D case. With respect to the general problem
of determining the position of all corners of the inter-
section of a hypercube with a hyperplane, at the mo-
ment of writing this paper, to the best knowledge of its
authors, there are no publications providing a general
algorithm to solve it.

3 Basic Definitions

A closed hyperbox(or hyperrectangle) in an
n–dimensional real space is defined as the cartesian prod-
uct ofn intervals, that is

B = [a1, b1]× . . .× [an, bn] ⊂ R
n (1)

A point x = (x1, . . ., xn) ∈ R
n is inside hyperbox

B if ∀i ∈ {1, . . ., n} ai ≤ xi ≤ bi. The valuesai andbi

are thelower andupperlimits of the i–th dimension of
B, respectively.V (B) is the set of vertices of Hyperbox
B; a pointx = (x1, . . ., xn) is avertexof B (i.e. x ∈
V (B)), if ∀i ∈ {1, . . ., n}xi ∈ {ai, bi} [4].

FunctionL associates a labell to every vertexv ∈
V (B), such thatli = 0 if vi = ai andli = 1 if vi = bi;
from this point on, we will refer to a vertex by its vertex
representationv or by its associated labelL(v). u andv

are adjacent vertices of the graph induced by the hyper-
box B if they differ exactly in one position. That is, if
p = L(u) andq = L(v), and∃!j ∈ {1, . . ., n} pj = qj

and∀i 6= j pi = qi; [u, v] is an edge of that graph.
A k–dimensional hyperplanecan be defined in an

n–dimensional space by a set of(n−k) non-degenerate
linear equations. Consequently, an(n− 1)–hyperplane
or simplyhyperplaneis defined by a single linear equa-
tion. In the following we define an hyperplane by the
linear equation2

n
∑

i=1

xi = α. (2)

Definition 1. A hyperboxB is located at the originif
∀i ∈ {1, . . ., n} ai = 0. That is, the hyperbox has the
form B = [0, b1] × . . . × [0, bn]; where(b1, . . ., bn) is
the upper corner ofB.

Definition 2. An ordered hyperboxis a hyperbox at
the origin such that the coordinates of its upper corner
satisfyb1 ≤ b2 ≤ . . . ≤ bn.

2A generalization is discussed in section 6.3

(0, b2, 0)

(0, b2, b3)

(b1, b2, b3)

(0, 0, 0)

(0, 0, b3)

(b1, b2, 0)(b1, 0, 0)

(b1, 0, b3)

(a) A hyperbox

(0, b2, 0)

(0, 0, b3) (0, b2, b3)

(b1, ∗, ∗)

(0, 0, 0)

(b) Grouping nodes that start withb1

Figure 2: A single s–face represents several vertices

Our approach consists of processing vertices of a
hypercube instead of its edges. There are2n vertices,
then we are interested on properties of vertex subsets
that avoid time complexity. The vertex set represen-
tation used in this paper is related to the concept of
squashed cubes introduced by Graham and Pollak in
[3]. Consider the example of Figure 2. The four vertices
that start withb1, i.e.{(b1, 0, 0) , (b1, 0, b3) , (b1, b2, 0) ,

(b1, b2, b3)} (Figure 2(a)) are represented by the s–face
(b1, ∗, ∗) (Figure 2(b)).

Definition 3. A squashed faceor s–faceof an
n–dimensional hyperboxB is an n–tuple
s = (s1, . . ., sn) wheresi ∈ {0, 1, ∗}. We say thatsi

is defined ifsi ∈ {0, 1}, it is undefined ifsi = ∗. An
s–faces represents a setV (s) ⊆ V (B) whose elements
are those vertices obtained by replacing every unde-
fined variable by0 or 1. If s = (b1, . . ., bj , ∗, . . . , ∗),
the cardinality ofV (s) is |V (s)| = 2n−j . Just like ev-
ery vertex has an associated label, the label associated
to an s–face iss itself.

4 Problem Statement

Let B = [a1, b1] × . . . × [an, bn] ⊂ R
n be ann–

dimensional hyperbox, andP the hyperplane satisfying
the constraint

∑n

i=1 xi = α. Clearly,P hasn − 1 di-
mensions. HyperboxB and hyperplaneP intersect at a
region that is a subset ofP . That region is a hyperpoly-
gon onn− 1 dimensions.

The problem addressed by this paper is to compute
the intersection between a hyperboxB and a hyper-

planeP . There may be more than one way to represent
a hyperpolygon; the one we have chosen is by its ver-
tices (i.e.C = {ci | i = 1, . . .,m}, see Figure 1). The
vertices of the intersection polygon lie on the edges of
the hyperbox (perhaps on vertices at the end of edges).

Since the number of edges on ann–dimensional hy-
perbox isn2n−1, checking every edge is not an efficient
option. This paper presents an algorithm to determine
all vertices of the intersection on timeO(nm), where
m is the number of vertices of the intersection polygon.

5 Naive Algorithm

This approach presented in [1, 7], uses a parametric rep-
resentation for an edge. That is, given two adjacent ver-
ticesv = (v1, . . ., vn) andu = (u1, . . ., un) of the hy-
perbox, the edgeeuv is given by

euv(t) = v + t(u− v) (3)

wheret ∈ [0, 1]. When the edge intersects the hyper-
plane then the components ofeuv sum up toα. Replac-
ing t by t⋆ in Equation 3 and solving fort⋆

t⋆ =
α−

∑n

i=1 vi
∑n

i=1(ui − vi)
(4)

If t⋆ ∈ [0, 1] there exists an intersection between
edgeeuv and the hyperplaneα.

Algorithm 1 traverses all edges; if an intersection is
found, the corresponding vectoreuv(t⋆) is added to list
L, containing all results.

Algorithm 1 Naive(B, α)
Input: A hyperboxB and the hyperplane defined byα

Output: L, the list of solutions for the intersection of
B andα

1: L ← {}
2: Compute the edgesE(B)
3: for all euv ∈ E(B) do
4: Computet⋆ with Equation 4
5: if 0 ≤ t⋆ ≤ 1 then
6: L ← L ∪ euv(t⋆)
7: end if
8: end for
9: return L

6 Proposed Algorithm

This section describes the proposed algorithm to com-
pute the intersection of hyperplaneP and hyperboxB.
For simplicity, to explain the algorithm we consider the

case of an ordered hyperbox located at the origin. Gen-
eralizations of this case are discussed in section 6.3.
There are some preliminary definitions that need to be
stated, and which will lead in our way to describing the
intersection algorithm.

Any intersection pointc ∈ C can be found by locat-
ing an adjacent vertex toc. As an example, the intersec-
tion c6 in Figure 1 can be reached from one of the two
adjacent verticesv or v′. Vertexv is over the planeα
(is a high border vertex) whilev′ is under the plane (is
a low vertex) . Aborder vertex is a vertex under the
plane from which one or more solutions can be reached.
Since any intersection point is restricted by Equation 2,
a border vertex is defined formally as:

Definition 4. A nodev = (v1, . . ., vn) is a low bor-
der vertex or simply border vertexif ∃k, vk = 0 ∧
∑n

i=1 vi ≤ α < bk +
∑n

i=1 vi.

Definition 5. A nodew = (w1, . . ., wn) is a high bor-
der vertexif ∃k,wk = bk∧

∑n

i=1 wi ≥ α > (
∑n

i=1 wi)−
bk.

We select low border vertices (border vertices) to
find intersections, another option is to use high bor-
der vertices. The two approaches are equivalent: when
low border vertices are used, a quantity is added to one
dimension to reach the intersection point; and when
high border vertices are used, a quantity is subtracted
to reach the intersection point. Next section discusses
how to take advantage of both options.

Lemma 6.1. Let B be an ordered hyperbox, ands =
(v1, . . ., vj , ∗, . . . , ∗) a squashed face withj < n de-
fined variables. If

j
∑

i=1

vi ≤ α < bj+1 +

j
∑

i=1

vi (5)

then∃!v ∈ V (s)
∑n

i=1 vi ≤ α. In other words,s has a
unique border vertex.

Proof. Let bev = (v1, . . ., vj , 0, . . .0) ∈ V (s), then
∑n

i=1 vi =
∑j

i=1 vi ≤ α. Also let Y = V (s) \ {v},
then∀y ∈ Y

∑j

i=1 yi > α because
∀y = (y1, . . ., yn) ∈ Y , ∃k ∈ {(j + 1), . . ., n} , yk =
bk, bj+1 ≤ . . . ≤ bn, for an ordered hyperbox and
α < bj+1 +

∑j

i=1 vi soα < bk +
∑j

i=1 vi.

Lemma 6.1 is very useful to find solutions in a sys-
tematic manner, but in general an s–face does not sat-
isfy the condition expressed by Equation 5. Exploring
the2n−j nodes inV (s) to find solutions can be compu-
tationally expensive.

Our strategy consists of partitioningV (s) in such a
way that at least one component of this partition
V ((v1, . . ., vk, ∗, . . . , ∗)) ⊂ V ((v1, . . ., vj , ∗, . . . , ∗))
(wherej < k) satisfies Equation 5. On the other hand,
it is desirable for the partition to have a small num-
ber of components. The following lemma states that
any s–face(v1, . . ., vj , ∗, . . . , ∗) can be partitioned into
k − j + 1 components, containing the squashed face
(v1, . . ., vk, ∗, . . . , ∗).

Lemma 6.2. Lets = (v1, . . ., vj , ∗, . . . , ∗) and
s′ = (v1, . . ., vk, ∗, . . . , ∗) be two s–faces wherej < k

such thatV (s′) ⊂ V (s) then

P(s, s′) = V ((v1, . . ., vk, ∗, . . . , ∗))∪

k
⋃

i=j+1

V ((v1, . . ., vi−1vi, ∗, . . . , ∗))

is a partition ofV (s).

Proof. ∀i∈{(j+1), . . ., k} V ((v1, . . ., vi−1, ∗, . . . , ∗))
= V ((v1, . . ., vi−1, vi, ∗, . . . , ∗)) ∪
V ((v1, . . ., vi−1, vi, ∗, . . . , ∗))

The following corollary is a direct consequence of
Lemmas 6.1 and 6.2,

Corollary 6.3. The following cases state the conditions
to ensure that an s–faces = (v1, . . ., vj , ∗, . . . , ∗) con-
tains at least one of the vertices of the hyperplane–
hypercube intersection:

1. When j = n. The subset of nodes is a single
vertex. A vertexv = (v1, . . ., vn) is a solution if
∑n

j=1 vj = α, otherwise at least one solution is at
its edges iff

∑n

j=1 vj < α and∃vi ∈ {v1, . . ., vn}

(vi = 0) ∧
(

bi > α−
∑n

j=1 vj

)

. Namely, the so-

lution is at(v1, . . ., vi−1, α−
∑

vj , vi+1, . . ., vn).

2. When j < n and Equation 5 holds. If α =
∑j

i=1 vi the Border Vertex is the unique solution,
otherwise the solutions can be found by exploring
adjacent edges of the Border Vertex ofs.

3. Whenj < n and Equation 5 does not hold. Solu-
tions exists if

∑j

i=1 vi < α and
∑j

i=1 vi +
∑n

i=j+1 bi ≥ α. To find solutions, a
partition of the subset of nodes using Lemma 6.2
must be done to find subsets of nodes that match
with one of the previous cases.

Given a hyperboxB and a hyperplane defined by
α, Algorithm 2 determines all vertices of their inter-
section. At Step 1,L andF are initialized;L is a

Algorithm 2 EXPLOREBN(B, α, s)
Input: An ordered hyperboxB located at the origin

with coordinates of the upper corner(b1, . . ., bn),
and the hyperplane defined byα.

Output: Solutions for the intersection ofB andα ad-
jacent or at the verticesV (s)

1: L ← {}, F ← {(∗, . . . , ∗)}
2: while F 6= {} do
3: v ← pop(F)
4: j ← number of defined variables ofv

5: w ← (v1, . . ., vj , 0, . . ., 0)

6: Compute maximumk ≤ n s.t.
∑j

i=1 vi +
∑k

i=j+1 bi ≤ α

7: ∀i ∈ {(j + 1), . . ., k}wi ← bi

8: L ← L∪ FINDSOLUTIONS(w, B, α)
9: if k < n then ⊲ Partition is needed

10: v′ ← (v1, . . ., vj , bj+1, . . ., bk, ∗, . . . , ∗)
11: Z ← P(v, v′) ⊲ Lemma 6.2
12: for all z ∈ Z \ {v′} push(F , z)
13: end if
14: end while
15: return L

list to save the hyperbox-hyperplane intersection ver-
tices, whileF is a stack that indicates which s–faces
need to be explored. After the initialization, the value
k ≤ n is calculated at Line 6; this value is the number
of variables that can be set to the upper limit without ex-
ceeding theα value. Whenk = n, a single vertex was
found, and whenk < n, an s–face with the border node
w = (v1, . . ., vj , bj+1, . . ., bk, 0, . . ., 0) was found. In
both cases, Line 8 computes the solutions by calling the
procedure FINDSOLUTIONS.

Algorithm 3 FINDSOLUTIONS (v, B, α)
Input: An ordered hyperboxB located at the origin

with coordinates of the upper corner(b1, . . ., bn),
the hyperplane defined byα; and a vertexv =
(v1, . . ., vn).

Output: Solutions adjacent to or atv
1: L ← {}
2: α′ ← α−

∑n

i=1 vi

3: if α′ = 0 then ⊲ v is a solution vertex
4: L ← {v}
5: else
6: for all i ∈ {1, . . ., n | bi > α′, vi = 0} do
7: t← v, ti ← α′, L ← L ∪ {t}
8: end for
9: end if

10: return L

α

Bv2

v1

v3

v0

Figure 3: The intersection of a rectangleB and a lineα. It is easier
to find the intersection vertices starting fromv3 than starting fromv0.

In order to find the complete set of solutions for the
case thatk < n, first v is partitioned based on the s–
face that contains the border node (Line 11) and then
the unexplored parts ofP(v, v′) are pushed onto Stack
F (Line 12). Algorithm 3 is an auxiliary procedure to
compute all solutions adjacent to or at vertexv.

6.1 Improving E XPLOREBN

Using low border vertices is not always the best option,
Figure 3 illustrates this situation. The two intersections
marked with a circle can be found from the low border
verticesv1 andv2 or from the single high border vertex
v3. The complexity of the algorithm is reduced when
more solutions are found from less border vertices, it
means that for some instance problems it is better to
use high border vertices. Instead of reaching solutions
by subtracting quantities iteratively from the upper cor-
ner, next lemma describes how to convert an instance
problem in another equivalent one.

Lemma 6.4. Let c = (c1, . . ., cn) be a given solu-
tion of the intersection between the hyperboxB and
hyperplaneα, its complementc′ = (c′1, . . ., c

′

n) where
c′i = bi − ci is a solution of the intersection between
the hyperboxB and hyperplane with parameterα′ =
∑n

i=1 bi − α.

Proof. It is important to note that if there exists a so-
lution of B and α then 0 ≤ α ≤

∑n

i=0 bi. A so-
lution c = (c1, . . ., cn) must live in some edge, then
c′ = (c′1, . . ., c

′

n) also lives in some edge because ex-
ists a unique coordinateci such thatci, c

′

i ∈
[

bi, bi

]

,
and∀j 6= i cj , c

′

j ∈
{

bj , bj

}

. As
∑n

i=1 ci = α then
∑n

i=1 c′i =
∑n

i=1(bi − ci) =
∑n

i=1 bi −
∑n

i=1 ci =
∑n

i=1 bi − α = α′

Using Lemma 6.4 one can find the solutions for the
intersection ofB andα by solving the intersection of
B and the hyperplane defined byα′ =

∑n

i=1 bi − α

and then mapping the solutionsc′ to c. To choose be-
tween solving the direct or the indirect problem, Figure

3 illustrates that one can reach more solutions from bor-
der nodes closer to(0, . . ., 0) or (b1, . . ., bn). Based on
thek value calculated at Line 6 of Algorithm 2, we de-
cide to solve the direct or the indirect problem. As a
rule of thumb is better to solve the direct problem when
k ≤ n− k.

6.2 Computational Complexity

To determine the time complexity of the proposed algo-
rithm, we use Lemma 6.5

Lemma 6.5. Lets = (v1, . . ., vj , ∗, . . . , ∗),
s′ = (v1, . . ., vj , wj+1, . . ., wk, ∗, . . . , ∗) be two s–faces
such thatk < n ands′ has a single border node, then
each element ofP(s, s′) has at least one solution.

Proof. If k < n thens′ has at least one undefined vari-
able,∀i ∈ {(j + 1), . . ., k} an element ofP(s, s′) is
obtained by placingwi at thei–th position ofs′. Be-
causes′ has one or more solutions, and for an ordered
hyperboxwi ≤ bn, then each element ofP(s, s′) has at
least one solution.

A direct consequence of Lemma 6.5 is that every
s-face pushed into the stackF (Algorithm 2, Line 12)
produces at least one solution. Steps 3 to 13 of Algo-
rithm 2, including the execution of FINDSOLUTIONS,
costO(n). Given that each iterative step finds one or
more solutions, the while loop will be executed at most
m times, wherem is the number of solutions. Then the
complexity for the proposed algorithm isO(nm).

6.3 Extensions

The basic method presented in Algorithm 2 seems to be
limited to an ordered hyperbox and a hyperplane in the
form of Equation 2. However, this shortcomings can
be overcome by straightforward extensions to the basic
method. These extensions, include:

Scaling A problem with a hyperboxB = [0, b1]×. . .×
[0, bn] and a hyperplane in the form

∑n

i=1 βixi =
α s.t. ∀i ∈ {1, . . . , n} βi 6= 0 can be mapped to
one of the form

∑n

i=n xi = α with B⋆ = [0, β1b1]×
. . . × [0, βnbn]. Every solutionc⋆ = (c⋆

1, . . ., c
⋆
n)

maps to the solutionc =
(

c⋆

1

β1
, . . .,

c⋆

n

βn

)

in the orig-

inal problem.

Translation A problem with a hyperboxB = [a1, b1]×
. . .× [an, bn] and a hyperplane in the form
∑n

i=1 xi = α can be mapped to one of the form
∑n

i=n x⋆
i = α−

∑n

i=1 ai with B⋆ = [0, b1 − a1]×
. . .×[0, bn − an]. Every solutionc⋆ = (c⋆

1, . . ., c
⋆
n)

maps to the solutionc = (c⋆
1 + a1, . . ., c

⋆
n + an) in

the original problem.

These pre- and post-processing mappings allow us
to solve the general problem, concerning the intersec-
tion of any hyperbox with any hyperplane, without chan-
ging the overall time complexity.

7 Experimental Results

In order to evaluate the proposed algorithm, we create
random instance problems. In the first test we create a
hyperbox of dimensionn = 20 (by considering each
upper limit as an independent random variable with a
uniform distribution), then we increment iteratively the
parameterα from 0 to

∑n

i=1 bi. For every plane the
intersection points were found. Figure 4 shows the re-
sults for this test. The computational cost for the naive
algorithm is constant, since all then2n−1 edges must
be explored to find the (potential) intersection points.
The proposed algorithm exhibits a linearly bounded be-
havior with respect to the number of solutions: this is a
consequence of the fact that only the strictly necessary
nodes were explored.

The second test consists of finding the solutions by
varying the dimension of the problem. Again for each
dimension we generate a random hyperboxB. For each
hyperbox the alpha value was incremented from0 to
∑n

i=1 bi. Figure 5(a) shows the results for this test with-
out the improvement proposed in Section 6.1; the elapsed
time depends on the number of solutions for each bor-
der node. The elapsed time also depends on the median
distance of the border nodes to(0, . . ., 0); then there
are two curves for each dimension. Upper curve grows
above linear because theα plane for these instances is
closer to the upper node of the hyperbox, therefore, we
find less solutions per border node. Figure 5(b) is the
same experiment with the improvement implemented.
That is, when theα plane is closer to the upper node
of the hyperbox, the search starts from there, instead of

10
0

10
1

10
2

10
3

10
4

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

T
IM

E
(m

s)

NUMBER OF SOLUTIONS(×10
6)

····
·····
··
·· ·
· · ·
· · · ·

· · · ·
· · · · ·

· · · ··································
····

+++++++++++++++++++++++++++++++ + + + + + + + + + + +++

Figure 4: Naive algorithm (crosses) against EXPLOREBN algorithm
(dots) forn = 20.

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.5 1.0 1.5 2.0 2.5 3.0

T
IM

E
(m

s)

NUMBER OF SOLUTIONS(×10
7)

n = 20
n = 22

⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲
⊲⊲⊲⊲⊲⊲⊲⊲

⊲⊲⊲⊲⊲⊲⊲⊲
⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲

⊲
n = 24

++++++++++++++++++++++++++++++++
++++

+++
++++++++++

+
+

+
+

+
+

+
+

+
+
+
++

++
++
+++++++++++++

+
+

+
+

+
+

+
+

+
+

+
+

+++

+

···································
·······
··········
···

·

(a) Initial version

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.5 1.0 1.5 2.0 2.5 3.0

T
IM

E
(m

s)

NUMBER OF SOLUTIONS(×10
7)

n = 20
n = 22

⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲
⊲⊲

⊲⊲⊲⊲⊲⊲
⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲⊲

⊲
n = 24

++++++++++++++++++++++++++++++++
+++++

+++
+++++++++++

+++
++

+
+

+
+

++
+++

++
++
+++
+

++++++
+

+
+

+
+

+
+

++

+

···························
·······
··

·

(b) Using improvement proposed in Section 6.1

Figure 5: Behavior of the EXPLOREBN algorithm for different di-
mensions.

starting from the origin. This improvement allows us
to compute the intersection inO(mn) time in the worst
case, yielding cheaper computational cost.

8 Conclusions

This paper presents an algorithm to compute the inter-
section between a hyperbox and a hyperplane. This
problem arises from many optimization problems where
the hyperbox represents the operation region (search
space) and the hyperplane represents an equality con-
straint.

The difference in time achieved by Algorithm EX-
PLOREBN was considerable with respect to the naive
algorithm – see Figure 4. The algorithm exhibits a time
complexity ofO(mn), wherem is the number of solu-
tions andn the problem’s dimensionality. A further im-
provement allows the algorithm to achieve a time com-
plexity lower than that.

The algorithm was implemented in Java and Math-

ematica and can be found at
http://lsc.fie.umich.mx/~juan/hypercubes.

References

[1] Calderon, F., Fuerte-Esquivel, C. R., Flores, J. J.,
and Silva, J. C. A constraint-handling genetic al-
gorithm to power economic dispatch. InMICAI
’08: Proceedings of the 7th Mexican International
Conference on Artificial Intelligence, pages 371–
381, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] Garbano, M., Malerba, J., and Lewinter, M. Hy-
percubes and pascal’s triangle: A tale of two
proofs.Math. Mag, pages 216–217, 2003.

[3] Graham, R. and Pollak, H. On embedding graphs
in squashed cubes.Springer Lecture Notes Math,
303:99–110, 1972.

[4] Harary, F., Hayes, J. P., and Wu, H.-J. A survey
of the theory of hypercube graphs.Comput. Math.
Applic., 15(4):277–289, 1988.

[5] Klavzǎr, S. Counting hypercubes in hypercubes.
Discrete Mathematics, 306(22):2964–2967, 2006.

[6] Mount, D. M. Geometric intersection. In Good-
man, J. and J. O’Rourke, editors,The Hand-
book of Discrete and Computational Geometry.
CRC Press LLC, Boca Raton, FL, pages 615–630,
1997.

[7] Rezk-Salama, C. and Kolb, A. A Vertex Program
for Efficient Box-Plane Intersection. InProc. Vi-
sion, Modeling and Visualization (VMV), pages
115–122, 2005.

[8] Sýkora, O. and Vrto, I. On the crossing num-
ber of hypercubes and cube connected cycles. In
Schmidt, G. and Berghammer, R., editors,Proc.
17th Intl. Workshop on Graph Theoretic Concepts
in Computer Science WG’91, LNCS 570, pages
214–218, Berlin, 1992. Springer-Verlag.

[9] Wang, R. L. and Okazaki, K. Solving the mini-
mum crossing number problem using an improved
artificial neural network. InICMLC, pages 797–
803, 2005.

[10] Wolsey, L. A. and Nemhauser, G. L.Integer
and Combinatorial Optimization. 1st ed. Wiley-
Interscience, November 1999.

http://lsc.fie.umich.mx/~juan/hypercubes

	Introduction
	Related Work
	Basic Definitions
	Problem Statement
	Naive Algorithm
	Proposed Algorithm
	Improving ExploreBN
	Computational Complexity
	Extensions

	Experimental Results
	Conclusions

