
Basic Framework of CATSIM Tree
for Efficient Frequent Pattern Mining

SANJAY PATEL 1

SANJAY GARG 2

1 Sankalchand Patel College of Engineering
Visnagar - 384315.

(sanjaypatel.ce@gmail.com)
2 Computer Engineering Department, A.D. Patel Institute of Technology

New V. V. Nagar - 388121.
(gargsv@gmail.com)

Abstract. Finding frequent patterns from databases have been the mosttime consuming process in
association rule mining. Several effective data structures, such as two-dimensional arrays, graphs, trees
and tries have been proposed to collect candidate itemsets and frequent itemsets. It seems that the
tree structure is most extractive to storing itemsets. The outstanding tree has been proposed so far is
called FP-tree which is a prefix tree structure. Some advancement with this tree structure is called
CATS tree. CATS Tree extends an idea of FP-Tree to improve storage compression and allow frequent
pattern mining without generation of candidate itemsets. It allows the mining with a single pass over
the database. In this work, CATSIM Tree is presented for which an attempt has been made to modify
present CATS Tree in order to make it efficient for incremental mining.

Keywords: Data Minging, Frequent Pattern Mining, CATS Tree, FP-Tree, Incremental Min-
ing.

(Received September 13, 2008 / Accepted January 19, 2009)

1 Introduction

Due to modern storage technologies advancement,
it is possible to store a large amount of data cheaply,
in both financial and physical sense. So, for com-
panies it is feasible to record all kinds of data from
customer’s personal information to purchasing trans-
actions. This leads to accumulation of huge amount
of data.

Huge amount of data does not equate to that
much amount of information and most of the data
require large amount of processing before useful

information can be extracted. The process of ex-
tracting hidden patterns from large datasets is called
knowledge discovery.

One crucial phase of the knowledge process is
data mining. Data mining is to find valid, novel,
potentially useful and ultimately understandable pat-
terns in data [2].

In general, there are many kinds of patterns that
can be discovered from data. For example, associ-
ation rules can be mined from market basket anal-
ysis, classification rules can be found for accurate

(sanjaypatel.ce@gmail.com)
(gargsv@gmail.com)


classifiers, clusters and outliers can be identified
for customer relation management [6].

Frequent pattern mining plays an important role
in many data mining tasks, such as mining associ-
ation rules, correlations, causality, sequential pat-
terns, multi dimensional patterns, partial periodic-
ity and emerging patterns. Information extracted
from huge transactional datasets is generally rep-
resented in the form of association rules. Frequent
itemsets are itemsets that have support greater than
a minimum user defined support. Before associ-
ation rules can be constructed, the frequencies of
the underlying frequent itemsets have to be found.

The first and published data-mining algorithm
is Apriori. It is based on the downward closure
property of itemset that if an itemset of length k
is not frequent, none of its superset patterns can
be frequent. Before each data scan, candidate fre-
quent item sets are verified whether they are fre-
quent or not during the next data scan. There are
many variations proposed to improve the efficiency
of the Apriori algorithm, they are as 1) Hash-based
techniques, 2) Transaction reduction, 3) Partition-
ing the data to find candidate itemsets etc [6].

The second class of algorithms is based on Fre-
quent Pattern growth (FP-growth) which generates
frequent patterns without candidate generation. FP-
growth which adopts a divide and conquers strat-
egy as follows: compress the database representing
frequent items into a frequent pattern tree, or FP-
tree, but retain the itemset association information,
and then divide such a compressed database into a
set of conditional databases, each associated with
one frequent item, and mine each such database
separately. There are some problems of the FP-
growth algorithm like it requires two data scan to
find frequent patterns [7].

The extension to the FP-growth algorithm is k-
nown as CATS (Compressed Arranged Transaction
Sequences) Tree, which solves the problem of FP-
growth by reducing the number of data scan to one.

The contribution of this work is the develop-
ment of a simple, but yet powerful, novel tree struc-
ture for maintaining frequent patterns found in the
updated database. The CATS tree is for interac-
tive mining, not for incremental mining. Attempt

has been made to make the CATS Tree efficient for
incremental mining.

This paper is organized as follows. Section II
discusses about previous work related with the fre-
quent pattern mining. Section III discusses the CAT-
SIM Tree method. Section IV shows the experi-
mental results, and Conclusion and future scope is
discussed in section V.

2 PREVIOUS WORK

Given a user specified support threshold minsup, X
is called frequent itemset if sup(X) , is greater than
minsup. From frequent itemsets association rules
can be derived. This section provides discussion of
some existing algorithms for frequent itemset min-
ing.

2.1 Apriori based Algorithms

The very first well known algorithm for frequent
pattern mining is Apriori [6]. It works on the prin-
ciple of candidate generation and test. It suffers
from the following problems [7].

1. To handle a huge number of candidate sets is
costly. For, example if there are 105 frequent
1-itemsets, the Apriori algorithm will need to
generate more than 109 length-2 candidates
and test their occurrence frequencies.

2. To frequently scan the database and check a
large set of candidates by pattern matching is
complex task.

2.2 Pattern Growth Methods

The FP-growth is pattern growth approach for fre-
quent pattern mining. It removes the candidate
generation and test approach. This data structure
can be designed on the following observations.

1. Because only frequent items will play a role
in the frequent pattern mining, it is required
to perform one scan of transaction database
to identify the set of frequent items.

2. If the set of frequent items of each transaction
can be stored in some data structure, it may be



possible to avoid frequent scanning the origi-
nal transaction database.

3. If multiple transactions share a set of frequent
items, it may be possible to merge the shared
sets with the number of occurrences registered
as count.

Although FP-growth is more efficient than Apri-
ori in many cases, it may still face problems in
some cases as below [7]:

1. Space requirement is increased substantially.
If the database is huge and sparse, the FP-tree
will be large and the space requirement for
recursion is a challenge.

2. Database contains all the cases. Real data sets
can be sparse or dense in different applica-
tions.

3. More scalability is needed in large applica-
tions. Many existing methods are efficient when
the data set is not very large.

2.3 CATS Tree and FELINE Algorithm

CATS Tree extends the idea of FP-Tree to improve
the storage compression and allow frequent pat-
tern mining without generation of candidate item-
sets. The differences of FP-tree and CATS Tree are
shown in the table 1.

The algorithm for the CATS Tree builder is brie-
fly discussed in [10].The FELINE algorithm takes
the CATS Tree as an input and mines the frequent
items according to the algorithm given in [2]. How-
ever the CATS Tree and FELINE algorithm suffers
from the following problems [10]:

1. It is expensive to build the tree without re-
moving the items with frequency less than min-
imum support.

2. Swapping will take more times than the nor-
mal FP-Tree nodes.

CATS Tree FP-Tree
Contains all Contains only

items in every frequent items
transaction
Single Scan Two scan
data mining data mining

Items within a Items within
transaction do not a transaction
need to be sorted are sorted

Sub-trees are Sub-trees are not
locally optimized locally optimized

to improve compression

Table 1: Difference between the CATS Tree and FP-tree [10]

TID Original Transaction
1 A,F,C,D,G,I,M,P
2 A,B,C,F,L,M,O
3 B,A,H,J,O
4 B,C,K,S,P
5 A,F,C,E,L,P,M,N

Table 2: Transaction Database

3 CATSIM TREE

CATS Tree is an extension of the FP-Tree, it is
structurally similar, except branches in CATS tree
are longer than those of FP-Tree. This is because
CATS Tree contains all items in each transaction
rather than just the frequent items. The CATS Tree
satisfies the following properties.

1. The compactness of CATS Tree measures how
many transactions are compressed at a node.
The compactness of CATS Tree is the highest
at the root and the compactness decreases as
a node is further away from the root.

2. No item of the same kind, i.e., nodes contain-
ing the same item label, could appear on the
lower right hand side of that level item.

To illustrate, how the CATSIM tree is working
we will take the following database as an exam-
ple. First all the elements of the transaction will
be sorted according to the alphabetical order, and
then the tree will be formed according to that order
as shown in the figure 1.



Figure 1: CATSIM Tree construction

Figure 2: CATSIM Tree for minsup = 3

From the above tree, the frequency of all the
elements will be found. Suppose minsup = 2 B : 5
, A : 4 , C : 4 , F : 3 , O : 3 , P : 3 , L : 2 , M: 2 , D :
1 , G : 1 , H: 1 , I: 1 , J: 1 , K : 1 , S : 1

Now the elements whose frequency is less than
the minsup will be removed from the tree. So the
new tree will be formed as shown in Figure 2. Af-
ter that the mining of the frequent items will be
done according to the FP-growth [10] approach as
follows.

1. The Conditional pattern base will be formed
according to the ascending order of the items.

2. Conditional FP-tree will be generated accord-
ing to the same order as in step 1 by remov-
ing the items with the frequency less than the
minsup from the conditional pattern base.

3. Finally frequent patterns will be generated from
the conditional FP-tree.



Parameters FP - Growth CATSIM
Total no. of Trans 5577 5577

1-Itemsets 23 27
2-Itemsets 30 35
3-Itemsets 16 18
4-Itemsets 05 06

Table 3: Comparison of results

4 EXPERIMENTAL RESULTS

The implementation of the FP-growth algorithm is
already available in Linux in [11]. The implemen-
tation of the CATSIM Tree and its algorithm is in
Java. The testing of both of the algorithms are per-
formed on Intel Core 2 Duo processor. Here the
experimental results are shown in Table 3.

P The result table shows FP-growth algorithm
is unable to find all the possible frequent itemsets.
Implementation of CATSIM Tree reflects follow-
ing advantages:

1. The construction of the proposed CATSIM
Tree is independent of threshold values. 2. The
items are alphabetically ordered in CATSIM Tree,
any insertions, deletions and modifications of trans-
actions have no effect on the ordering of items in
the tree. So, swapping of tree nodes is not needed.
3. For CATSIM Tree, items are arranged to some
order that is unaffected by the item frequency. So
searching of the common items during the con-
struction is easy. No extra downward traversals are
needed during the mining process.

5 CONCLUSION AND FUTURE SCOPE

CATSIM tree provides efficient updated mining.
The tree size will be exponential in the case of huge
database, so to use disk based memory rather than
main memory may be future work. The CATSIM,
its efficient algorithm and the formal theoretic de-
scription of the same to support the advantages can
also be a further work.

References

[1] Alva Erwin, Raj P.Gopalan, N.R.Achuthan,“CTU-
Mine: An efficient High Utility Itemset Mining Al-
gorithm using Pattern growth approach," Seventh

International conference on Computer and Infor-
mation Technology,2007.

[2] Cheung W., “Frequent Pattern mining without
candidate generation or support constraint,"
Master’s thesis, University of Alberta, 2002,
SPRING ’03,doi.ieeecomputersociety.org
/10.1109/IDEAS.2003.1214917.

[3] Christian Borgelt, “An Implementa-
tion of the FP-growth Algorithm,"
OSDM’05, August 21, 2005, Chicago,
Illinois,USA,www.cs.rpi.edu/ zaki/OSDM05/
papers/p1-borgelt.pdf.

[4] http://fimi.cs.helsinki.fi/data/

[5] http://www.almaden.ibm.com/cs/quest//
syndata.html#assocSynData

[6] Jiawei Han and Micheline Kamber, “Data
Mining, Concept and Techniques," 578 pages,
books.google.co.in.

[7] Jien Pei, “Pattern-Growth methods for
frequent pattern mining, " Ph. D. The-
sis, Simon Fraser University, 2002,
ftp://fas.sfu.ca/pub/cs/theses/2002/
JianPeiPhD.pdf.

[8] Q. I. Khan, T. Hoque and C.K. Leung,
“CanTree : A Tree structure for Efficient In-
cremental mining of Frequent Patterns," Pro-
ceeding of the Fifth International Conference
on Data Mining (ICDM’05),

[9] Rajnish Dass and Ambuj Mahanti, “An
efficient heuristic search for Real-Time
frequent pattern mining," International
Conference on System Sciences - 2006, ieeex-
plore.ieee.org/iel5/10548/33362/01579371.pdf

[10] William Cheung and Osmar R. Za-
iane, “Incremental Mining of Frequent
Patterns without candidate Genera-
tion or Support Constraint," IDEAS’03,
doi.ieeecomputersociety.org/10.1109/IDEAS,
2003,1214917.

[11] www.cse.cuhk.edu.hk/ kdd/program.html.


	Introduction
	PREVIOUS WORK
	Apriori based Algorithms
	Pattern Growth Methods
	CATS Tree and FELINE Algorithm

	CATSIM TREE
	EXPERIMENTAL RESULTS
	CONCLUSION AND FUTURE SCOPE

