
Investigating and Analyzing the Light-weight ciphers
for Wireless Sensor Networks

DEVESH C. JINWALA1

DHIREN R. PATEL1

KANKAR S. DASGUPTA2

1Department of Computer Engineering
S. V. National Institute of Technology,

Surat - 395 007, INDIA
1(dcjinwala,dhiren29p)@gmail.com

2Space Applications Centre,
Indian Space Research Organization,

Ahmedabad - 380 015, INDIA
2ksdasgupta@yahoo.com

Abstract. The Wireless Sensor Networks (WSNs) are characterized by the severe constraints in the com-
putational, storage and energy resources. Though there has been significant improvement in the available
computational resources due to the proliferation of the next-generation sensor nodes, the energy and stor-
age resources of sensor nodes are still limited. As the sensor nodes are often deployed in ubiquitous and
pervasive environments, it is necessary to ensure communications security in a WSN. However, the use
of the security protocols adds to the associated overhead. Therefore, ensuring communications security
in a WSN is a challenge. We believe that since the core component of any security protocol is the cipher
used therein; the overhead due to a security protocol can be largely reduced, by employing essentially
a lightweight cipher. But at the same time, the cipher so employed must ensure appropriate levels of
security with standard key-sizes. Currently, Skipjack (80-bit key-size) is the cipher of choice, for the
software based security protocols like TinySec, SenSec and MiniSec, used in WSNs. However, with
the help of exhaustive simulation, experiments and analysis, in this paper, we show that our optimized
implementation of the Corrected Block Tiny Encryption Algorithm (XXTEA) (128-bit key-size), can be
a good alternative to Skipjack; at least in the resource constrained WSN environments.

Keywords: Wireless Sensor Networks, Link Layer Security, Block Ciphers, Encryption, Authentication.

(Received November 30, 2008 / Accepted March 10, 2009)

1 Introduction

The Wireless Sensor Networks (WSNs) consist of sen-
sor nodes collaborating with each other with three ma-
jor operations viz. sensing, processing and communi-
cating. The sensor nodes are miniature devices char-
acterized by lower computational, storage and energy
resources. In addition, due to wireless and the data-
centric multihop communication paradigm followed by
the WSNs (and the consequent necessity for the security

protocols to operate at link layer), ensuring the commu-
nication security therein becomes a critical issue [33],
[13].

Designing a link layer security protocol (LLSP) for
WSNs is a precarious issue: the nature of the security
protocol to be employed inherently entails greater over-
head, whereas the underlying platform inherently faces
the scarcity of resources. Hence, it becomes essential to
investigate critically, the level and the type of security

(dcjinwala,dhiren29p)@gmail.com
ksdasgupta@yahoo.com


offered by the LLSP employed.
Now, whether a security protocol is designed to op-

erate at the link layer or otherwise, the cipher used therein
is indeed a very vital component. In fact, the confi-
dence in a security protocol is largely derived from that
in the cipher. At the same time, the total overhead asso-
ciated with the use of such a protocol is largely due to
the intrinsic design of the cipher and due to the cipher
parameters viz. the key-size, block-size and the num-
ber of rounds. Hence, it is essential to ensure that a
lightweight cipher, operating without any compromise
on the above cipher parameters (beginning with the key-
size), is employed in WSNs.

Here, we attempt to do so. We have selected the
lightweight unencumbered ciphers of the Tiny Encryp-
tion Algorithm (TEA) family viz. the Tiny Encryption
Algorithm (TEA) [55], the Block TEA (XTEA) [44],
the corrected Block TEA (XXTEA) [54] as the ciphers
of our choice. We compare these ciphers with the Skip-
jack cipher used in TinySec [32]link layer security base
platform. Skipjack cipher is the default unencumbered
cipher of choice in the link layer security protocols like
TinySec [32], SenSec [39], MiniSec [41], SPINS [12].

We have also implemented our own optimized ver-
sion of the Corrected Block TEA (XXTEA) cipher, to
further reduce the associated overhead and demonstrate
the improvement in the performance.

As per our results, the optimized XXTEA cipher
definitely can be a good choice for those WSN applica-
tions, which do not need the stringent security demands
that comes with the AES cipher AES [31].

The long-term implications of our research exercise
indeed are far reaching, than our results primarily show.
The spectrum of applications for which the WSNs are
deployed is very wide - ranging from high security re-
quirements oriented Defense Applications to the au-
thentication only demanding Environmental Monitor-
ing and Control applications (e.g. monitoring the rain-
water to forecast the flood) [29].

Therefore, it is essential that the link layer security
protocol employed for a WSN is designed to be config-
urable with respect to the overhead associated. We dis-
cuss the preliminary design of such Configurable LLSP
in [30].

The rest of the paper is organized as follows: In the
next section we explain how the communication paradigm
in WSNs is different from that in the conventional net-
works and survey the lightweight block ciphers. In sec-
tion 3, we discuss the existing link layer security archi-
tectures implemented as open source software and their
design requirements. In section 4 we discuss various
peer attempts at evaluating the block cipher to show that

our implementation of XXTEA in TinySec platform is
indeed unique. Then, in section 5, we elaborate on our
methodology for evaluation and the tools as well as the
test application used. In section 6, we discuss the sim-
ulation results and analyze them. We conclude with the
major impact of our exercise in the last section, includ-
ing the suggestions for future research.

2 Theoretical Background and Motivation

In this section, we justify as to why it is necessary to
investigate the communications security in the WSNs
in general and the block cipher to be employed therein,
in particular.

The WSNs follow the data-centric multihop com-
munication paradigm instead of the conventional route-
centric multihop communication. The data-centric mul-
tihop communication relies on the in-network process-
ing of the data. In-network processing is on-the-fly
processing (e.g. summarization, duplicate elimination
or aggregation) of the data, during its transmission to
the base station. The principal advantage of such in-
network processing is the overall reduced communica-
tion costs.

In-network processing and the data-centric multi-
hop communication necessitate that the data packets be
investigated by the intermediate elements too, to de-
cide their further course of communication. Therefore,
the conventional security protocols like SSH, SSL [53],
IPSec [5] cannot be directly used in WSNs. Hence, it
is necessary to devise the security support at the link
layer.

The link layer security protocols must offer the se-
curity attributes viz. data confidentiality (mechanism:
data encryption), data integrity and data-origin authen-
tication (mechanism: keyed hash functions) and data
freshness with protection against replay attacks (mech-
anism: an appropriate anti-replay algorithm).

We briefly discuss the existing link layer security
protocols in Section 3.

2.1 The Block Ciphers for Link Layer Protocols

The core component of any security protocol is no doubt,
the cipher employed therein. The practical cipher so
employed only ensures computational security and does
not guarantee the unconditional security (except for the
one-time pad) [51].

Fundamentally, the computational security of a ci-
pher can be ensured by (1) using a key-size sufficient
enough to prevent the brute-force attacks and (2) an
attack-proof design. The former is a (tangible) loga-
rithmic measure of the fastest known computationally



feasible attack on the cipher. The latter is a tangible
measure of the largest effort required to orchestrate a
brute-force attack on the cipher.

Now, in order to ensure that the cipher is secure at
least against the brute-force attack, it is essential to en-
sure minimally that it uses a state-of-the-art key-size.
As such, higher the key-size, higher would be cipher’s
resistance to the brute-force attacks and more would be
the confidence in the overall security of the cipher.

Can we then deduce that we should use a cipher with
the maximal possible key-size defined in its configura-
tion? Well, there are two issues to be pondered upon,
as follows: (a) as per [36], merely using a cipher with
higher key-sizes does not ensure the essential crypto-
graphic strength. Thus, having a cipher with a stan-
dard key-size is necessary but not sufficient condition
(b) with the increase in the permissible key-size of a
cipher, the associated overhead also increases.

We centre our discussion only on (b) here assum-
ing that unless any cryptanalytic weaknesses have been
discovered, a cipher must be having intrinsic crypto-
graphic strength and it is sufficient to ascertain proper
key-sizes with respect to the associated overhead.

Now, employing a key-size that is longer than even
the state-of-the-art key-sizes is not a problem in conven-
tional networks, because the resulting overhead is easily
absorbed with the abundance of the resources. How-
ever, in the resource constrained WSN environments,
the key-sizes have to be necessarily optimum, to ensure
good level of security and at the same time, be compa-
rable to the existing standards.

In fact, in case of sensor nodes, the resource lim-
itations today, even with the proliferation of the next
generation motes; are far greater than those in the con-
ventional PCs. This fact can be observed from the huge
difference in the specifications of Berkeley Mica2 [3]
motes (released first in 2004), that of the Crossbow Iris
motes [2] released in 2007 and the of a typical desk-
top PC. Hence, when selecting a security protocol for
the WSNs, it is essential to carefully arrive at the cipher
and the key-size to be employed therein.

Currently, all the link layer security architectures
employ the 80-bit key-sized Skipjack [6] as the default
cipher of choice. However, as we show in section III,
that it is necessary to employ a 128-bit key-size cipher
to ensure better levels of security. The current Advanced
Encryption Standard (AES) cipher viz. AES indeed
supports 128-bit key. Hence, it is tempting to accept
the AES as the cipher of choice, even in the WSNs.

However, the following three arguments forewarn
against doing so:

• First, AES had not been designed with a focus only

on the resource-constrained environments but with
that on standardization and long-term security. In-
deed, the feasible implementations of the AES on
even Smart Cards demand a crypto processor (an
accelerator for cryptographic operations) as in [49].

• The energy and computational resource constraints
in the WSNs are much more stringent than those
even in the embedded systems.

• Besides AES, it is essential to investigate whether
any other 128-bit key-sized lightweight cipher can
be used in WSN environments at lesser overhead
or not.

Along with the above, one aspect that needs clarifi-
cation is that merely having a cryptographically secure
cipher may not be sufficient. The overall strength of
a cipher is decided by the intrinsic strength of the
cipher determined by its design, by the key-size em-
ployed and by the extrinsic strength of the cipher de-
termined by the cryptosystem that uses the cipher i.e.
by the actual cipher implementation. One of such pa-
rameter is the resistance of the cipher implementation
to the side-channel attacks [14]. However, we do not
focus on the extrinsic strength of the cipher implemen-
tation here. We believe that the peripheral weaknesses
of a cryptosystem come into play later; more essential
it is, to ensure the intrinsic cryptographic strength of a
cipher.

3 Link Layer Security Architectures

In this section, we investigate and discuss various is-
sues related to the design, implementation and practical
usages of the link layer security architectures.

3.1 Goals

The security attributes desired from a link layer security
solution for WSNs are as follows: (a) Confidential-
ity: Confidentiality of the data is achieved by encrypt-
ing it using a symmetric key block cipher. The data
encryption can be achieved with a shared key k and the
functions Ek(m) and Dk(m) for encryption and decryp-
tion respectively. As mentioned earlier, in order to en-
sure the cryptographic strength of the cipher, it is es-
sential to ascertain that the cipher employs a standard
key length. Lenstra in [37], attempts to quantify
the security of a cryptosystem with respect to its key
length in terms of the trust in Data Encryption Stan-
dard [20]. Since, DES after being introduced in 1977,
was reviewed every five years, it was trusted at least
till 1982. Lenstra proposes that the security of DES



in 1982 be treated as the base security to calculate the
security margin y of the cipher. Assuming k as the key-
size required to carry out the best known attack against
a cipher A, the number of years till the cipher A can
be considered secure i.e. the security margin y of the
cipher A can be defined as

y = 1982 + (k − 56) 30
23

If y is known i.e. the year up to which the cipher is
required to be secure, the minimum required k can be
found out. If calculated in this manner, the 80-bit key-
sized cipher can be considered as safe till 2013 and a
128-bit key-size cipher, till 2076.

However, Lenstra gave this hypothesis in 2001. The
recent conservative prescription by ECRYPT [4] dic-
tates a minimal of 128-bits keys for any cipher. In the
Table-I, we show the prescribed key-sizes by ECRYPT,
NIST [9], NSA [11], and RFC3766 [45].

Thus, we deduce that ensuring the design of a cipher
to be attack-proof is a sufficiency condition for security
of the cryptosystem, but employing key-sizes equal to
128-bits, is a necessary condition.

(b) Data integrity: Data integrity ensures that the
data is not altered fraudulently, during its transmission
from the source to the destination. Typically, the un-
keyed hash functions can be employed to ensure data
integrity. Along with the data integrity, another related
essential attribute is source (data origin) authentication.
To achieve both, the data integrity as well as data ori-
gin authentication, a keyed hash function known as a
Message Authentication Code (MAC) algorithm is em-
ployed. A message authentication code (MAC) algo-
rithm is typically a family of functions hk(k, x) that
takes a secret key and the message as its input and gen-
erates a MAC-value, which is sent along with the mes-
sage as a proof of its integrity. MAC must be hard to
forge without the secret key [16]. For the WSNs, the
number of bits used for MAC-value is generally 4-8
bytes.

(c) Replay Protection: In a replay attack, an adver-
sary stores a data packet without authorization and then
retransmits the same, to trick the receiver into accept-
ing it as a genuine packet. The replay attacks can be
prevented, therefore by employing, in general, an anti-
replay window that stores the arrival information of up
to w consecutive sequence numbers. Any packet that
has a sequence number lesser than the highest sequence
number in the received set of packets, would be treated
as a replayed packet and silently discarded. Otherwise,
it would be accepted as a genuine packet and the se-
quence number in the set of received packets be ad-
vanced.

(d) Message freshness: The message freshness is an
indication of whether the data packet received by the
receiver is indeed not stale. The freshness parameter
captures the gap between the transmission of data from
the source and its delivery to the recipient. Message
replay protection is a special case of ensuring message
freshness.

(e) Availability: The security properties to be satis-
fied must not prevent the message from being available
in time to the recipient. For any security protocol, avail-
ability of the data is always a prime concern.

(f) Low Overhead: Low overhead concerns with the
overall resource expenditure in ensuring the security
properties. In the resource constrained WSN environ-
ment, it is essential to ensure that the overhead is at the
minimum to optimize the ratio of gain due to security
versus the expenditure entailed.

3.2 Implementations of Link Layer Framework

Our cipher implementation is done in TinySec [32]. Tiny-
Sec uses three different modes of operations, providing
either (a) no security support or (b) support for message
authentication only (based on Cipher Block Chaining
Message Authentication Code (CBCMAC) [16] or (c)
support for (b) and message confidentiality via encryp-
tion in Cipher Block Chaining (CBC) [15] mode. As
mentioned earlier, TinySec employs 80-bit key-sized
Skipjack, as the default block cipher. The authors of
TinySec also discuss the experimental evaluation of the
patented 128-bit key-sized and 128-bit block-sized RC5
block cipher.

We have used TinySec for our experimentation, be-
cause of it being open-source and it following a modular
plug-in oriented design (to enable further experimenta-
tions with the block cipher and modes). We must em-
phasize that our results are independent of the link layer
protocol implementation i.e. we expect similar results
when using MiniSec or any other protocol.

4 Block Ciphers and their Evaluations

Amidst the presence of a standard cipher like AES, there
have been numerous attempts in the pre-WSN period, to
design lightweight simple ciphers for the embedded en-
vironment. Hence, the applicability of such ciphers in
the WSN environment without compromising any secu-
rity - under the available resources - must be evaluated.
We discuss the characteristics of the cipher used by us
for evaluation in the next section.



Table 1: Cipher Key-sizes

Organization/Method DesirableSKCkey − sizeinbits DesirablePKCkey − sizeinbits Securetill

ECRY PT 128 3248 2029
NIST 128 3072 2030
NSA 128 - -

RFC3766 128 3253 -

4.1 Characteristics of the ciphers

Skipjack is the 80-bit key size of block cipher, which
has the 64-bit block-size and 32 unbalanced Feistel rounds.
The best cryptanalytic attack against the cipher was the
differential cryptanalysis, carried out on 31 of the 32
rounds of the cipher [18].

The TEA cipher uses 64-bit block cipher with 128-
bit key-size and 64 rounds of operation. It is a short
Feistel iteration cipher with no preset tables, nor any
explicit key mixing routines. The cipher makes alter-
nate use of XOR and ADD to provide non-linearity.

Various cryptographic attacks have been reported on
TEA. These include slide attacks by Biryukov and Wag-
ner in [19], equivalent keys in [34], distinguishing at-
tack in [25], [26] and susceptibility to differential crypt-
analysis in [43], [8].

The XTEA was proposed by Needham et al. in [44]
to overcome the limitations of TEA, principally the re-
lated key attack. However, XTEA is more vulnerable
to differential and truncated differential attacks as per
[28], [43], and [35].

The Corrected Block TEA cipher viz. XXTEA was
proposed by Wheeler et al. in [54] as an improvement
over another simple cipher viz. Block TEA [44] that
was published by them in the same paper as the XTEA
[44]. XXTEA also uses 128-bit key-sizes with a Feis-
tel network design and variable 6 to 32 rounds depend-
ing on the block size. No major published cryptanalytic
weaknesses of this cipher are known.

We have selected the TEA family of cipher not only
because of the 128-bit key-size employed therein, but
also because of the simplicity, minimal key-setup in-
volved and non-encumbrance of the ciphers. We believe
that because of its simplistic design, these ciphers ought
to be appropriate for the resource constrained WSNs.
In the next section, we relate our work with the peer
attempts at investigating the block ciphers in the WSN
environment.

4.2 Contemporary Evaluations of Block Ciphers

The block ciphers that have been employed in general,
for the evaluation in WSN environments are viz. RC5

[47], Skipjack, AES, Twofish [50], Kasumi [42], Camel-
lia [42] and TEA. We survey the attempts at evaluating
these ciphers now:

In [46], Soren Rinne et. al. present the perfor-
mance analysis of the block ciphers viz. TEA, XTEA,
SEA [21], AES, HIGHT [8], and DES on the 8-bit AVR
Microcontroller architecture [10]. The authors propose
that if the memory is highly critical constraint, then the
ciphers like TEA, XTEA can be considered as good op-
tions.

Shuang Liu in [40] discusses the implementation of
TEA algorithm on the Berkeley Motes platform. The
authors show that with respect to the execution time re-
quirements, TEA is a favorable cipher in the sensor net-
works.

Großshädl Johann et al in [23] attempt at the energy
evaluation of the software implementations of the block
ciphers. In their paper, the authors compare the perfor-
mance, the energy consumption, the run-time memory
requirements and the code sizes of the block ciphers viz.
RC6 [48], AES, Serpent [17], Twofish and XTEA. The
base platform used for their exercise is the Strong ARM
SA-1100 processor (used principally in embedded sys-
tems like cell phones and PDAs).

Guimarães Germano et al in [24] present an evalua-
tion of the security mechanisms in WSNs. The authors
attempt principally at evaluating the energy/power con-
sumption, memory requirements, and throughput of the
ciphers RC5, RC6, TEA, Skipjack and DES. All these
evaluations have been carried out on the TinySec plat-
form with the Mica2 mote. However, the authors do not
consider the performance of XXTEA cipher (and nei-
ther its optimization) as we attempt to do here.

Even otherwise, we believe that our work substan-
tially differs from all of the above attempts because we
focus primarily on the performance of the cipher in the
link layer security architecture for the WSNs and on the
optimization of the XXTEA implementation.

5 Our Evaluation

5.1 The Target Platform

We use the MICA2 motes platform for implementation
and simulation. It uses the low power ATmega128 mi-



crocontroller [10]. The CC1000 transceiver used by
MICA2 is also designed for very low power and very
low voltage wireless applications.

5.2 Implementation Tools

The experimental platform used is TinyOS [27], [7] with
nesC [22] as the implementation language and TOSSIM
[38] and AVRORA [52] as the simulators.

TinyOS is a small event-driven, component based
operating system designed specifically for supporting
the concurrency intensive operations required by net-
worked sensors. The programming language used for
TinyOS is nesC - a language for programming struc-
tured component-based applications.

TOSSIM WSN simulator provides a scalable simu-
lation environment for sensor networks based on TinyOS.
TOSSIM is used popularly for testing, debugging, and
analyzing TinyOS applications. We have deliberately
used TinyOS 1.1.1x because the support for TinySec
has been integrated with this version, so as to enable
simulation of security features also through TOSSIM.

Although TOSSIM captures TinyOS behavior at very
low level, it does not model the power consumption
for the motes. This is because it does not model the
CPU execution time, and thus, cannot provide accurate
information for calculating the CPU energy consump-
tion. Therefore, we are using AVRORA [52] to measure
the CPU cycles and power consumption for a particular
node. AVRORA runs actual Mica2 code and is an emu-
lator. Avrora runs code in an instruction-by-instruction
fashion.

The principal functional module of TinySec is the
file TinySecM.nc. TinySecM.nc nesC module (a)
initializes the cipher context required and the routines
for computing and verifying the Message Authentica-
tion Code (MAC) (b) calls appropriate routines to en-
crypt, decrypt the data and (c) calls appropriate routines
to compute and verify the MAC.

As part of its functionality, it calls the default ci-
pher component SkipJackM.nc. In our experimenta-
tion, we replaced SkipJackM.nc with our own appro-
priate cipher components viz. TEAM.nc (for TEA),
XTEAM.nc (for XTEA), XXTEAM.nc (for XXTEA)
and OXXTEAM.nc (for our own optimized XXTEA im-
plementation).

5.3 Evaluation Methodology

For evaluation, we employed a two-step process:

• First, we used the definition and the C implementa-
tions of the TEA, XTEA and XXTEA ciphers as in

[55], [44], and [54] and tested them. Next, we im-
plemented these ciphers in nesC and plugged them
in the TinySec library. Then we executed our test
application and evaluated the performance of each
cipher against that of the SkipJack cipher.

• Next, we deployed the application under consider-
ation on the Mica2 motes and evaluated the perfor-
mance.

As compared to Mica2 motes, the next generation motes
like Intel iMote [1] and Crossbow Iris motes [2] are in-
deed having higher computational and storage power.
However, we believe that our evaluation, carried out
on more stringent environment of Mica2 motes, can al-
ways be applicable in more resource-rich environments.

As the test application, we have used the application
TestTinySecM that comes bundled with the Tiny-
Sec installation. The call-graph of this application is
as shown in the Fig. 1. As can be seen from the fig-
ure, the TestTinySecM module is the main compo-
nent implementing the application. TestTinySecM
implements a counter that is incremented on firing of
the timer. TestTinySecM further passes the counter
value modified by the component Counter, through
the SendMsg interface for onward transmission over
the radio, to the component SecureGenericComm.

Figure 1: TestTinySec Application in TinySec

In addition, when the message is sent, the Leds in-
terface is used to toggle the LED on the mote. The al-
gorithm for the application is shown below. The entire
communication takes place with the security attributes
enabled in TinySec.

1. counter = timer
2. while (counter == fired) {
3. if (Send(Data Packet)) then LED=Green
4. else if (Receive(Data Packet))
5. then LED=Red
}



In Fig. 2, we show the partial call-graph showing the
default security components of the TinySec that come
into play, during the execution. As can be seen, we ob-
tained this call-graph for the default cipher Skipjack.
TinySec uses the cipher Skipjack (SkipJackM) in

Figure 2: TestTinySec in Default Configuration

the CBC mode as the default mode of operation (CBCModeM)
with the CBC-MAC as the default message authentica-
tion code algorithm (CBCMAC). Thus, SkipJackM,
CBCMAC and CBCModeM components are not imple-
mented by us. We use them for comparing our com-
ponents TEAM, XTEAM, XXTEAM and OXXTEAM. In
Fig. 3, we show the partial snapshot of the TestTiny-
Sec call- graph with XXTEA cipher in the CBC mode.
We modified the TinySec configuration files to execute

Figure 3: TestTinySec with XXTEA in CBC Mode

the TestTinySec application using all the combinations
of cipher in the CBC mode of operation. We also at-
tempted to optimize the basic XXTEA operation. For
the computations of the XXTEA cipher functions, we
use three specific optimization techniques in implemen-
tation to improve the performance.

First, we use the pre-computed tables for the follow-
ing sub-computations in various rounds of the cipher
function to speed up the operations.

sum = sum + DELTA
e = sum >> 2&3
key[cnt&3e]

These computations are dependent only on the values
of DELTA and the cnt (i.e. the round number) - that
are all constants. Therefore, instead of computing the
values at the time of the encryption or decryption, it is
beneficial to pre-compute and pre-store the same in the
form of a table and merely lookup the values in the able
at the run time. Again, these values can be loaded at the
program load time and only once; therefore, to save the
overhead at the run time, we use static const qualifier
to define, compute and pre-store these tables.

Secondly, we exploit the benefit of inline templates
indirectly, with the use of predefined macro computa-
tions. The Inline templates are a mechanism for directly
inserting pre-computed code into an executable. Typi-
cally, this approach is used to obtain the better perfor-
mance for a given function, or to implement an algo-
rithm in a specific way. In general, as such, the com-
piler is responsible for doing the optimizations in the
given high-level code. However, the computations of
the XXTEA cipher functions in each round are really
algorithm specific and hence even a highly optimizing
compiler cannot do anything to optimize such code. There-
fore, we resort to the use of a macro definition. The
advantage of a macro definition is not only in the im-
proved readability but also in faster execution; because
the macro generates in-line code, avoiding the overhead
of a function calls. We also define the macros for both
the encryption and decryption routines that call the MX
functions repeatedly.

Thirdly, when handling the XXTEA cipher, it is es-
sential to do mutual conversion between the cipher state
and the long data type when doing the cipher opera-
tions. We used the inline assembly code for copying a
four byte character buffer to a long data type and long
data type to a four byte character buffer.

Executing the TestTinySec application, we obtained
the results for the memory overhead, CPU cycles and
the power consumption for the block ciphers. As we
demonstrate in the next section, these optimizations help
us in being able to significantly improve the performance
of the cipher in the resources constrained sensor nodes.

5.4 Overhead Measurement

For resource overhead measurements, to obtain the sim-
ulation results on the desktop, we executed the applica-
tion in the dbg mode with the crypto flag set (i.e.
DBG=crypto in TOSSIM). The crypto flag in the
TOSSIM simulation allows monitoring and evaluating
the cryptographic operations, defined in the application.



For deployment of the application on the actual Mica2
motes, we compiled the application with Mica2 option.
By default, the nesC compilation in TinyOS outputs the
ROM and RAM requirements of the compiled appli-
cation for the target motes. Thus, we determine the
storage requirements for the simulation and the actual
Mica2 motes with the help of the nesC compiler itself,
using appropriate options.

To measure the CPU cycles we simulated the Test-
TinySec application with our implemented block cipher
and then converted the Mica2 executable file into ELF
file format to emulate it in the AVRORA. We simu-
lated the application for 2 nodes and for 5 seconds.
The throughput was computed assuming the CPU be-
ing clocked at 8 MHz.

We also used the AVRORA simulator for measuring
the energy consumption for every node. We ran the en-
ergy simulation for 45 nodes and for 100 seconds. The
results of our experimentation are discussed in the next
section.

6 Performance Results and Analysis
6.1 Memory Usage

The result of memory requirements (for RAM and ROM)
for every cipher for Mica2, is shown in Fig. 4. We can
observe that the entire TEA family of ciphers requires
lesser overall storage as compared to the Skipjack ci-
pher. To be precise, looking at the total available RAM
of 4KB in Mica2 motes, the ciphers Skipjack, XXTEA
and our own Optimized XXTEA (XXTEAO) consume
20.31%, 15.23% and 15.23% of the available RAM re-
spectively. Similarly, with the available ROM of

Figure 4: Storage Requirements of the TEA ciphers

128 KB in the Mica2 motes, the ciphers Skipjack, XXTEA
and XXTEAO require 12.64%, 12.80% and 12.33% of
the available ROM respectively.

Two vital aspects to be emphasized here when an-
alyzing these results, are as follows: (a) We ob-
served that the default implementation of XXTEA from
[54]required marginally higher ROM (2%) as compared
to Skipjack. Hence, we reimplemented the cipher op-
timizing it to ensure the lesser overhead. Thus, the
XXTEO implementation consumes 2.42% lesser ROM
relative to Skipjack - at the same time offering higher
security levels due to its 128-bit key-size. (b)In ad-
dition, RAM is more critical component in the resource
starved sensor nodes. The RAM size in the newer gen-
eration motes has not increased as much as (with the im-
provements in the overall technology) the ROM sizes.
Hence, the saving in RAM in the entire TEA family of
ciphers, as compared to Skipjack, is significant and vi-
tal.

In Fig. 5, we show the results of our evaluation of
the CPU cycles consumed for encryption, decryption
as well as keys setup operations for the ciphers under
consideration. We observed that the Skipjack requires
lower number of CPU cycles, as compared to those re-
quired by TEA family of ciphers for encryption and
decryption. However, for keys setup, the Skipjack ci-
pher requires the highest number of CPU cycles. This

Figure 5: CPU Cycles for security related operations

means that, relative to Skipjack, TEA performs the best
with a significant 53.33% lesser total CPU cycles re-
quired for encryption, decryption and keys setup. The
corresponding figures for XXTEA and XXTEAO are:
23.12% and 33.36% lesser total CPU cycles required
relative to Skipjack. Thus, the tradeoff between the se-
curity level and CPU overhead is best achieved in our
own implementation of XXTEA viz. OXXTEA.



6.2 Throughput

We considered the parameters viz. the block-size of ci-
phers, the CPU cycles and CPU clock at 8 MHz for
the throughput evaluation. As can be observed from
Fig. 6, Skipjack has the highest throughput for encryp-
tion and decryption, but it has the lowest throughput
for keys setup. The overall performance of Skipjack
degrades due to this, when compared to the ciphers of
TEA family. From the performance results it can be ob-
served that Skipjack is obviously unsuitable for smaller
data stream oriented encryption and decryption opera-
tions (likely to be found in typical WSN applications).
Hence, TEA family of ciphers is more suitable for the
WSN applications.

Figure 6: Throughput in bits/seconds

6.3 Energy Consumption

Lastly, in Fig. 7, we show the results of the energy con-
sumption of the CPU and Radio components for every
cipher. The energy required for the Radio operations for
all the ciphers is almost the same. However, very signif-
icantly, the results show that XXTEA and the XXTEAO
implementations require only 6.27% and 5.03% more
energy than Skipjack. Looking to the fact that the en-
ergy is a very critical resource in the WSN nodes, and
considering the 128-bit key-size in XXTEA, as com-
pared to the 80-bits in Skipjack, the corresponding in-
crease in energy demand in XXTEA is not significant -
at less than 10%.

7 Conclusion

From the experimental results and the analysis, we pri-
marily conclude that the XXTEA cipher is a suitable ci-
pher for the WSN environment. Although we found the
Skipjack cipher to be faster and energy efficient for the

Figure 7: Energy evaluation of ciphers

decryption and encryption operations, the key expan-
sion in Skipjack consumes higher energy. Thus, overall
energy requirements in Skipjack are higher. Over an
above, it is desirable to have security due to 128-bits
key-size, which Skipjack does not offer. The fact that
the block ciphers of TEA family have no key expan-
sion, makes these ciphers highly suited for application
domains where short messages are encrypted, e.g. in
sensor networks.

We again emphasize that the significance of our ex-
ercise extends beyond the statistical results that we de-
pict. Our results clearly justify the need for a config-
urable link layer security architecture - wherein not only
the security attributes desired, but the selection of the
cipher too, can be based on the nature of the applica-
tion. The performance gained as a result of employing
a light-weight cipher, that provides the level of security
sufficient for the application under consideration, is in-
deed significant for the resource starved sensor nodes.
Our current research work is focused on implementing
the same. Also, in order to emphasize further confi-
dence in XXTEA cipher, we are investigating the crypt-
analysis of the XXTEA cipher.

8 ACKNOWLEDGMENT

We thank all those anonymous reviewers who have de-
voted significant time and efforts to point out the correc-
tions and improvements to bring this paper to the shape
it is in, now.



References

[1] Crossbow iMote2 Data Sheet. http:
//www.xbow.com/products/Product_
pdf_files/Wireless_pdf/IMote2_
Datasheet.pdf.

[2] Crossbow IRIS motes. http://www.xbow.
com/Products/Product_pdf_files/
Wireless_pdf/IRIS_Datasheet.pdf.

[3] Crossbow Mica2 Motes. http://www.xbow.
com/products/Product_pdf_files/
Wireless_pdf/MICA2_Datasheet.pdf.

[4] ECRYPT yearly report on Algorithms and Key
Lengths Rev 1.1. http://www.ecrypt.eu.
org/documents/D.SPA.28-1.1.pdf.

[5] IPSec: Requests For Comments, RFC 2401, RFC
2402, RFC 2406, RFC 2408. http://www.
ietf.org/rfc/rfc240n.txt.

[6] Skipjack - a representative of a family of en-
cryption algorithms as part of the NSA suite
of algorithms. http://csrc.nist.gov/
cryptval/des.htm.

[7] TinyOS Tutorial Lessons. http://www.
tinyos.net.

[8] HIGHT: A New Block Cipher suitable for Low-
Resource Device. In CHES, pages 46–59, 2006.

[9] NIST Recommendation for Key Manage-
ment: Special Publication 800-57 Part 1.
http://csrc.nist.gov/groups/ST/
toolkit/key_management.html, 2007.

[10] ATMEL - 8-bit AVR Microcontroller with 128K
Bytes In-System programmable Flash, Atmega
128. http://www.atmel.com/atmel/
acrobat/doc2467.pdf, 2008.

[11] NSA Fact Sheet Suite B Cryptography.
www.nsa.gov/ia/programs/suiteb_
cryptography/index.shtm, 2008.

[12] Adrian, P., Robert, S., D., T. J., Victor, W., and
E., C. D. SPINS: Security protocols for sensor
networks. Wirel. Netw., 8(5):521–534, 2002.

[13] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y.,
and Cayirci, E. Wireless sensor networks: a sur-
vey. Computer Networks, 38(4):393–422, 2002.

[14] Bar-El, H. Introduction to Side-Channel
Attacks. http://www.hbarel.com/
publications/Introduction_To_
Side_Channel_Attacks.pdf.

[15] Bellare, M., Desai, A., Jokipii, E., and Rogaway,
P. A Concrete Security Treatment of Symmetric
Encryption. In FOCS ’97: Proceedings of the 38th
Annual Symposium on Foundations of Computer
Science, page 394, Washington, DC, USA, 1997.
IEEE Computer Society.

[16] Bellare, M., Kilian, J., and Rogaway, P. The Se-
curity of the Cipher Block Chaining Message Au-
thentication Code. Journal of Computer System
Sciences., 61(3):362–399, 2000.

[17] Biham, E., Anderson, R., and Knudsen, L. Ser-
pent: A New Block Cipher Proposal. In Fast Soft-
ware Encryption 1998, pages 222–238. Springer-
Verlag, 1998.

[18] Biham, E., Biryukov, A., and Shamir, A. Crypt-
analysis of Skipjack reduced to 31 rounds using
Impossible Differentials. Journal of Cryptology,
18(4):291–311, 2005.

[19] Biryukov, A. and Wagner, D. Slide Attacks. In
Proceedings of the 1999 Fast Software Encryp-
tion Conference, pages 245–259, Berlin Heidel-
berg, 1999. Springer-Verlag.

[20] Coppersmith, D. The Data Encryption Standard
(DES) and its strength against attacks. IBM Jour-
nal of Research and Development, 38(3):243–250,
1994.

[21] François-Xavier, S., Piret, G., Gershenfeld, N.,
and Quisquater, J.-j. SEA: A Scalable Encryp-
tion Algorithm for Small Embedded Applications.
In Smart Card Research and Applications, Pro-
ceedings of CARDIS 2006, LNCS, pages 222–236.
Springer-Verlag, 2006.

[22] Gay, D., Welsh, M., Levis, P., Brewer, E., Behren,
R. v., and Culler, D. The nesC language: A
Holistic Approach to Networked Embedded Sys-
tems. In In Proceedings of Programming Lan-
guage Design and Implementation (PLDI, pages
1–11, 2003.

[23] Großshädl, J., Tillich, S., Rechberger, C., Hof-
mann, M., and Medwed, M. Energy evaluation of
software implementations of block ciphers under
memory constraints. In DATE ’07: Proceedings
of the conference on Design, automation and test

http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/IMote2_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/IMote2_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/IMote2_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/IMote2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://www.ecrypt.eu.org/documents/D.SPA.28-1.1.pdf
http://www.ietf.org/rfc/rfc240n.txt
http://www.ietf.org/rfc/rfc240n.txt
http://csrc.nist.gov/cryptval/des.htm
http://csrc.nist.gov/cryptval/des.htm
http://www.tinyos.net
http://www.tinyos.net
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
http://www.atmel.com/atmel/acrobat/doc2467.pdf
http://www.atmel.com/atmel/acrobat/doc2467.pdf
www.nsa.gov/ia/programs/suiteb_cryptography/index.shtm
www.nsa.gov/ia/programs/suiteb_cryptography/index.shtm
http://www.hbarel.com/publications/Introduction_To_Side_Channel_Attacks.pdf
http://www.hbarel.com/publications/Introduction_To_Side_Channel_Attacks.pdf
http://www.hbarel.com/publications/Introduction_To_Side_Channel_Attacks.pdf


in Europe, pages 1110–1115, San Jose, CA, USA,
2007. EDA Consortium.

[24] Guimaraes, G., Souto, E., Sadok, D., and Kelner,
J. Evaluation of Security Mechanisms in Wireless
Sensor Networks. In ICW ’05: Proceedings of the
2005 Systems Communications, pages 428–433,
Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[25] Hernandez, J. and Isasi, P. Finding efficient distin-
guishers for cryptographic mappings, with an ap-
plication to the block cipher TEA. In Proceedings
of the 2003 Congress on Evolutionary Computa-
tion, volume 3, pages 2189–2193, 2004.

[26] Hernandez, J. and Isasi, P. New results on the
genetic cryptanalysis of TEA and reduced-round
versions of XTEA. New Generartion Computing,
23(3):233–243, 2005.

[27] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler,
D. E., and Pister, K. S. J. System Architecture Di-
rections for Networked Sensors. In Architectural
Support for Programming Languages and Oper-
ating Systems, pages 93–104, 2000.

[28] Hong, S., Hong, D., Ko, Y., Chang, D., Lee, W.,
and Lee, S. Differential Cryptanalysis of TEA and
XTEA. In ICISC: Lecture Notes in Computer Sci-
ence, pages 402–417, Berlin, Heidelberg, 2004.
Springer-Verlag.

[29] Jinwala, D., Patel, D., and Dasgupta, K. A Secu-
rity Attributes Driven Taxonomy of Wireless Sen-
sor Applications. In Proceedings of the (Indian
Nuclear Society and University of Applied Sci-
ences, Germany sponsored) International confer-
ence on Sensors and Related Networks (SENNET
07), pages 313–319, INDIA, 2007. Allied Pub-
lishers.

[30] Jinwala, D., Patel, D., and Dasgupta, K. Config-
urable Link Layer Security Architecture for Wire-
less Sensor Networks. In Proceedings of IAENG
sponsored International Conference on Wireless
Networks, pages 776–780, Hong Kong, China,
2008. World Congress on Engineering.

[31] Joan, D. and Vincent, R. The Design of Rijn-
dael. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2002.

[32] Karlof, C., Sastry, N., and Wagner, D. Tinysec: a
link layer security architecture for wireless sensor
networks. In n: SenSys ’04: Proceedings of the

2nd international conference on Embedded Net-
worked Sensor Systems, volume 1008, pages 162–
175, ACM, New York, USA, 2004.

[33] Karlof, C. and Wagner, D. Secure routing in wire-
less sensor networks. In First IEEE International
Workshop on Sensor Network Protocols and Ap-
plications, pages 113–127, 2002.

[34] Kelsey, J., Schneier, B., and Wagner, D. Related-
key cryptanalysis of 3-WAY, Biham-DES, CAST,
DES-X, NewDES, RC2, and TEA. In ICICS
’97: Proceedings of the First International Con-
ference on Information and Communication Secu-
rity, pages 233–246, London, UK, 1997. Springer-
Verlag.

[35] Ko, Y., Hong, S., Lee, W., Lee, S., and Kang, J.-
S. Related Key Differential Attacks on 27 Rounds
of XTEA and Full-Round GOST. In FSE, pages
299–316, 2004.

[36] Lenstra, A. K. Selecting Cryptographic Key Sizes.
Journal of Cryptlogy: The Journal of Interna-
tional Association for Cryptographic Research,
14(4):255–293, 2001.

[37] Lenstra, A. L. Handbook of Information Security,
chapter Key Lengths. Wiley, 2004.

[38] Levis, P., Lee, N., Welsh, M., and Culler, D.
TOSSIM: accurate and scalable simulation of en-
tire TinyOS applications. In SenSys ’03: Pro-
ceedings of the 1st international conference on
Embedded networked sensor systems, pages 126–
137, New York, NY, USA, 2003. ACM.

[39] Li, T., Wu, H., Wang, X., and Bao, F. SenSec De-
sign, I2R Sensor Network Flagship Project. Tech-
nical report, Infocomm Security Department, In-
stitute for InfoComm Research, Singapore, 2005.

[40] Liu, S., Gavrylyako, O. V., and Bradford, P. G.
Implementing the TEA algorithm on sensors. In
ACM-SE 42: Proceedings of the 42nd annual
Southeast regional conference, pages 64–69, New
York, NY, USA, 2004. ACM.

[41] Mark, L., Ghita, M., Adrian, P., and Virgil, G.
MiniSec: a secure sensor network communica-
tion architecture. In IPSN ’07: Proceedings of the
6th international conference on Information pro-
cessing in sensor networks, pages 479–488, New
York, NY, USA, 2007. ACM.



[42] Matsui, M. and Tokita, T. MISTY, KASUMI and
Camellia Cipher Algorithm. Mitsubishi Electric
ADVANCE (Cryptography Edition), 2000.

[43] Moon, D., Hwang, K., Lee, W., Lee, S., and Lim,
J. Impossible Differential Cryptanalysis of Re-
duced Round XTEA and TEA. In FSE ’02: Re-
vised Papers from the 9th International Workshop
on Fast Software Encryption, pages 49–60, Lon-
don, UK, 2002. Springer-Verlag.

[44] Needham, R. M. and Wheeler, D. Tea extensions.
Technical report, Computer Laboratory, Univer-
sity of Cambridge, 1997.

[45] Orman, H. and Hoffman, P. Determining
Strengths for Public Keys used for Exchanging
Symmetric Keys, RFC 3766. RFC Editor, 2004.

[46] Rinne, S., Eisenbarth, T., and Paar, C. Perfor-
mance Analysis of Contemporary Light-Weight
Block Ciphers on 8-bit Microcontrollers. In
ECRYPT Workshop SPEED - Software Perfor-
mance Enhancement for Encryption and Decryp-
tion, Amsterdam, 2007.

[47] Rivest, R. L. The RC5 Encryption Algorithm.
Technical report, MIT Laboratory for Computer
Science, Cambridge, Massachusetts, March 1997.

[48] Rivest, R. L., Robshaw, M. J. B., and Yin, Y. L.
RC6 as the AES. In AES Candidate Conference,
pages 337–342, 2000.

[49] Sano, F., Koike, M., Kawamura, S.-i., and Shiba,
M. Performance evaluation of AES Finalists on
the High-End Smart Card. In Proceedings of
the 3rd AES Candidate Conference, pages 82–93,
2000.

[50] Schneier, B., Kelsey, J., Whiting, D., Wagner, D.,
Hall, C., and Ferguson, N. The Twofish encryption
algorithm: a 128-bit block cipher. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[51] Shannon, C. Communication Theory of Secrecy
Systems. Bell System Technical Journal, 28:656–
715, 1949.

[52] Titzer, B. L., Lee, D. K., and Palsberg, J. Avrora:
scalable sensor network simulation with precise
timing. In IPSN ’05: Proceedings of the 4th inter-
national symposium on Information processing in
sensor networks, page 67, Piscataway, NJ, USA,
2005. IEEE Press.

[53] Viega, J., Chandra, P., and M, M. Network Secu-
rity with OpenSSL. O’Reilly and Associates, Inc.,
2002.

[54] Wheeler, D. and Needham, R. M. XXTEA: Cor-
rections to XTEA. Technical report, Computer
Laboratory, University of Cambridge, 1998.

[55] Wheeler, D. J. and Needham, R. M. Tea:a tiny
encryption algorithm. In Proceedings of the Fast
Software Encryption:Second International Work-
shop, LNCS Book Series, volume 1008, Leuven,
Belgium, 1994.

Devesh C. Jinwala was born on 3rd July 1964. He has
a Master’s degree in Electrical Engineering from the
Maharaja Sayajirao University of Baroda, India with
specialization in Microprocessor Systems and Applica-
tions. He is employed as an Assistant Professor in Com-
puter Engineering with Sardar Vallabhbhai National In-
stitute of Technology, Surat (India) since 1991. He is
currently working on Configurable Link layer Security
Protocols for Wireless Sensor Networks. His major ar-
eas of interest are Information Security Issues in Re-
source Constrained Environment, Algorithms & Com-
putational Complexity and Software Engineering.

Dhiren R. Patel was born on 29th July 1966. He
has a Master’s degree in Computer Science & Engi-
neering from IIT Kanpur, India and Ph D in Computer
Engineering from the South Gujarat University (REC
Surat), India. He is employed as a Professor of Com-
puter Engineering at NIT Surat, India. His major areas
of interest are Information/Network Security, Web En-
gineering and Ubiquitous Architectures. Apart from his
numerous International publications and distinguished
talks, He has also authored a book Information Secu-
rity: Theory & Practice published by Prentice Hall of
India in 2008.

Kankar S. Dasgupta was born on 14th September
1951. He has a Masters Degree in Computer Science
and Engineering from Jadavpur University, Kolkata and
Doctorate in Electrical Engineering from the Indian In-
stitute of Technology, Bombay. He is currently the Di-
rector of DECU at the Indian Space Research Organi-
zation, Ahmedabad.


	Introduction
	Theoretical Background and Motivation
	The Block Ciphers for Link Layer Protocols

	Link Layer Security Architectures
	Goals
	Implementations of Link Layer Framework

	Block Ciphers and their Evaluations
	Characteristics of the ciphers
	Contemporary Evaluations of Block Ciphers

	Our Evaluation
	The Target Platform
	Implementation Tools
	Evaluation Methodology
	Overhead Measurement

	Performance Results and Analysis
	Memory Usage
	Throughput
	Energy Consumption

	Conclusion
	ACKNOWLEDGMENT

