
Design and Implementation of a Novel Peer-To-Peer Information Retrieval

Framework

 G. SUDHA SADASIVAM
1

 V. KARTHIKEYAN
2

 P. RAJA
3

(1, 2, 3)

Department of Computer Science & Engineering

 PSG College of Technology, Peelamedu

Coimbatore, TamilNadu 641004, India
1
sudhasadhasivam@yahoo.com,

2
karthikasturi@gmail.com,

3
rajapcs@yahoo.com

Abstract. Peer-to-Peer (P2P) Information Retrieval framework consists of a peer to peer network of nodes,

which voluntarily agree to share their resources by joining the network. While joining these nodes construct

the active peer list. Each peer maintains a B+ tree containing IP hash values. The files are distributed over

the peer to peer network based on the keywords. The files are initially uploaded into the target node based

on the closest match between the hash values of the IP address of the node and the keywords used to index

the file. While searching, the target node is identified by finding the closest match between the hash value of

the keyword and the IP address hash from the B+ tree stored in the peers. After identifying the target node,

the references to desired document is retrieved by searching a B+ tree indexed using keywords. The

proposed framework uses Hadoop cluster to extract keywords from the files to be uploaded in the desired

target node. Hadoop’s MapReduce programming paradigm reduces the time for keyword extraction. As the

framework maintains a B+ tree in the peers, it further reduces the search time and improves network

bandwidth.

Keywords: P2P networks, information retrieval, Hadoop, B+ tree.

(Received December 15, 2008 / Accepted March 16, 2009)

1 Introduction

A P2P network is a network in which all the nodes have

equal priority. A P2P computer network exploits diverse

connectivity and the cumulative bandwidth of

participating peers rather than using centralized

resources wherein a relatively less number of servers

provide the service. As nodes in the network are

interconnected, there is no single point of failure. P2P

networks are characterized by high processing power

and storage without the overhead of high cost hardware.

An overlay network is a computer network which is

built on top of another network. Nodes in the overlay

can be thought of as being connected by virtual or

logical links. P2P networks can be viewed as overlay

networks because they run on top of the Internet.

First generation P2P file sharing networks, such as

Napster [3], relied on a central database to co-ordinate

look ups on the network. Second generation P2P such as

Gnutella [6], used flooding to locate files, searching

every node on the network. This had a negative effect on

the scalability of the system. Third generation P2P use

Distributed Hash Tables (DHT) to look up files in the

network. Some examples of 3G P2P networks include

Tapestry, Chord, Pastry, and Content Addressable

Networks (CAN). In Chord [7] the node keys are

arranged in a circle. Identifiers and keys are assigned an

m-bit identifier using consistent hashing. In this

framework, utmost O(log N) nodes have to be contacted

to find the successor in an N-node network. In our

proposed methodology as each peer maintains a B+ tree

containing IP hash of peers, at most O(log MN) searches

are needed through the M-ary B+ tree in the peer. Thus

the peer on which the desired file is placed can be

directly identified. In Pastry[1] the key-value pairs of IP

are stored in redundant P2P network of Internet hosts.

The protocol is initialised by supplying it with the IP

address of a peer already in the network. The routing

table is then constructed dynamically. Like Chord and

Pastry, CAN [8] is also scalable, fault tolerant and self

organising. A CAN peer maintains a routing table that

holds the IP address and virtual coordinate zone of each

of its neighbor coordinates. A peer routes a message

using greedy forwarding strategy to the neighbor peer

that is closest to its destination peer. In all the DHT

approaches mentioned above, utmost N nodes have to be

contacted to locate the desired peer. In the proposed

approach, as a map of IP hash values is maintained in

each peer, the target node can be identified from any

peer. Thus our proposed strategy minimises the network

bandwidth. In Kademlia [5] the node ID provides a

direct map to file hashes and that node stores

information on where to obtain the file or resource. Like

other DHT approaches, Kademlia contacts only

O(log(N)) nodes during the search out of a total of N

nodes in the system. Our approach contacts the

destination node only once and search occurs within the

peer to retrieve file reference using keyword indices in a

B+ tree. The network bandwidth is efficiently utilised

as the communication between peers is minimised.

Section two describes the architecture of our proposed

P2P information retrieval framework. Section three

presents the implementation details of the system.

Section four describes the experimental results.

2 System Architecture
The proposed framework consists of a P2P cluster and a

Hadoop [2] cluster. The purpose of the Hadoop cluster

is to extract keywords from a set of documents/files in

an efficient manner. These keywords are used to index

files for efficient searching. It uses a parallel

programming paradigm called as MapReduce

programming. Once the keywords are extracted, it is

given to one of the peers in P2P cluster. The files are

then uploaded to the target peer based on the closest

match of its IP hash with keyword hash. The efficiency

of the framework is attributed to the use of distributed

hashing, Hadoop framework and B+ trees.

2.1 Hashing

 Hashing is done for the IP addresses and the

keywords. Secured Hashing Algorithm (SHA1) [4] is

used to produce the 160-bit hash value. The 160-bit hash

value is converted into 40-bit value for the convenience

of maintaining the same in the B+ tree.

2.2 Hadoop

Hadoop[2] is a software platform specifically designed

to process and handle vast amounts of data. It is based

on the principle that moving computation to the place of

data is cheaper than moving large data blocks to the

place of computation. The Hadoop framework consists

of the Hadoop Distributed File System (HDFS) that is

designed to run on commodity hardware and

MapReduce programming paradigm. HDFS is highly

fault-tolerant and is designed to be deployed on low-cost

commodity hardware. Hadoop is scalable, economical,

efficient and reliable. Hadoop implements Map Reduce,

using the HDFS. MapReduce divides applications into

many small blocks of work that can be executed in

parallel. HDFS creates multiple replicas of data blocks

for reliability, placing them on compute nodes around

the cluster. MapReduce can then process the data where

it is located.

 HDFS has a master/slave architecture. A HDFS

cluster consists of a single NameNode and a number of

DataNodes. The NameNode is a master server that

manages the file system namespace and regulates access

to files by clients. The DataNodes manage storage

attached to the nodes that they run on. Internally, a file

is split into one or more blocks and these blocks are

stored in a set of DataNodes. The NameNode executes

file system namespace operations like opening, closing,

and renaming files and directories. It also determines the

mapping of blocks to DataNodes. The DataNodes are

responsible for serving read and write requests from the

file system’s clients.

 MapReduce is a programming paradigm that

expresses a large distributed computation as a sequence

of distributed operations on data sets of key/value pairs.

The Hadoop MapReduce framework harnesses a cluster

of machines and executes user defined MapReduce jobs

across the nodes in the cluster. A MapReduce

computation has a map phase and a reduce phase. The

input to the computation is a data set of key/value pairs.

In the map phase, the framework splits the input data set

into a large number of fragments and assigns each

fragment to a map task. The framework also distributes

many map tasks across the cluster of nodes on which it

operates (Figure 1). Each map task consumes key/value

(K,V) pairs from its assigned fragment and produces a

set of intermediate key/value (K’,V’) pairs. The

framework sorts the intermediate data set by key and

produces a set of (K',V'*) tuples. In the reduce phase,

each reduce task consumes the fragment of (K',V'*)

tuples assigned to it. For each such tuple it invokes a

user-defined reduce function that transmutes the tuple

into an output key/value pair (K,V).

 The Hadoop MapReduce framework has a

master/slave architecture (Figure 2). It has a single

master server or jobtracker and several slave servers or

tasktrackers, one per node in the cluster. The jobtracker

is the point of interaction between users and the

framework. Users submit map/reduce jobs to the

jobtracker, which puts them in a queue of pending jobs

and executes them on a first-come/first-served basis.

The jobtracker manages the assignment of map and

reduce tasks to the tasktrackers. The tasktrackers

execute tasks upon instruction from the jobtracker and

also handle data motion between the map and reduce

phases.

 Fig. 2. Architecture of P2P Information Retrieval System

P2P CLUSTER

Keyword

extraction

HADOOP CLUSTER

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Master

(Job Tracker)

DFS Master

(Name node)

P2P CLUSTERP2P CLUSTER

Keyword

extraction

HADOOP CLUSTER

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Master

(Job Tracker)

DFS Master

(Name node)

HADOOP CLUSTER

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Slave

(Task Tracker)

DFS Slave

(Data node)

Map reduce Master

(Job Tracker)

DFS Master

(Name node)

Map reduce Master

(Job Tracker)

DFS Master

(Name node)

D1,B1 D2,B1 D1,B2

K1,C1

K2,C1

K3,C1

K2,C2

K5,C2

K3,C2

K6,C3

K3,C3

K4,C3

M M M

Map Task 1

D1,B3 D3,B1

K5,C4

K2,C4

K4,C4

K4,C5

K1,C5

K6,C5

M M

Map Task 2

D2,B3 D3,B2

K6,C6

K3,C6

K1,C6

K5,C7

K6,C7

K4,C7

M M

Map Task 3

Reduce Task 1

K1,I K2,I K3,I K4,I K5,I K6,I

R R R R R R

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

Reduce Task 2

K1,I K2,I K3,I K5,I K6,I

R R R R R

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]

Sort and Group (D2)

D1,B1 D2,B1 D1,B2

K1,C1

K2,C1

K3,C1

K2,C2

K5,C2

K3,C2

K6,C3

K3,C3

K4,C3

M M M

Map Task 1

D1,B3 D3,B1

K5,C4

K2,C4

K4,C4

K4,C5

K1,C5

K6,C5

M M

Map Task 2

D2,B3 D3,B2

K6,C6

K3,C6

K1,C6

K5,C7

K6,C7

K4,C7

M M

Map Task 3

D1,B1 D2,B1 D1,B2

K1,C1

K2,C1

K3,C1

K2,C2

K5,C2

K3,C2

K6,C3

K3,C3

K4,C3

M M M

Map Task 1

D1,B1 D2,B1 D1,B2D1,B1 D2,B1 D1,B2

K1,C1

K2,C1

K3,C1

K2,C2

K5,C2

K3,C2

K6,C3

K3,C3

K4,C3

K1,C1

K2,C1

K3,C1

K2,C2

K5,C2

K3,C2

K6,C3

K3,C3

K4,C3

M M M

Map Task 1

D1,B3 D3,B1

K5,C4

K2,C4

K4,C4

K4,C5

K1,C5

K6,C5

M M

Map Task 2

D1,B3 D3,B1D1,B3 D3,B1

K5,C4

K2,C4

K4,C4

K4,C5

K1,C5

K6,C5

K5,C4

K2,C4

K4,C4

K4,C5

K1,C5

K6,C5

M M

Map Task 2

D2,B3 D3,B2

K6,C6

K3,C6

K1,C6

K5,C7

K6,C7

K4,C7

M M

Map Task 3

D2,B3 D3,B2D2,B3 D3,B2

K6,C6

K3,C6

K1,C6

K5,C7

K6,C7

K4,C7

K6,C6

K3,C6

K1,C6

K5,C7

K6,C7

K4,C7

M M

Map Task 3

Reduce Task 1

K1,I K2,I K3,I K4,I K5,I K6,I

R R R R R R

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

Reduce Task 2

K1,I K2,I K3,I K5,I K6,I

R R R R R

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]

Sort and Group (D2)

Reduce Task 1

K1,I K2,I K3,I K4,I K5,I K6,I

R R R R R R

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

Reduce Task 1

K1,I K2,I K3,I K4,I K5,I K6,I

R R R R R R

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

K1,I K2,I K3,I K4,I K5,I K6,IK1,I K2,I K3,IK1,I K2,I K3,I K4,I K5,I K6,IK4,I K5,I K6,I

R R R R R RR R RRR RR RR R R RRR RR RR

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]K1,[C1] K2,[C1,C4] K3,[C1,C3]K1,[C1] K2,[C1,C4] K3,[C1,C3] K4,[C4,C3] K5,[C4] K6,[C3]K4,[C4,C3] K5,[C4] K6,[C3]

Sort and Group (D1)

Reduce Task 2

K1,I K2,I K3,I K5,I K6,I

R R R R R

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]

Sort and Group (D2)

Reduce Task 2

K1,I K2,I K3,I K5,I K6,I

R R R R R

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]

Sort and Group (D2)

K1,I K2,I K3,I K5,I K6,IK1,I K2,I K3,IK1,I K2,I K3,I K5,I K6,IK5,I K6,I

R R R R RR R RRR RR RR R RRR RR

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]

Sort and Group (D2)

K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]K1,[C6] K2,[C2] K3,[C2,C6]K1,[C6] K2,[C2] K3,[C2,C6] K5,[C2] K6,[C6]K5,[C2] K6,[C6]

Sort and Group (D2)

D1, D2, D3 – Datanode B1, B2, B3 -Blocks K1, K2, K3 -Keywords

C1, C2, C3 –Count of the keyword I-Index M-Map R-Reduce

Fig. 1. MapReduce Programming

2.3 B+ Tree

The list of IP addresses of peers along with their hash

values is maintained in the B+ tree. This data structure is

also used to store keywords along with their references

(file names) in the target peer. Each node of the B+ tree

maintains the IP address of the peer along with its hash

value as shown in Figure 3.

 A B+ tree is a type of tree which represents sorted

data indexed by a key for efficient insertion, retrieval

and removal of records. It is a dynamic, multilevel

index, with maximum and minimum bounds on the

number of keys in each index segment. In a B+ tree, all

the records are stored at the lowest level of the tree,

namely the leaf node. The interior blocks contain only

the keys.

 The order of a B+ tree measures the capacity of

nodes in the tree. In a B+ tree with M entries, order D is

defined as D <= M <= 2 D, where M is the number of

entries in each node. For example, if the order of a B+

tree is 3, each internal node can store 1 to 2 keys. The

root can store 1 to 6 keys.

 A search for a record R is performed by following

pointers to the correct child of each node until a leaf is

reached. Then, the leaf is scanned until the correct

record is found. For example, to search for an IP with

key value of 229, the first link from the root node

followed by the second link from the next level node

is followed. The bucket is then searched and the IP

address of the target machine (IP8) is retrieved.

To perform insertion operation,

• The bucket where the new record is to be placed is

determined.

• The record is added, if the bucket is not full.

• If the bucket is full, it is split.

• A new leaf is allocated and half the bucket's

elements are moved to the new bucket

• The new leaf's smallest key and address is inserted

into the parent.

A B+ tree of order B with N records offers the following

advantages

• The space required to store the tree is O(N). Hence

the entire tree can be loaded in the main memory.

• Inserting a record requires O(logBN) operations in

the worst case

• Searching for a record requires O(logBN) operations

in the worst case

• Removing a previously located record requires

O(logBN) operations in the worst case

• Performing a range query with K elements

occurring within the range requires O(logBN + K)

operations in the worst case.

3 System Implementation

The proposed framework comprises up of 4 major

components. They are the start up component, database

distribution component, search component, add/delete

peer component. These components are described

below:

3.1 Startup Component

The functionality of the start up component includes the

following

• Starting up the Hadoop cluster

• Identifying nodes that can participate in the P2P

cluster.

• Determining the IP hash values for the peer nodes

• Forming the B+ tree.

• Uploading B+ trees in other peers.

• Starting the Web Server.

 The IP addresses of all the active nodes in the

cluster are identified. The hash value of the IP address is

generated using SHA1 algorithm. The 160 bit hash value

is converted into 40 bit value for ease of
Fig. 3. Organisation of B+ tree

450

IP3

454

IP19

460

IP24

521

IP18

270

IP4

291

IP22

294

IP17

297

IP12

298

IP6

299

IP2

153

IP1

156

IP15

200

IP20

225

IP11

229

IP8

305

IP7

327

IP13

421

IP16

305

153 270 450

32

IP21

44

IP10

63

IP5

82

IP23

151

IP9

75

IP14
450

IP3

454

IP19

460

IP24

521

IP18

450

IP3

450

IP3

454

IP19

454

IP19

460

IP24

460

IP24

521

IP18

521

IP18

270

IP4

291

IP22

294

IP17

297

IP12

298

IP6

299

IP2

270

IP4

270

IP4

291

IP22

291

IP22

294

IP17

294

IP17

297

IP12

297

IP12

298

IP6

298

IP6

299

IP2

299

IP2

153

IP1

156

IP15

200

IP20

225

IP11

229

IP8

153

IP1

153

IP1

156

IP15

156

IP15

200

IP20

200

IP20

225

IP11

225

IP11

229

IP8

229

IP8

305

IP7

327

IP13

421

IP16

305

IP7

305

IP7

327

IP13

327

IP13

421

IP16

421

IP16

305305

153 270153 270 450450

32

IP21

44

IP10

63

IP5

82

IP23

151

IP9

75

IP14

32

IP21

32

IP21

44

IP10

44

IP10

63

IP5

63

IP5

82

IP23

82

IP23

151

IP9

151

IP9

75

IP14

75

IP14

maintaining the same in B+ tree. The B+ tree is then

constructed using IP address as the value and its hash

value as key in the source node. As search request can

be submitted to any peer, the B+ tree is uploaded into all

peers.

3.2 Database Distribution Component

The main objective of this component is to upload files

into the target peer to facilitate efficient searching. The

sequence of operations performed by this module as

shown in Figure 4 includes the following

• Prior to uploading a document to be searched, key

words are extracted from it. These keywords are

used for indexing the document. Keyword

extraction is performed using MapReduce parallel

programming paradigm in a Hadoop cluster.

Weightage for each keyword is also calculated

based on its importance and number of occurrences.

Keywords can also be extracted from multiple files

(Doc1 to n) in parallel.

• The keywords are hashed using SHA1 hashing

function to obtain an 40-bit hash value.

• The keyword hash value is then compared to the IP

hash values of the closest peers using the B+ trees

in the peers. The peer having the greatest match to

the keyword hash value is selected for distribution.

• The desired document is then uploaded into the

desired peer.

• The B+tree maintaining the file references using

keyword indices is updates in the target peer.

• This process is repeated for all the set of keywords

available for the file.

3.3 Search Component

Searching is done on the peer in which the search

request is received. The sequence of operations done by

the search component (Figure 5) is listed as follows:

• The search request is converted into set of keywords

by removing unwanted words from the search

request.

• The sets of keywords are hashed to obtain an 40-bit

value.

• The B+ tree maintained in the peer is searched to

obtain the target peer in which the desired document

is hosted.

• The database B+ tree of the target peer is then

searched to retrieve file reference using keyword as

an index.

• This process is repeated for all the keywords found

in the search request. The resulting answer is sent to

the peer which initially received the searching

request.

3.4 Add/ Delete Peer Component

Whenever a new peer needs to join the P2P network

dynamically, the following sequence of actions is

carried out:

• The IP address of the new node is also added to the

existing IP address table.

• The B+ tree is re-constructed by adding a new peer

node to it after computing IP hash value of the

newly added peer node.

• The changes made to the newly constructed B+ tree

is communicated to the other peers.

Fig. 4. Database Distribution Component

File name,

List of

Keywords

Hash

search keys

Identify target using

Relative difference

between search key

hash value and IP hash

value in B+ tree

Upload the

document

in target node
Peers in P2P network

HADOOP Cluster

Doc 1 Doc 2 Doc n…

File name,

List of

Keywords

Hash

search keys

Identify target using

Relative difference

between search key

hash value and IP hash

value in B+ tree

Upload the

document

in target node
Peers in P2P network

HADOOP Cluster

Doc 1 Doc 2 Doc n…
HADOOP Cluster

Doc 1 Doc 2 Doc n…

• Then the files closely related to the IP hash value of

the new peer are relocated from the peer containing

it to the new peer.

• The metadata entry for keywords in the peer is

modified.

Whenever a peer leaves the cluster dynamically, the

following operations are performed:

• The IP address of the peer node leaving the cluster

is deleted from IP address table.

• The B+ tree is re-constructed by deleting the peer

node from it after computing IP hash value of the

newly added peer node.

• The changes made to the newly constructed B+ tree

is communicated to the other peers.

• Then the files in the deleted peer are relocated from

the peer containing it to the next closely related

peer.

• The metadata entry of keywords in the new peer is

changed.

4 Experimental Results

The P2P and Hadoop clusters were set up using ten P4

machines. Fedora ver 8 was used as the operating

system and Hadoop ver 0.18 was used as the distributed

file system. The block size in HDFS was set to 1 MB.

Coding was done using java ver 1.5. The DLS

framework thus implemented was tested as explained in

the following paragraphs.

4.1 Suitability of Hadoop Clusters for Keyword

Extraction

 Hadoop framework was used to perform keyword

extraction. The suitability of Hadoop for our DLS

framework was verified using the following measures:

4.1.1 Keyword Extraction Efficiency

 As Hadoop uses MapReduce programming, parallel

extraction of keywords can be done from files. The

effect of the number of keywords extracted to index files

using Hadoop clusters was studied. Experimental results

of the study are illustrated using Figure 6. As Hadoop

forms a complete data and compute cluster, the time

taken to extract keywords from files of size 1KB is

almost a constant. It varies from 1 msec to 2 msec when

the number of keywords extracted varied from 5 to 20. It

is also noticed that the number of peers no not have an

effect on the efficiency of keyword extraction.

Fig. 5. Search Component

List of

keywords

Search the document

in target peer

Peer2 in P2P network

Search

request

Search

request

Hash search

keys

Identify the search node

using Relative difference

between hash vales of

keywords and IP address

in B+ tree

Peer1 in P2P network

List of

keywords

Search the document

in target peer

Peer2 in P2P network

Search the document

in target peer

Peer2 in P2P network

Search

request

Search

request

Hash search

keys

Identify the search node

using Relative difference

between hash vales of

keywords and IP address

in B+ tree

Peer1 in P2P network

Hash search

keys

Identify the search node

using Relative difference

between hash vales of

keywords and IP address

in B+ tree

Peer1 in P2P network

4.1.2 Parallel Extraction of Keywords from

Multiple Files

HDFS facilitates the extraction of keywords from a

number of files in parallel. The size of the files taken

was 1 MB. From graph shown in Figure 7, it can be seen

that the time taken to extract keywords from multiple

files remains constant. Time taken to extract keywords

from a single file (1 MB) is approx 10 sec, whereas time

taken to extract keywords from 7 files is only 20 sec.

 4.1.3 Using files of different sizes

 Testing was done on files of different sizes from which

the 20 keywords were extracted. As keyword extraction

can be performed on blocks in parallel, the time for

extraction thus remains constant (Figure 8).

 4.2 Setup Time

Experimental results (Figure 9) illustrate the time taken

to set up a P2P cluster consisting of different number of

nodes. The time taken to set up a cluster of 2 – 10 nodes

varies from 2.5 s to 8.5 s.

4.3 Performance of Add/Delete Peer Component

 Graph in Figure 10 demonstrates the time taken to add a

new peer dynamically to the cluster. This time includes

the time for reconstructing B+tree, updating the B+ trees

in all other peers, extraction of keywords and storing the

files in the target directory. The time taken to add a new

peer directly depends upon the number of peers already

in the network and the number of keywords used for

indexing the files. As the number of keywords increases,

the time for storing also increases.

0 . 0 0 E + 0 0

5 . 0 0 E + 0 5

1 . 0 0 E + 0 6

1 . 5 0 E + 0 6

2 . 0 0 E + 0 6

2 . 5 0 E + 0 6

5 1 0 2 0

N o . o f K e y w o r d s

T
im

e
 i

n
 n

s
e

c

2 N o d e s 4 N o d e s 6 N o d e s 1 0 N o d e s

Fig. 6. Keyword Extraction Efficiency

1 . 0 E + 0

1 0 0 . 0 E + 0

1 0 . 0 E + 3

1 . 0 E + 6

1 0 0 . 0 E + 6

1 0 . 0 E + 9

1 . 0 E + 1 2

1 f ile 2 f ile 3 f ile 4 f ile 5 f ile 6 f ile 7 f ile

N o o f F ile s

T
im

e
 in

 n
s

e
c

Fig. 7. Keyword Extraction from Multiple Files

1 . 0 0 E + 0 0

1 . 0 0 E + 0 1

1 . 0 0 E + 0 2

1 . 0 0 E + 0 3

1 . 0 0 E + 0 4

1 . 0 0 E + 0 5

1 . 0 0 E + 0 6

1 . 0 0 E + 0 7

1 . 0 0 E + 0 8

1 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 0 0 E + 1 1

1 . 9 2 .8 6 . 5 7 . 4 1 3 . 9 1 4 .8 3 1 . 5

F i l e S i z e i n M B

T
im

e
 i
n
 n

s

Fig. 8. Keyword Extraction from Files of Different Sizes

0 . 0 0 E + 0 0

1 . 0 0 E + 0 9

2 . 0 0 E + 0 9

3 . 0 0 E + 0 9

4 . 0 0 E + 0 9

5 . 0 0 E + 0 9

6 . 0 0 E + 0 9

7 . 0 0 E + 0 9

8 . 0 0 E + 0 9

9 . 0 0 E + 0 9

2 4 6 1 0

N o o f N o d e s

T
im

e
 i

n
 n

s

Fig. 9. Performance of Start Component

1 . 0 0 E + 0 6

1 . 0 0 E + 0 7

1 . 0 0 E + 0 8

1 2 3 4 5

N o o f N o d e s

T
im

e
 i
n
 n

s
e
c

As the number of peers increases, the time to update the

B+tree increases. Nevertheless, the time taken to add a

new peer in the P2P cluster varies from 5 sec to 20 sec

in our experimental setup. This time is inclusive of the

time for keyword extraction.

4.4 Performance of Data Distribution Component

 The time for storing the file in the target peer is

computed to evaluate the performance of the data

distribution component. It depends on the number of

keywords used to index the file as shown Figure 11. As

the number of indices increases, redundant copies of the

same file have to be made in the peers. We store the files

in different peers one after another. The performance

can be enhanced by using multicasting.

4.5 Performance of Search Component

 The efficiency of the search component is shown in

Figure 12. The search efficiency remains a constant at

approximately 9 msec. The efficient search performance

is attributed to the use of B+ trees and search

distribution. Further a B+ tree is a complete M-ary tree

with height that is roughly logMN instead of log2N (in a

binary tree). Here M is the number of internal (non-leaf)

nodes and N is the total number of nodes. Consider that

that the values of N and M are 220 and 20 respectively.

In the case of a B+ tree, the height is log20 220 (less than

5) when compared to a B tree where the height is 20 (ie

log 2 220). Thus, the search efficiency is significantly

improved. It remains almost a constant (Figure 12).

Fig. 11. Performance of Data Distribution Component

0

2 E + 1 0

4 E + 1 0

6 E + 1 0

8 E + 1 0

1 E + 1 1

1 . 2 E + 1 1

5 1 0 2 0
N o . o f K e y w o r d s

T
im

e
 i

n
 N

a
n

o

S
e

c
o

n
d

s

2 N o d e s 4 N o d e s 6 N o d e s 1 0 N o d e s

 2 4 6 8 10

0 . 0 0 E + 0 0

5 . 0 0 E + 0 9

1 . 0 0 E + 1 0

1 . 5 0 E + 1 0

2 . 0 0 E + 1 0

2 . 5 0 E + 1 0

2 – 3 3 – 4 4 – 5 5 – 6 6 – 7 7 – 8 8 – 9 9 – 1 0

N o . o f N o d e s

 T
im

e
 i
n
 N

a
n
o

S
e
c
o
n
d
s

5 K e y w o rd s 1 0 K e y w o r d s 2 0 K e y w o r d s

Fig. 10. Performance of Add/Delete Peer Component

Fig. 12. Performance of Search Component

5 Conclusion

The proposed framework is specifically created to host

the digital library application that searches efficiently for

files in the 3G P2P network that uses DHT approach.

The digital library framework takes advantage of the

features given by peer to peer network and the Hadoop

framework. It searches for a files indexed by keywords

in the target peer only. As B+ tree is implemented for

storing and searching the files using keywords with hash

values the network bandwidth is efficiently used and

hence the searching time is reduced. It is in the order of

msec. Storing time is relatively greater than search time

as it involves both keyword extraction and file transfer.

Keyword extraction is done on multiple target files

using Hadoop framework. Hadoop’s map-reduce

programming strategy improves the efficiency of

keyword extraction. The proposed framework can be

extended for search on files containing media content

also. The fault tolerance in the proposed framework can

be enhanced by using virtual machines and by

maintaining links to redundant copies.

Acknowledgements

The authors would like to thank Dr.Rudramoorthy,

Principal, PSG College of Technology and Mr.

Chidambaran Kollengode, Director, Cloud Computing

Group, Yahoo Software Development (India) Ltd,

Bangalore for providing the required facilities to

complete the project successfully. This project is carried

out as a consequence of the Yahoo’s University Relation

Programme with PSG College of Technology.

References

[1] Antony, R.; Peter, D., “Pastry: Scalable,

decentralized object location, and routing for large-

scale peer-to-peer systems”, Lecture Notes in

Computer Science, Available at

http://www.cs.rice.edu/~druschel/publications/Pastr

y.pdf, 2001.

[2] Apache, Hadoop Documentation, Available at

http://hadoop.apache.org/core/docs/r0.17.2/, 2002.

[3] Carlsson, B.T and Gustavsson, R. The Rise and Fall

of Napster - An Evolutionary Approach,

Proceedings of the 6th International Computer

Science Conference on Active Media Technology,

2001.

[4] Matthew J. B. and Robshaw, MD2, MD4, MD5,

SHA and other hash functions, Technical Report

TR-101, RSA Laboratories, 1995.

[5] Petar,M. and David, M. Kademlia, A peer-to-peer

information system based on the XOR metric,

Available at

http://www.scs.cs.nyu.edu/~dm/papers/maymounkov

:kademlia.ps.gz, 2002.

[6] Ripeanu, M., Ian Foster and Iamnitchi A., Mapping

the Gnutella Network: Properties of Large-Scale

Peer-to-Peer Systems and Implications for System

Design, IEEE Internet Computing, 6(1), pp. 120-

127, 2002.

[7] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F.

and Balakrishnan, H. Chord: A scalable peer-to-

peer lookup service for Internet applications,

IEEE/ACM Transactions on Networking, 2003.

[8] Sylvia, R., Paul, F., Mark, H., Richard, K. and Scott,

S. A Scalable ContentAddressable Network,

SIGCOMM’01, San Diego, California, USA, 2001.

[9] Sudha Sadasivam ,G., Renuga, R., P2P Information

Retrieval Framework for Digital Library System,

Journal of Applied and Theoretical Information

Technology, 2008

