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Abstract. Data mining is having a vital role in many of the applications like market-basket analysis, in bio-
technology field etc. In data mining, frequent itemsets plays an important role which is used to identify the 
correlations among the fields of database. In this paper, we propose an algorithm, HBMFI-LP which hashing 
technology to store the database in vertical data format. To avoid hash collisions, linear probing technique is 
utilized. The proposed algorithm generates the exact set of maximal frequent itemsets directly by removing all non- 
maximal itemsets. The proposed algorithm is compared with the recently developed MAFIA algorithm and is shown 
that the HBMFI-LP outperforms in the order of two to three.   
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1. Introduction 
Frequent itemset mining has wide applications. 

The research in this field is started many years before 
but still emerging. This is a part of many data mining 
techniques like association rule mining, classification, 
clustering, web mining and correlations. The same 
technique is applicable to generate frequent sequences 
also. In general, frequent patterns like tree structures, 
graphs can be generated using the same principle. 
There are many applications where the frequent itemset 
mining is applicable. In short, they can be listed as 
market-basket analysis, bioinformatics, networks and 
most in many analyses. Agarwal et. al [4] is the first 
person to state this problem. Later many algorithms 
were introduced to generate frequent itemsets.  

Let I = { I1, I2, I3, …, Im} be a set of items. Let D 
be the transactional database where each transaction T 
is a set of items such that T ⊆  I. Each transaction is 
associated with an identifier TID. A set of items is 
referred as itemset. An itemset that contains K items is 
a K-itemset. The number of transactions in which a 
particular itemset exists gives the support or frequency 
count or count of the itemset. If the support of an 
itemset I satisfies the minimum support threshold, then 
the itemset I is a frequent itemset. 
Frequent pattern mining can be classified based on the 
completeness of patterns to be mined, the levels of 
abstraction involved in the rule set, the number of data 
dimensions involved in the rule, the types of values 
handled in the rule, the kinds of rules to be mined, the 
kinds of patterns to be mined. The classification of 
algorithms for frequent itemset mining is Apriori-like 
algorithms, frequent pattern growth based algorithms 

such as FP-growth and algorithms that use the vertical 
data format. 
 It is impractical to generate the entire set of 
frequent itemsets for the very large databases [1]. 
There is much research on methods for generating all 
frequent itemsets efficiently [8, 11, 14, 17, 18, 19, 20]. 
Most of these algorithms use a breadth-first approach, 
i.e. finding all k-itemsets before considering (k+1) 
itemsets. The performance of all these algorithms 
gradually degrades with dense datasets such as 
telecommunications and census data, where there are 
many, long frequent patterns. 

The main drawback of frequent itemsets is they are 
very large in number to compute or store in computer. 
This leads to the introductions of closed frequent 
itemsets and maximal frequent itemsets. An itemset X 
is closed in a data set S if there exists no proper super-
itemset Y such that Y has the same support count as X 
in S. An itemset X is closed frequent itemset in set S if 
X is closed and frequent in S. an itemset X is a 
maximal frequent itemset in set S if X is frequent and 
there exists no super-itemset Y such that X ⊂  Y and Y 
is frequent in S. Maximal frequent itemset mining is 
efficient in terms of time and space when compared to 
frequent itemsets and closed frequent itemsets because 
both are subsets of maximal frequent itemset. Some of 
the algorithms developed for mining maximal frequent 
itemsets are MaxMiner [1], DepthProject [2], GenMax 
[3], FPMax* [5], MAFIA [6]. 

The organization of the paper is as follows. 
Section 2 discusses the related work to our approach 
on. In Section 3, we describe the proposed algorithm, 
HBMFI-LP. Section 4 discusses about the results 
obtained from the comparison of the proposed 



algorithm with MAFIA. Section 5 concludes the work 
proposed.  
 
 

2. Related Work 
Methods for finding the maximal elements include All-
MFS [7], which works by iteratively attempting to 
extend a working pattern until failure. A randomized 
version of the algorithm that uses vertical bit-vectors 
was studied, but it does not guarantee every maximal 
pattern will be returned. 
MaxMiner [1] is another algorithm for finding the 
maximal elements. It uses efficient pruning techniques 
to quickly narrow the search. MaxMiner employs a 
breadthfirst 
traversal of the search space; it reduces database 
scanning by employing a lookahead pruning strategy 
DepthProject [2] finds long itemsets using a depth first 
search of a lexicographic tree of itemsets, and uses a 
counting method based on transaction projections 
along its branches. 
It returns a superset of the MFI and would require 
post-pruning to eliminate non-maximal patterns. 
FPgrowth [8] uses the novel frequent pattern tree (FP-
tree) structure, which is a compressed representation of 
all the transactions in the database. 
Mafia [6] is the most recent method for mining the 
MFI. Mafia uses three pruning strategies to remove 
non-maximal sets. The first is the look-ahead pruning 
first used in MaxMiner. The second is to check if a 
new set is subsumed by an existing maximal set. 
Apriori is the first efficient algorithm that performs on 
large databases which was proposed by Agrawal and 
Srikant [9] and Mannila et. al [10] independently at the 
same time. They proposed their cooperative work in 
[11] 
MaxMiner [1] performs a breadth-first traversal of the 
search space as well, but also performs lookaheads to 
prune out branches of the tree. The lookaheads involve 
superset pruning, using apriori in reverse (all subsets of 
a frequent itemset are also frequent). In general, 
lookaheads work better with a depth-first approach, but 
MaxMiner uses a breadth-first approach to limit the 
number of passes over the database. DepthProject [2] 
performs a mixed depth-first traversal of the tree, along 
with variations of superset pruning. Instead of a pure 
depth-first traversal, DepthProject uses dynamic 
reordering of children nodes. With dynamic reordering, 
the size of the search space can be greatly reduced by 
trimming infrequent items out of each node’s tail. Also 
proposed in DepthProject is an improved counting 
method and a projection mechanism to reduce the size 
of the database. The other notable maximal pattern 
methods are based on graph-theoretic approaches. 
MaxClique and MaxEclat [12] both attempt to divide 
the subset lattice into smaller pieces (“cliques”) and 

proceed to mine these in a bottom-up Apriori-fashion 
with a vertical data representation. The VIPER 
algorithm has shown a method based on a vertical 
layout can sometimes outperform even the optimal 
method using a horizontal layout [13]. Other vertical 
mining methods for finding FI are presented by 
Holsheimer [15] and Savasere et al. [16]. The benefits 
of using the vertical tid-list were also explored by 
Ganti et al. [14]. 
 

3. Proposed Work 
In general the structure of the transactional database 
may be in two different ways – Horizontal data format 
and Vertical data format. In this paper, transactions of 
database are stored in the vertical format. In vertical 
data format, the data is represented as item-tidset 
format, where item is the name of the item and tidset is 
the set of transaction identifiers containing the item.  
We use closed hashing technique to represent this data 
format. To avoid collisions, linear probing technique is 
used. The sample transactional database using vertical 
format is shown in table 1.  
 
Table 1: The vertical data format of the transactional database 
D in first level 
 
       Itemset Tidset 
        
       I1 T1, T3, T4, T5, T7, T9  
       I2 T1, T2, T4, T6, T8, T9 
       I3 T1, T4, T6, T7, T10 
       I4 T1, T2, T5, T8, T10  
       I5 T2, T3 
 
The items in the transactions are hashed based on the 
hash function as h(k) = (order of item K) mod n. Here, 
we consider n to be 7.  So, the item I1 is stored in 1st 
location. The transactions in which item I1 is present 
are connected to this location in the form of linked list. 
Each list contains the header node in which the count 
of the transactions linked to the particular item is 
maintained. Collisions are resolved by linear probing 
technique. Similarly, the process is repeated for other 
items in the transactional database. It can be observed 
from Fig.1 that I2 is located at 2, I3 at 3, I4 at 4 and I5 
at location 5. From the hash table shown in the Fig. 1, 
it can be observed that the items I1, I2, I3, and I4 are 
the frequent items when support is considered to be 3. 
So, only these items are considered for generating 2-
item frequent sets. The m-itemsets can be generated by 
taking all the combinations of frequent itemsets from 
the previous level and intersection of the tidsets of the 
corresponding itemsets. The 2-itemsets generated in 
this fashion are shown in table 2. 
 
 



 
Fig. 1 Hash Table including links for the 
transactional database in the first level 
 
Table 2:  The vertical data format of the 

transactional database D in second level 
          Itemset    Tidset 

{I1, I2}    T1, T4, T9 
{I1, I3}    T1, T4, T7 
{I1, I4}    T1, T5 
{I2, I3}    T1, T4, T6 
{I2, I4}    T1, T2, T8 
{I3, I4}    T1, T10 
 

The itemsets in the second level are hashed based on 
the hash function, h(k) = ((order of X)*10 + order of 
Y) mod n. Here n is considered to be 7. Using this hash 
function, itemsets {I1, I2}, {I1, I3}, {I1, I4}, {I2, I3}, 
{I2, I4}, {I3, I4} are mapped to locations 5, 6, 0, 2, 3, 1 
respectively. Here there is a collision for {I1, I3} and 
{I3, I4}. Both the sets are being mapped to location 6. 
Then using linear probing technique, {I3, I4} is 
mapped to location 1.  The hash table for the second 
level is shown in Fig. 2. 

 
Fig. 2 Hash Table including links for the 
transactional database in the second level 
 
In the second level, the itemsets {I1, I2}, {I1, I3}, {I2, 
I3}, {I2, I4} are frequent itemsets which can be 
observed from table 2 and Fig. 2. Now, total frequent 
itemsets are {I1, I2, I3, {I1, I2}, {I1, I3}, {I2, I3}, {I2, 
I4}}. From these, maximally frequent itemsets are {I1, 
I2}, {I1, I3}, {I2, I3}, {I2, I4}.   
The 3-itemsets are generated from the maximal 
frequent itemsets of second level. They are shown in 
table 3.  
 
Table 3: The vertical data format of the 

transactional database D in third level 
         Itemset   Tidset 

         {I1, I2, I3}   T1, T4 
         {I1, I2, I4}   T1 
         {I2, I3, I4}   T1 
 
The itemsets in the second level are hashed based on 
the hash function, h(k) = floor(((order of X)*100 + 
(order of Y)*10 + order of Z) mod n). Here n is 
considered to be 7. Using this hash function, itemsets 
{I1, I2, I3}, {I1, I2, I4}, {I2, I3, I4} are mapped to 
locations 4, 5, 3 respectively. The hash table for the 
third level is shown in Fig. 3. 
 

 
 
Fig. 3 Hash Table including links for the 
transactional database in the third level 



It can be observed that there are maximal frequent 
itemset from the third level. So, the final maximal 
frequent itemsets are {I1, I2}, {I1, I3}, {I2, I3}, {I2, 
I4} which are obtained at second level.  
It can be observed that the number of levels increase as 
the support is decreased. If we increase the support, 
then number of levels decreases and so as the time to 
find MFI decreases. Minimum support threshold must 
be properly chosen such that it is not too high where 
we may loose some interesting itemsets or too low 
where unimportant itemsets are generated 
In this procedure we need not calculate the support of 
the itemset separately. It can be taken by the number of 
transactions in the tidset which is available as a count 
value in header node.  Also the pruning can be done 
while finding the MFI itself, but not after finding FI 
completely. The proposed algorithm is given below. 
 
HBMFI-LP Algorithm  
Input:  
D, a database of transactions 
Min_sup, the minimum threshold support 
Output:  
M, Maximal frequent itemsets in D 
Method: 

1. Generate the vertical format of the 
transactional database. 

2. N-itemsets are to be hashed 
3. Linked list of transactions for each itemset is 

created with count in its header node. 
4. generate FI 
5. if FI is NULL then go to 9. 
6. Remove any subsets that are included in 

another itemset from FI to generate MFI. 
7. Find all combinations of the MFI 
8. go to 1 
9. return MFI 

 
The proposed algorithm performs better because MFI 
is being calculated directly before computing FI 
completely. At each level, after computation of FI, we 
are computing MFI also. So, the time taken to compute 
MFI is negligible. And also it shows that no separate 
pruning is required. Hash data structure can be 
maintained to store database. This makes easy in 
performing several tasks. As we are following vertical 
data format, support also need not be calculated 
separately. In this case, support is directly given by the 
number of transactions in the tidlist of each FI or can 
be obtained from the count value in the header node of 
the corresponding linked list. 
 
4. Results and Discussions 
The large datasets which have long itemsets like chess, 
mushroom, connect4 are used to test this algorithm. 
When the support values are higher, the number of 

items in itemsets varies from 4 to 12 items, whereas 
when the support values are lower, each itemset 
contains nearly 22 items. This makes the task of 
finding the MFI computationally intensive despite the 
small size of the databases.  
Figs. 3 - 5 illustrate the results of comparing HBMFI-
LP to our implementation of MAFIA method. Support 
is taken as X-axis and the time taken to find the MFI is 
taken as Y-axis. 
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Fig. 3: Time Comparison of MAFIA and HBMFI-
LP on Connect – 4 dataset 
 
 

For Mushroom dataset
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Fig. 4: Time Comparison of MAFIA and HBMFI-
LP on Mushroom dataset 
 



For Chess Data
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Fig. 5: Time Comparison of MAFIA and HBMFI-
LP on Chess dataset 
 
For Connect-4, the increased efficiency of itemset 
generation and support counting in MAFIA and 
HBMFI-LP explains the improvement. Connect-4 
contains an order of magnitude more transactions than 
the other two datasets, amplifying the advantage in 
generation and counting.  
For Mushroom, the improvement is best explained by 
how the MFI is computed at each level and found 
directly without waiting for FI completely. This leads 
to a much greater reduction in the overall search space 
than for the other datasets, since the reductions is so 
great at highest levels. 
The percentage in the improvement of the performance 
of the proposed algorithm, HBMFI-LP is less in Chess 
dataset when compared to other datasets. The 
extremely low number of transactions and small 
number of frequent items at low supports muted the 
factors that HBMFI relies on to improve over MAFIA.  
Both the algorithms scale linearly with the database 
size, but HBMFI-LP is about 2 to 3times faster than 
MAFIA. Thus we see that HBMFI-LP performs better 
with large number of transactions and long itemsets. 
 
5. Conclusions  
 
We presented HBMFI-LP, an algorithm for finding 
maximal frequent itemsets. Our experimental results 
demonstrate that HBMFI-LP consistently outperforms 
MAFIA by a factor of 2 to 3 on average. The vertical 
data format representation of the database, the easy 
manipulations on hash data structure and directly 
computing MFI are the added advantages of this 
algorithm and hence HBMFI-LP shows better 

performance in terms of time taken to generate MFI 
when compared to MAFIA.  
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