
A Hash based Mining Algorithm for Maximal Frequent Item Sets using
Linear Probing

A.M.J. Md. Zubair Rahman, P. Balasubramanie and P. Venkata Krihsna1

Kongu Engineering College, Perundurai, Tamilnadu, India
1School of Computing Sciences, VIT University, Vellore

Abstract. Data mining is having a vital role in many of the applications like market-basket analysis, in bio-
technology field etc. In data mining, frequent itemsets plays an important role which is used to identify the
correlations among the fields of database. In this paper, we propose an algorithm, HBMFI-LP which hashing
technology to store the database in vertical data format. To avoid hash collisions, linear probing technique is
utilized. The proposed algorithm generates the exact set of maximal frequent itemsets directly by removing all non-
maximal itemsets. The proposed algorithm is compared with the recently developed MAFIA algorithm and is shown
that the HBMFI-LP outperforms in the order of two to three.

Key words: Mining-Frequent Item Sets-Hashing-Linear Probing-MAFIA etc

(Received July 26, 2008 / Accepted January 19, 2009)

1. Introduction
Frequent itemset mining has wide applications.

The research in this field is started many years before
but still emerging. This is a part of many data mining
techniques like association rule mining, classification,
clustering, web mining and correlations. The same
technique is applicable to generate frequent sequences
also. In general, frequent patterns like tree structures,
graphs can be generated using the same principle.
There are many applications where the frequent itemset
mining is applicable. In short, they can be listed as
market-basket analysis, bioinformatics, networks and
most in many analyses. Agarwal et. al [4] is the first
person to state this problem. Later many algorithms
were introduced to generate frequent itemsets.

Let I = { I1, I2, I3, …, Im} be a set of items. Let D
be the transactional database where each transaction T
is a set of items such that T ⊆ I. Each transaction is
associated with an identifier TID. A set of items is
referred as itemset. An itemset that contains K items is
a K-itemset. The number of transactions in which a
particular itemset exists gives the support or frequency
count or count of the itemset. If the support of an
itemset I satisfies the minimum support threshold, then
the itemset I is a frequent itemset.
Frequent pattern mining can be classified based on the
completeness of patterns to be mined, the levels of
abstraction involved in the rule set, the number of data
dimensions involved in the rule, the types of values
handled in the rule, the kinds of rules to be mined, the
kinds of patterns to be mined. The classification of
algorithms for frequent itemset mining is Apriori-like
algorithms, frequent pattern growth based algorithms

such as FP-growth and algorithms that use the vertical
data format.
 It is impractical to generate the entire set of
frequent itemsets for the very large databases [1].
There is much research on methods for generating all
frequent itemsets efficiently [8, 11, 14, 17, 18, 19, 20].
Most of these algorithms use a breadth-first approach,
i.e. finding all k-itemsets before considering (k+1)
itemsets. The performance of all these algorithms
gradually degrades with dense datasets such as
telecommunications and census data, where there are
many, long frequent patterns.

The main drawback of frequent itemsets is they are
very large in number to compute or store in computer.
This leads to the introductions of closed frequent
itemsets and maximal frequent itemsets. An itemset X
is closed in a data set S if there exists no proper super-
itemset Y such that Y has the same support count as X
in S. An itemset X is closed frequent itemset in set S if
X is closed and frequent in S. an itemset X is a
maximal frequent itemset in set S if X is frequent and
there exists no super-itemset Y such that X ⊂ Y and Y
is frequent in S. Maximal frequent itemset mining is
efficient in terms of time and space when compared to
frequent itemsets and closed frequent itemsets because
both are subsets of maximal frequent itemset. Some of
the algorithms developed for mining maximal frequent
itemsets are MaxMiner [1], DepthProject [2], GenMax
[3], FPMax* [5], MAFIA [6].

The organization of the paper is as follows.
Section 2 discusses the related work to our approach
on. In Section 3, we describe the proposed algorithm,
HBMFI-LP. Section 4 discusses about the results
obtained from the comparison of the proposed

algorithm with MAFIA. Section 5 concludes the work
proposed.

2. Related Work
Methods for finding the maximal elements include All-
MFS [7], which works by iteratively attempting to
extend a working pattern until failure. A randomized
version of the algorithm that uses vertical bit-vectors
was studied, but it does not guarantee every maximal
pattern will be returned.
MaxMiner [1] is another algorithm for finding the
maximal elements. It uses efficient pruning techniques
to quickly narrow the search. MaxMiner employs a
breadthfirst
traversal of the search space; it reduces database
scanning by employing a lookahead pruning strategy
DepthProject [2] finds long itemsets using a depth first
search of a lexicographic tree of itemsets, and uses a
counting method based on transaction projections
along its branches.
It returns a superset of the MFI and would require
post-pruning to eliminate non-maximal patterns.
FPgrowth [8] uses the novel frequent pattern tree (FP-
tree) structure, which is a compressed representation of
all the transactions in the database.
Mafia [6] is the most recent method for mining the
MFI. Mafia uses three pruning strategies to remove
non-maximal sets. The first is the look-ahead pruning
first used in MaxMiner. The second is to check if a
new set is subsumed by an existing maximal set.
Apriori is the first efficient algorithm that performs on
large databases which was proposed by Agrawal and
Srikant [9] and Mannila et. al [10] independently at the
same time. They proposed their cooperative work in
[11]
MaxMiner [1] performs a breadth-first traversal of the
search space as well, but also performs lookaheads to
prune out branches of the tree. The lookaheads involve
superset pruning, using apriori in reverse (all subsets of
a frequent itemset are also frequent). In general,
lookaheads work better with a depth-first approach, but
MaxMiner uses a breadth-first approach to limit the
number of passes over the database. DepthProject [2]
performs a mixed depth-first traversal of the tree, along
with variations of superset pruning. Instead of a pure
depth-first traversal, DepthProject uses dynamic
reordering of children nodes. With dynamic reordering,
the size of the search space can be greatly reduced by
trimming infrequent items out of each node’s tail. Also
proposed in DepthProject is an improved counting
method and a projection mechanism to reduce the size
of the database. The other notable maximal pattern
methods are based on graph-theoretic approaches.
MaxClique and MaxEclat [12] both attempt to divide
the subset lattice into smaller pieces (“cliques”) and

proceed to mine these in a bottom-up Apriori-fashion
with a vertical data representation. The VIPER
algorithm has shown a method based on a vertical
layout can sometimes outperform even the optimal
method using a horizontal layout [13]. Other vertical
mining methods for finding FI are presented by
Holsheimer [15] and Savasere et al. [16]. The benefits
of using the vertical tid-list were also explored by
Ganti et al. [14].

3. Proposed Work
In general the structure of the transactional database
may be in two different ways – Horizontal data format
and Vertical data format. In this paper, transactions of
database are stored in the vertical format. In vertical
data format, the data is represented as item-tidset
format, where item is the name of the item and tidset is
the set of transaction identifiers containing the item.
We use closed hashing technique to represent this data
format. To avoid collisions, linear probing technique is
used. The sample transactional database using vertical
format is shown in table 1.

Table 1: The vertical data format of the transactional database
D in first level

 Itemset Tidset

 I1 T1, T3, T4, T5, T7, T9
 I2 T1, T2, T4, T6, T8, T9
 I3 T1, T4, T6, T7, T10
 I4 T1, T2, T5, T8, T10
 I5 T2, T3

The items in the transactions are hashed based on the
hash function as h(k) = (order of item K) mod n. Here,
we consider n to be 7. So, the item I1 is stored in 1st
location. The transactions in which item I1 is present
are connected to this location in the form of linked list.
Each list contains the header node in which the count
of the transactions linked to the particular item is
maintained. Collisions are resolved by linear probing
technique. Similarly, the process is repeated for other
items in the transactional database. It can be observed
from Fig.1 that I2 is located at 2, I3 at 3, I4 at 4 and I5
at location 5. From the hash table shown in the Fig. 1,
it can be observed that the items I1, I2, I3, and I4 are
the frequent items when support is considered to be 3.
So, only these items are considered for generating 2-
item frequent sets. The m-itemsets can be generated by
taking all the combinations of frequent itemsets from
the previous level and intersection of the tidsets of the
corresponding itemsets. The 2-itemsets generated in
this fashion are shown in table 2.

Fig. 1 Hash Table including links for the
transactional database in the first level

Table 2: The vertical data format of the

transactional database D in second level
 Itemset Tidset

{I1, I2} T1, T4, T9
{I1, I3} T1, T4, T7
{I1, I4} T1, T5
{I2, I3} T1, T4, T6
{I2, I4} T1, T2, T8
{I3, I4} T1, T10

The itemsets in the second level are hashed based on
the hash function, h(k) = ((order of X)*10 + order of
Y) mod n. Here n is considered to be 7. Using this hash
function, itemsets {I1, I2}, {I1, I3}, {I1, I4}, {I2, I3},
{I2, I4}, {I3, I4} are mapped to locations 5, 6, 0, 2, 3, 1
respectively. Here there is a collision for {I1, I3} and
{I3, I4}. Both the sets are being mapped to location 6.
Then using linear probing technique, {I3, I4} is
mapped to location 1. The hash table for the second
level is shown in Fig. 2.

Fig. 2 Hash Table including links for the
transactional database in the second level

In the second level, the itemsets {I1, I2}, {I1, I3}, {I2,
I3}, {I2, I4} are frequent itemsets which can be
observed from table 2 and Fig. 2. Now, total frequent
itemsets are {I1, I2, I3, {I1, I2}, {I1, I3}, {I2, I3}, {I2,
I4}}. From these, maximally frequent itemsets are {I1,
I2}, {I1, I3}, {I2, I3}, {I2, I4}.
The 3-itemsets are generated from the maximal
frequent itemsets of second level. They are shown in
table 3.

Table 3: The vertical data format of the

transactional database D in third level
 Itemset Tidset

 {I1, I2, I3} T1, T4
 {I1, I2, I4} T1
 {I2, I3, I4} T1

The itemsets in the second level are hashed based on
the hash function, h(k) = floor(((order of X)*100 +
(order of Y)*10 + order of Z) mod n). Here n is
considered to be 7. Using this hash function, itemsets
{I1, I2, I3}, {I1, I2, I4}, {I2, I3, I4} are mapped to
locations 4, 5, 3 respectively. The hash table for the
third level is shown in Fig. 3.

Fig. 3 Hash Table including links for the
transactional database in the third level

It can be observed that there are maximal frequent
itemset from the third level. So, the final maximal
frequent itemsets are {I1, I2}, {I1, I3}, {I2, I3}, {I2,
I4} which are obtained at second level.
It can be observed that the number of levels increase as
the support is decreased. If we increase the support,
then number of levels decreases and so as the time to
find MFI decreases. Minimum support threshold must
be properly chosen such that it is not too high where
we may loose some interesting itemsets or too low
where unimportant itemsets are generated
In this procedure we need not calculate the support of
the itemset separately. It can be taken by the number of
transactions in the tidset which is available as a count
value in header node. Also the pruning can be done
while finding the MFI itself, but not after finding FI
completely. The proposed algorithm is given below.

HBMFI-LP Algorithm
Input:
D, a database of transactions
Min_sup, the minimum threshold support
Output:
M, Maximal frequent itemsets in D
Method:

1. Generate the vertical format of the
transactional database.

2. N-itemsets are to be hashed
3. Linked list of transactions for each itemset is

created with count in its header node.
4. generate FI
5. if FI is NULL then go to 9.
6. Remove any subsets that are included in

another itemset from FI to generate MFI.
7. Find all combinations of the MFI
8. go to 1
9. return MFI

The proposed algorithm performs better because MFI
is being calculated directly before computing FI
completely. At each level, after computation of FI, we
are computing MFI also. So, the time taken to compute
MFI is negligible. And also it shows that no separate
pruning is required. Hash data structure can be
maintained to store database. This makes easy in
performing several tasks. As we are following vertical
data format, support also need not be calculated
separately. In this case, support is directly given by the
number of transactions in the tidlist of each FI or can
be obtained from the count value in the header node of
the corresponding linked list.

4. Results and Discussions
The large datasets which have long itemsets like chess,
mushroom, connect4 are used to test this algorithm.
When the support values are higher, the number of

items in itemsets varies from 4 to 12 items, whereas
when the support values are lower, each itemset
contains nearly 22 items. This makes the task of
finding the MFI computationally intensive despite the
small size of the databases.
Figs. 3 - 5 illustrate the results of comparing HBMFI-
LP to our implementation of MAFIA method. Support
is taken as X-axis and the time taken to find the MFI is
taken as Y-axis.

Connect - 4

0
1
2
3
4
5

6
7
8
9

10

90 80 70 60 50 40 30 20
Support %

Ti
m

e
(s

)

MAFIA
HBMFI-LP

Fig. 3: Time Comparison of MAFIA and HBMFI-
LP on Connect – 4 dataset

For Mushroom dataset

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 8 6 4 2 1
Support %

Ti
m

e
(s

)

MAFIA
HBMFI-LP

Fig. 4: Time Comparison of MAFIA and HBMFI-
LP on Mushroom dataset

For Chess Data

0

5

10

15

20

25

60 55 50 45 40 35 30 25 20

Support %

Ti
m

e
(s

)

MAFIA
HBMFI-LP

Fig. 5: Time Comparison of MAFIA and HBMFI-
LP on Chess dataset

For Connect-4, the increased efficiency of itemset
generation and support counting in MAFIA and
HBMFI-LP explains the improvement. Connect-4
contains an order of magnitude more transactions than
the other two datasets, amplifying the advantage in
generation and counting.
For Mushroom, the improvement is best explained by
how the MFI is computed at each level and found
directly without waiting for FI completely. This leads
to a much greater reduction in the overall search space
than for the other datasets, since the reductions is so
great at highest levels.
The percentage in the improvement of the performance
of the proposed algorithm, HBMFI-LP is less in Chess
dataset when compared to other datasets. The
extremely low number of transactions and small
number of frequent items at low supports muted the
factors that HBMFI relies on to improve over MAFIA.
Both the algorithms scale linearly with the database
size, but HBMFI-LP is about 2 to 3times faster than
MAFIA. Thus we see that HBMFI-LP performs better
with large number of transactions and long itemsets.

5. Conclusions

We presented HBMFI-LP, an algorithm for finding
maximal frequent itemsets. Our experimental results
demonstrate that HBMFI-LP consistently outperforms
MAFIA by a factor of 2 to 3 on average. The vertical
data format representation of the database, the easy
manipulations on hash data structure and directly
computing MFI are the added advantages of this
algorithm and hence HBMFI-LP shows better

performance in terms of time taken to generate MFI
when compared to MAFIA.

6. References

[1]. Roberto Bayardo, “Efficiently mining long

patterns from databases”, in ACM SIGMOD
Conference 1998.

[2]. R. Agarwal, C. Aggarwal and V. Prasad, “A tree
projection algorithm for generation of frequent
itemsets”, Journal of Parallel and Distributed
Computing, 2001.

[3]. K. Gouda and M.J.Zaki, “Efficiently Mining
Maximal Frequent Itemsets”, in Proc. of the IEEE
Int. Conference on Data Mining, San Jose, 2001.

[4]. R. Agrawal, T. Imielienski and A. Swami, “Mining
association rules between sets of items in large
databases. In P. Bunemann and S. Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD
Conference on Management of Data, Pages 207-
216, Newyork, 1993, ACM Press.

[5]. Gosta Grahne and Jianfei Zhu, “Efficiently using
prefix-trees in Mining Frequent Itemsets”, in Proc.
of the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations Melbourne, Florida,
USA, November 19, 2003.

[6]. Burdick, D., M. Calimlim and J. Gehrke, “MAFIA:
A maximal frequent itemset algorithm for
transactional databases”, In International
Conference on Data Engineering, pp: 443 – 452,
April 2001, doi = 10.1.1.100.6805

[7]. D. Gunopulos, H. Mannila, and S. Saluja, “
Discovering all the most specific sentences by
randomized algorithms”, In Intl. Conf. on
Database Theory, Jan. 1997.

[8]. J. Han, J. Pei, and Y. Yin. “Mining frequent
patterns without candidate generation”, In ACM
SIGMOD Conf., May 2000.

[9]. Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo, “Efficient Algorithms for discovering
association rules”, in Usama M. Fayyad and
Ramasamy Uthurusamy, editors, AAAI Workshop
on Knowledge Discovery on Databases (KDD-94),
pages 181-192, Seattle, Washington, 1994, AAAI
Press.

[10]. R. Agrawal and R. Srikant, “Fast algorithms for
mining association rules”, in Proceedings of the
20th International Conference on Very Large
Databases (VLDB’94), Santiago de Chile,
September 12-15, pages 487-499, Morgan
Kaufmann, 1994.

[11]. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A. I. Verkamo, “Fast discovery of association
rules”, Advances in Knowledge Discovery and
Data Mining, pages 307-328, MIT Press, 1996.

[12]. M. J. Zaki, “Scalable Algorithms for Association
Mining”, IEEE Transactions on Knowledge and
Data Engineering, Vol. 12, No. 3, pp 372-390,
May/June 2000.

[13]. P. Shenoy, J. R. Haritsa, S. Sudarshan, G.
Bhalotia, M. Bawa, and D. Shah, “Turbo-charging
Vertical Mining of Large Databases”, SIGMOD
Conference 2000: 22-33

[14]. V. Ganti, J. E. Gehrke, and R. Ramakrishnan,
“DEMON: Mining and Monitoring Evolving
Data”, ICDE 2000: 439-448

[15]. M. Holsheimer, M. L. Kersten, H. Mannila, and
H.Toivonen, “A Perspective on Databases and
Data Mining”, KDD 1995: 150-155.

[16]. A. Savasere, E. Omiecinski, and S. Navathe, “An
efficient algorithm for mining association rules in
large databases”, 21st VLDB Conference, 1995.

[17]. Aggarwal, C.C. and P.S. Yu, “Mining large
itemsets for association rules”, in Bulletin of the
IEEE Computer Society Technical Committee on
Data Engineering, 1998, pp: 23-31.

 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.48.306

[18]. Aggarwal C.C and P.S. Yu, “Online generation of
association rules”, in proceedings of the fourteenth
International Conference on Data Engineering,
1998, pp:402-411.

[19]. Park J.S, M.S. Chen, P.S. Yu, “An Effective Hash
Based Algorithm for Mining Association Rules”,
ACM SIGMOD Record, Vol. 24, Issue 2, May
1995, pp: 175-186, ISSN: 0163-5808.

[20]. Dunkel B. and N. Soparkar, “Data Organization
and access for efficient data mining”, in the
proceedings of the 15th International Conference
on Data Engineering, pp: 522-529, 1999, ISBN: 0-
7695-0071-4

