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Given a graphG = (V, E), k natural numbers, ns,
.., ni, such thaty"F_ n; = [V|, we wish to find a
k-partitionVy, V5, ..., Vi, of the vertex seV” such that
|Vi| = n; andV; induces a connected subgraph®f
for eachi,1 < i < k. A k-partition of a graph’ is n=4
illustrated in Figuréll fok = 5 where the edges of five n,= 2
connected subgraphs are drawn by solid lines, and then,= 3
remaining edges of/ are drawn by dotted lines. Let pn,=2
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Abstract. Given a graphG = (V, E), k natural numbers, ns, ..., nx such thatzf=1 n; = |V|, we
wish to find a partitiorV, V4, ..., Vi, of the vertex seV” such thaiV;| = n; andV; induces a connected
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finding ak-partition of a graphG is NP-hard in general. It is known that evefyconnected graph has a
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In this paper we give a simple linear-time algorithm for fingliak-partition of a “doughnut graph(=.
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Introduction G with m < k. A k-partition of G with basisB is a
k-partition with the additional restriction that € V;,
for1 < i < m. A k-partition of a graph= with basis
m is illustrated in Figur€l2 fok = 5 andm = 5.

Ns= 5
m= 4
=2 Figure 2: A 5-partition of a5-connected planar grapfi with basis
=3 5.
=5 The problem of finding &-partition of a given graph

~ often appears in the load distribution among different
Figurel: A 5-partition of a5-connected planar grapfi. power plants and the fault-tolerant routing of commu-
nication networks[[1i0.19]. The problem is NP-hard in

B = u1,us, ..., u;, be asequence of distinct vertices ofgeneral everk is limited to 2 [2], and hence it is very
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unlikely that there is a polynomial-time algorithm toi < ¢q. Let P, = z;,..., 2, and P, = z,,,...,x, b€
solve the problem. Although not every graph hals-a two paths. We denote by, P, the concatenation of two
partition, Gyori and Lovasz independently proved thapathsP; and P, where the last vertex aPf; and the first
everyk-connected graph hastapartition [4,[8]. How- vertex of P, are adjacent, i.eP, P> = z;, ..., Tk, Tm,
ever, their proofs do not yield any polynomial-time al-. . ., z, wherez,, is a neighbor oft;.

gorithm for finding ak-partition of ak-connected graph. A graph is planar if it can be embedded in the
A linear-time algorithm is known for 4-partitioning of a plane so that no two edges intersect geometrically ex-
4-connected plane graph if the four basis vertices are alkept at a vertex to which they are both incidentplane

on the boundary of one face_[10]. A linear-time algo-graphis a planar graph with a fixed embedding. A plane
rithm is also known for 5-partitioning of a 5-connectedgraphG divides the plane into connected regions called
internally triangulated plane graph if the five basis verfaces. The unbounded region is called thater face
tices are all on the boundary of one fack [9]. Let vy, vo,...,v; be all the vertices in a clockwise or-

In this paper we give a linear-time algorithm forder on the contour of a facg in G. We often denote
finding a k-partition of a “doughnut graphG. The f by f(v1,v2,...,v;). For a facef in G we denote by
class of “doughnut graphs” is an interesting class oV (f) the set of vertices of on the boundary of face
graphs which was recently introduced in graph drawing’. We call two faces; and F; are vertex-disjointif
literature for it's beautiful area-efficient drawing prop-V (F1) NV (F») = 0.
erties [6[ T TE17]. Our algorithmis also applicable for  Let G be a5-connected planar graph, I[Etbe any
finding ak-partition of a “doughnut graph” with basis planar embedding ai and letp be an integer such that
at most two. Using the same method, one can find @ > 3. We callG a p-doughnutgraph if the following
k-partition of a4-connected planar graph in linear time.Conditions ¢;) and ¢-) hold:

The rest of the paper is organized as follows. Sec-
tion 2 describes some of the definitions used in thigi1
paper. In Section 3, we give an algorithm for finding
a Hamiltonian path between any pair of vertices of a
doughnut graph. Section 4 provides a linear-time aly,) ¢ has the minimum number of vertices satisfying
gorithm for finding ak-partition of a doughnut graph. Condition ).

Finally Section 5 concludes the paper.

) T has two vertex-disjoint faces each of which has
exactlyp vertices, and all the other facesbthas
exactly three vertices; and

In general, we call &-doughnut graph fop > 3 a
doughnut graphFigurel3(i) illustrates a doughnut graph.

2 Preliminaries The following result is known for doughnut graphs [6].

In this section we give some definitions.

Let G = (V, E) be a connected simple graph withLemma 2.1 Let G be ap-doughnut graph. Thetv is
vertex setV’ and edge sef’. Throughout the paper, 5-regular and has exactp vertices.
we denote byn the number of vertices i/, that is,
n = |V, and denote byn the number of edges i@,
thatis,m = |E|. An edge joining vertices, andv is
denoted by(u,v). The degree of a vertex, denoted
by d(v), is the number of edges incidenttdn G. G
is calledr-regular if every vertex ofG has degree-.
We call a vertexv a neighborof a vertexu in G if G
has an edgéu,v). Theconnectivity«(G) of a graph
G is the minimum number of vertices whose removal %
results in a disconnected graph or a single-vertex graph
Ki. G is calledk-connectedf “(G) > k. We call a Figure 3: (i) A p-doughnut graplt wherep = 4 and (ii) a doughnut
vertex of G a cut-vertexof G if its removal results in  embedding of5.
a disconnected or single-vertex graph. For C V,
we denote byG — W the graph obtained fron&* by  For a cycleC in a plane graplt:, we denote by=(C)
deleting all vertices ifl” and all edges incident to them. the plane subgraph @f insideC excludingC. LetC1,
A cut-setof G is a setS C V(G) such thatG — S has C, andC5 be three vertex-disjoint cycles in a planar
more than one component 6f — S is a single vertex graphG such that/' (Cy) UV (Cs) UV (C3) = V(G).
graph. Apathin G is an ordered list of distinct vertices Then we call a planar embeddingof G a doughnut
V1,02, ..., € V such thaflv,_;,v;) € Eforall2 < embeddingf G if C; is the outer face and’; is an




inner face ofl’, G(C4) containsC, and G(C2) con- problem is NP-complete even for 3-connected planar
tainsC3. We callC; theouter cycle C; themiddle cy- graphs|3]. However the problem becomes polynomial-
cleandCjs theinner cycleof T'. Figure[3(ii) illustrates time solvable for 4-connected planar graphs: Tutte
a doughnut embedding of the doughnut graph in Figeroved that al-connected planar graph necessarily con-
ure[3(i). The following result is also known for dough-tains a Hamiltonian cyclé_[14]. We call a graghis
nut graphsl[5]. Hamiltonian-connectell G has a Hamiltonian path be-
tween any pair of verticesaf. Thomassen
Lemma 2.2 A p-doughnut graph always has a dough-proyed thati-connected planar graphs are Hamiltonian-

nut embedding. connected[13].
LetT" be a doughnutembedding of a doughnut graph
G. Letzy, 22, .. ., 29, be the vertices o8'; inaclock- 3 Finding Hamiltonian Path in Doughnut
wise order such that; has exactly one neighbor ary Graphs
and exactly two neighbors off;. Letxy, zo, ..., z,

be th d 6 i lockwi d h . A doughnut grapltr is Hamiltonian-connected since
e the vertices on; In & clockwise order where, IS ¢ 5 connected. One can find a Hamiltonian path in

the neighbor o:;. Letyy, v, ..., yp be the vertices doughnut graph using algorithm proposed by Chiba
On_C3 in a clockwise order such thgi andy, are the and Nishizeki[[1]. In their paper, they gave a proof
neighbors Of_zl' In the rest of the paper_for any d(?ugh'of Tutte’s theorem based on Thomassen's short proof
nut embedding of7, we follow th_e labeling of vertices avoiding decomposition of &-connected planar graph
on cyclesC;, C> andCs as mentioned above. We NOW i ongisjoint subgraphs. Their proof is constructive
have the following lemmas frorl[6]. and yields an algorithm for finding Hamiltonian path.
Their algorithm clearly runs if©O(n?) time, since one
step of divide-and-conquer can be don&lifn) time.
The key idea for linear implementation of this algorithm
is to use, in place of the Hopcroft and Tarjan’s algo-
(a8) z; has exactly two neighbors off; and exactly rithm [5], a new algorithm to decompose a plane graph
one neighbor orCs if i is even. The neighbors of into small subgraphs by traversing some facial cycles.
z;onCy arex, andz; if i = 2p otherwisez;,,  Although a sophisticated analysis shows that each of the
andwz;/,41, and the neighbor of; on Cs is y, if ~ edge is traversed at most constant time during one exe-
i = 2p otherwisey; /o 1. cution of Hamiltonian path finding algorithm and hence
) the algorithm runs in linear time, the linear-time im-
(b) z; has exactly two neighbors ofi; and exactly pjementation of the algorithm looks non-trivial. In this
one neighbor orC’; if i is odd. The neighbors of section we present a very simple linear-time algorithm
zionCz arey, andy, if i = 2p — 1 otherwise ¢4 finding Hamiltonian path between any pair of ver-
Yri/2] @ndyrisz141, and the neighbor of; onC fices of a doughnut graph. In our algorithm we exploit
1S Z1i/21- the simple structure of a doughnut graph.
We have the following theorem on a doughnut graph.

Lemma 2.3 LetG be ap-doughnut graph and Idt be
a doughnut embedding 6f. Letz; be a vertex of’s.
Then the following conditions hold.

Lemma 24 LetG be ap-doughnutgraph and Idt be ]
a doughnut embedding 6. Letz; be a vertex of’;. Theorem 3.1 LetG be adoughnutgraph. Then a Hamil-

Thenz; has exactly three neighbots,, z1, z, if i = 1 tonian path between any pair of vertices @fcan be
Otherwisezs; o, za;_1, z0; 0N Cy in a clockwise order.  found in linear time.

Lemma?25 Let G be ap_doughnut graph and ler Proof. We first show a Hamiltonian path between
be a doughnut embedding 6f Lety; be a vertex of any pair of vertices of a doughnut graph. Letbe a
Cs. Theny; has exactly three neighbors, 1, zp,, doughnutembedding & and letC';, C'; andCs be the
2, if i = 1 otherwisezs;_s, 29;_2, 20,1 0N Cy in @ Outer cycle, the middle cycle and the inner cyclelof
clockwise order. We have the following four cases to consider.

Casel: Both the vertices, v are either orC’; or on

A Hamiltonian cycle (pathpf a graphG is a cy- Cs.

cle (path) which contains all the vertices@f We call We assume that both efandv are onC, since the
a graphG Hamiltonianif G contains a Hamiltonian case where both af andv are onCs is similar. Letu =
cycle. The Hamiltonian cycle problem asks whether; andv = z;. Without loss of generality, we assume
a given graph contains a Hamiltonian cycle, and théhat: < j. We take the following paths(i) P, = z;,



R2i—11 220y Tit1s R2i+1y Z2i42s « - 1 LTj—1,y 2253, 22j—2;
(Zl) Py, = Yjs Yj—11 - Yj+1, (ZZ’L) P; = 225—1y 225,
ceey R2i—2, and(iv) Pi=z,_1,%i_9,..., Zj. The path
Py contains vertices of?; andC,. By LemmalZH,
29;—1 IS a neighbor ofr;. By LemmalZB,x; ;1 is a
neighbor ofzy; since2: is even. The patl®, contains

all the vertices of”;. The pathP; contains all the ver-

tices of Cs those are not appear i, and the PattPy

contains vertices of'; those are not appear in the pathz;_s, ..

P,. We can concatenate the patisand P sincey;
is a neighbor ofz;_» by LemmaZB. The pathB,
and Ps; can be concatenated sineg_; is a neighbor
of y;4+1 by LemmeZb. The pathB; and P, can also
be concatenated sineg_; is a neighbor ofz5; 5 by

Py using the LemmadsA.4_2.£_2.5. Therefore we can
concatenate the patl#§, P, Ps;, P4; and the resulting
pathHP,, ., = P P> P3 P, is a Hamiltonian path
since the path#y, P;, Ps, P, contain all the vertices of
the graph.

Subcaseb: i is even.

We take the following paths(i) Pi = z;, 2;/241,
Tijaqas - Tijos (10) Po = 21, Zi—2, Y(i—2)/2+1,
o YG+1) /241 if j is Odd, OtherWiSﬁDg = Zi—1,
Zi2, Y(i—2) /2411 Zi—3r - Zji1; (190)  P3 = y(iv1)/2,
Y(j+1)/2—1s -+ Y[ij21+1 If j is odd, otherwisePs =
YTG+1)/2]r - - - Ylij2]+1s and(iv) Py = ziq1, 2zig2, - - -
zj. Using the same arguments asSubcasea, we
can prove thatl P, ., = P P, P3P, is a Hamiltonian

LemmdZ3B. Thus we can concatenate the four paths apdth.

the resulting path i$1 P,, ., whereHP,, ., = P P

Case3: The vertexu either onC; or onC3 andwv

P3 P,. The pathH P, .., is a Hamiltonian path since on Cs.

Py, P», P3 and P, contain all the vertices off. Fig-
ure[4 illustrates the case whete= z, andv = xs.
In this example(z') Py = xo, z3, 24, T3, 25, Z6, T4,
27, 28, (11) Po = Y5, Y4, Y3, Y2, Y1; (iii) P3 = 29, 210,

z1, z9; and(iv) Py = x4, x5. The Hamiltonian path is

HP,, .. = PIP,PsP;.

Figure4: lllustration for case 1.

Case2: Both vertices:, v are onCs.

Letu = 7 andv = z;. Without loss of generality
we may assume that< j. We have two subcases to

consider.

Subcase®a:i is odd.

We take the following paths(i) P = z;, xr;/27,
Trij2)41s o Trij21—1; (1) P2 = zio1, Ya-1)/241,
Zi—2y Zi—31 Y(i=3)/2s - - - Y(G+1)/2+1 if J is odd, other-
WIS P = 2i 1, Y(i=1)/241» Zi—2+ Zi—3) Y(i=3)/2s - -
Zjy1s (140) Ps = yi11)/20 YGi+1)/2—1 -+ -0 Y[i/2]+1
if j is Odd, OtherWiSQDg = yr(j+1)/2‘|, yr(j+1)/2‘|_1,

We assume that is onC; andv is onCj, since the
case where: is on C3 andv is on C5 is similar. Let
u = z; andv = z;. In this case, we have two subcases
to consider.

Subcas@a: j is even.

We take the following paths:) P, = x4, ©i41, - - -
xi—1; (10) Py = 2943, 22i—2, Yi, 22i—1, - - -» Zj—1, (41%)

Ps = yri-1)/21» YrG-1)/2] + 1o -+ yio1; and(iv)
Py = 224, 22i—5, ..., 2j. Using the same arguments
as inSubcase&a, we can prove thal P, ., = P P>
P P, is a Hamiltonian path. ‘

Subcas@b: j is odd.

We take the following paths(:) P, = z;, ©;+1,
cow @iy (10) Po = 2253, 2202, Yir 22i—1, - - - Y[j /2]
(Z’LZ) P; = Yl 2141 Y[i/2]+20 - - Yi—1, and(iv) P, =
Z2i—4, Z2i—5, - - ., 2. Using the same arguments as in
Subcasea, we can prove that P, ., = Py P> P3 Py
is a Hamiltonian path.

Cased: The vertex: onC; andv on Cj.

We assume that is on C7 andwv is on C3 since
the case where is on C3 andwv is on C; is similar.
Let us assume that = z; andv = y;. We take the
following paths. (i) Pr = x;, xit1, - .. zi—1; (i0)

Py = 293, Y[(2i—3)/2]s 22i—41 22i—5) Y[(2i—5)/21 - - »
2251, (ZZ’L) P; = 22j—2y Z2j—3y « - 22i—2; and (ZU)

Py = yi, Yit+1, - - ., y;. Using the same arguments as in
Subcasea, we can prove that P,, ., = Py P> P3 Py

is a Hamiltonian path.

ThereforeG has a Hamiltonian path between any
pair of vertices. One can find such a path in linear time
easily. Q.£.D.

ce Yli/2]1+15 and (zv) Py = Zitls Rit2y - s By
LemmadZB[Z14[A.5, we can prove the adjacency be-
tween two consecutive vertices of each path. We ca‘h
also prove the adjacency between the end vertex and tAep-doughnut graph is &connected planar graph. One
starting vertex of path#, and P, P, and P;, P; and may think that gp-doughnut grapld for p > 5 can be

k-Partition of a Doughnut Graph



partitioned using Nagai and Nakand’s [9] algorithm af- By using the Chiba and Nishizeki’sl[1] algorithm,
ter triangulation of one of the face 6f with p-vertices. we now have the following result for anyconnected

But it is not possible since after removing the dummyplanar graph.

edges used for triangulation the partition may not be

connected. In this section, we give an algorithm forl heorem 4.3 Let G be a4-connected planar graph.
finding ak-partition of a doughnut graph. We have theThenG admits k-partitioning with the basis at most
following theorem. two.

Theorem 4.1 LetG be a doughnut graph. Ther ad-

mits k-partitioning. Furthermore, one can find such a
partition in linear time. In this paper, we gave a linear-time algorithm for find-

ing ak-partition of a doughnutgraph. A doughnutgraph
Proof. By Theoren 3L has a Hamiltonian path G is a fault tolerant graph since the verticesbfies on
between any pair of vertices. We first find a Hamiltothree vertex disjoint cycles and is 5-regular. There-
nian pathH P, , between any pair of verticesandv  forek-partitioning of(7 is interesting. We can also have
of G. Then starting from one end vertex &P, ,, we @ k-partition for a4-connected planar graph using the
divide the path intd: subpaths where each subpath consame method. Findingapartition of a doughnut graph
tains the number of vertices exactly equal to the natwith basis five is left as an open problem.
ral number associated with the corresponding partition.
Each of the partition is.a subgraph ind.uced by the Veleferences
tices of the corresponding subpaths. Fiddre 5 illustrates
ak-partitioning of G. Figure[B(i) illustrates a Hamilto- [1] Chiba, N. and Nishizeki, T..;The Hamiltonian
nian path ofG between vertices, andzs. Figure[B(ii) cycle problem is linear time solvable for 4-
illustrates ak-partition of G for k = 7 where the natural connected planar graphgournal of Algorithms,
numbersare 3, 2,5, 3, 2, 4, 1, respectively. Fifilire 5¢iii) 10, pp.187-211, 1989.
illustrates ak-partition of G for k = 4 where the nat- ] )
ural numbers are 4, 6, 3, 7, respectively. The edgd€l Dyer M. E.and Frieze, A. M.On the complexity
of Hamiltonian path and the connected subgraphs are  ©f partitioning graphs into connected subgraphs
drawn by thick lines, and the remaining edges are drawn ~ Discrete Applied Mathematics, vol. 10, pp. 139-
by thin lines. One can find a Hamiltonian path by The- 153, 1985.
oremB:l in linear time and a subgraph mqluc_ed by'th ] Garey, M. R., Johnson, D. S. and Tarjan, R. E.,
vertices on a subpath can also be obtained in linear time. L o .
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