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Abstract. Given a graphG = (V, E), k natural numbersn1, n2, ..., nk such that
∑k

i=1 ni = |V |, we
wish to find a partitionV1, V2, ..., Vk of the vertex setV such that|Vi| = ni andVi induces a connected
subgraph ofG for eachi, 1 ≤ i ≤ k. Such a partition is called ak-partition of G. The problem of
finding ak-partition of a graphG is NP-hard in general. It is known that everyk-connected graph has a
k-partition. But there is no polynomial time algorithm for finding ak-partition of ak-connected graph.
In this paper we give a simple linear-time algorithm for finding ak-partition of a “doughnut graph”G.
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1 Introduction

Given a graphG = (V, E), k natural numbersn1, n2,
. . ., nk such that

∑k
i=1 ni = |V |, we wish to find a

k-partitionV1, V2, . . . , Vk of the vertex setV such that
|Vi| = ni andVi induces a connected subgraph ofG

for eachi, 1 ≤ i ≤ k. A k-partition of a graphG is
illustrated in Figure 1 fork = 5 where the edges of five
connected subgraphs are drawn by solid lines, and the
remaining edges ofG are drawn by dotted lines. Let
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Figure 1: A 5-partition of a5-connected planar graphG.

B = u1, u2, ..., um be a sequence of distinct vertices of

G with m ≤ k. A k-partition of G with basisB is a
k-partition with the additional restriction thatui ∈ Vi,
for 1 ≤ i ≤ m. A k-partition of a graphG with basis
m is illustrated in Figure 2 fork = 5 andm = 5.
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Figure 2: A 5-partition of a5-connected planar graphG with basis
5.

The problem of finding ak-partition of a given graph
often appears in the load distribution among different
power plants and the fault-tolerant routing of commu-
nication networks [10, 9]. The problem is NP-hard in
general evenk is limited to 2 [2], and hence it is very
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unlikely that there is a polynomial-time algorithm to
solve the problem. Although not every graph has ak-
partition, Györi and Lovász independently proved that
everyk-connected graph has ak-partition [4, 8]. How-
ever, their proofs do not yield any polynomial-time al-
gorithm for finding ak-partition of ak-connected graph.
A linear-time algorithm is known for 4-partitioning of a
4-connected plane graph if the four basis vertices are all
on the boundary of one face [10]. A linear-time algo-
rithm is also known for 5-partitioning of a 5-connected
internally triangulated plane graph if the five basis ver-
tices are all on the boundary of one face [9].

In this paper we give a linear-time algorithm for
finding a k-partition of a “doughnut graph”G. The
class of “doughnut graphs” is an interesting class of
graphs which was recently introduced in graph drawing
literature for it’s beautiful area-efficient drawing prop-
erties [6, 11, 12, 7]. Our algorithm is also applicable for
finding ak-partition of a “doughnut graph” with basis
at most two. Using the same method, one can find a
k-partition of a4-connected planar graph in linear time.

The rest of the paper is organized as follows. Sec-
tion 2 describes some of the definitions used in this
paper. In Section 3, we give an algorithm for finding
a Hamiltonian path between any pair of vertices of a
doughnut graph. Section 4 provides a linear-time al-
gorithm for finding ak-partition of a doughnut graph.
Finally Section 5 concludes the paper.

2 Preliminaries

In this section we give some definitions.
Let G = (V, E) be a connected simple graph with

vertex setV and edge setE. Throughout the paper,
we denote byn the number of vertices inG, that is,
n = |V |, and denote bym the number of edges inG,
that is,m = |E|. An edge joining verticesu andv is
denoted by(u, v). The degree of a vertexv, denoted
by d(v), is the number of edges incident tov in G. G

is calledr-regular if every vertex ofG has degreer.
We call a vertexv a neighborof a vertexu in G if G

has an edge(u, v). Theconnectivityκ(G) of a graph
G is the minimum number of vertices whose removal
results in a disconnected graph or a single-vertex graph
K1. G is calledk-connectedif κ(G) ≥ k. We call a
vertex ofG a cut-vertexof G if its removal results in
a disconnected or single-vertex graph. ForW ⊆ V ,
we denote byG − W the graph obtained fromG by
deleting all vertices inW and all edges incident to them.
A cut-setof G is a setS ⊆ V (G) such thatG − S has
more than one component orG − S is a single vertex
graph. Apathin G is an ordered list of distinct vertices
v1, v2, ..., vq ∈ V such that(vi−1, vi) ∈ E for all 2 ≤

i ≤ q. Let P1 = xi, . . . , xk andP2 = xm, . . . , xo be
two paths. We denote byP1P2 the concatenation of two
pathsP1 andP2 where the last vertex ofP1 and the first
vertex ofP2 are adjacent, i.e,P1P2 = xi, . . ., xk, xm,
. . ., xo wherexm is a neighbor ofxk.

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometrically ex-
cept at a vertex to which they are both incident. Aplane
graphis a planar graph with a fixed embedding. A plane
graphG divides the plane into connected regions called
faces. The unbounded region is called theouter face.
Let v1, v2, ..., vl be all the vertices in a clockwise or-
der on the contour of a facef in G. We often denote
f by f(v1, v2, ..., vl). For a facef in G we denote by
V (f) the set of vertices ofG on the boundary of face
f . We call two facesF1 andF2 arevertex-disjointif
V (F1)

⋂
V (F2) = ∅.

Let G be a5-connected planar graph, letΓ be any
planar embedding ofG and letp be an integer such that
p ≥ 3. We callG a p-doughnutgraph if the following
Conditions (d1) and (d2) hold:

(d1) Γ has two vertex-disjoint faces each of which has
exactlyp vertices, and all the other faces ofΓ has
exactly three vertices; and

(d2) G has the minimum number of vertices satisfying
Condition (d1).

In general, we call ap-doughnut graph forp ≥ 3 a
doughnut graph. Figure 3(i) illustrates a doughnut graph.
The following result is known for doughnut graphs [6].

Lemma 2.1 Let G be ap-doughnut graph. ThenG is
5-regular and has exactly4p vertices.
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Figure 3: (i) A p-doughnut graphG wherep = 4 and (ii) a doughnut
embedding ofG.

For a cycleC in a plane graphG, we denote byG(C)
the plane subgraph ofG insideC excludingC. Let C1,
C2 andC3 be three vertex-disjoint cycles in a planar
graphG such thatV (C1) ∪ V (C2) ∪ V (C3) = V (G).
Then we call a planar embeddingΓ of G a doughnut
embeddingof G if C1 is the outer face andC3 is an



inner face ofΓ, G(C1) containsC2 and G(C2) con-
tainsC3. We callC1 theouter cycle, C2 themiddle cy-
cle andC3 the inner cycleof Γ. Figure 3(ii) illustrates
a doughnut embedding of the doughnut graph in Fig-
ure 3(i). The following result is also known for dough-
nut graphs [6].

Lemma 2.2 A p-doughnut graph always has a dough-
nut embedding.

LetΓ be a doughnut embedding of a doughnut graph
G. Let z1, z2, . . ., z2p be the vertices onC2 in a clock-
wise order such thatz1 has exactly one neighbor onC1

and exactly two neighbors onC3. Let x1, x2, . . ., xp

be the vertices onC1 in a clockwise order wherex1 is
the neighbor ofz1. Let y1, y2, . . ., yp be the vertices
on C3 in a clockwise order such thaty1 andy2 are the
neighbors ofz1. In the rest of the paper for any dough-
nut embedding ofG, we follow the labeling of vertices
on cyclesC1, C2 andC3 as mentioned above. We now
have the following lemmas from [6].

Lemma 2.3 LetG be ap-doughnut graph and letΓ be
a doughnut embedding ofG. Let zi be a vertex ofC2.
Then the following conditions hold.

(a) zi has exactly two neighbors onC1 and exactly
one neighbor onC3 if i is even. The neighbors of
zi on C1 are xp andx1 if i = 2p otherwisexi/2

andxi/2+1, and the neighbor ofzi on C3 is y1 if
i = 2p otherwiseyi/2+1.

(b) zi has exactly two neighbors onC3 and exactly
one neighbor onC1 if i is odd. The neighbors of
zi on C3 are yp and y1 if i = 2p − 1 otherwise
y⌈i/2⌉ andy⌈i/2⌉+1, and the neighbor ofzi on C1

is x⌈i/2⌉.

Lemma 2.4 LetG be ap-doughnut graph and letΓ be
a doughnut embedding ofG. Letxi be a vertex ofC1.
Thenxi has exactly three neighborsz2p, z1, z2 if i = 1
otherwisez2i−2, z2i−1, z2i onC2 in a clockwise order.

Lemma 2.5 Let G be a p-doughnut graph and letΓ
be a doughnut embedding ofG. Let yi be a vertex of
C3. Thenyi has exactly three neighborsz2p−1, z2p,
z1 if i = 1 otherwisez2i−3, z2i−2, z2i−1 on C2 in a
clockwise order.

A Hamiltonian cycle (path)of a graphG is a cy-
cle (path) which contains all the vertices ofG. We call
a graphG Hamiltonian if G contains a Hamiltonian
cycle. The Hamiltonian cycle problem asks whether
a given graph contains a Hamiltonian cycle, and the

problem is NP-complete even for 3-connected planar
graphs [3]. However the problem becomes polynomial-
time solvable for 4-connected planar graphs: Tutte
proved that a4-connected planar graph necessarily con-
tains a Hamiltonian cycle [14]. We call a graphG is
Hamiltonian-connectedif G has a Hamiltonian path be-
tween any pair of vertices ofG. Thomassen
proved that4-connected planar graphs are Hamiltonian-
connected [13].

3 Finding Hamiltonian Path in Doughnut
Graphs

A doughnut graphG is Hamiltonian-connected sinceG
is 5-connected. One can find a Hamiltonian path in
a doughnut graph using algorithm proposed by Chiba
and Nishizeki [1]. In their paper, they gave a proof
of Tutte’s theorem based on Thomassen’s short proof
avoiding decomposition of a4-connected planar graph
into nondisjoint subgraphs. Their proof is constructive
and yields an algorithm for finding Hamiltonian path.
Their algorithm clearly runs inO(n2) time, since one
step of divide-and-conquer can be done inO(n) time.
The key idea for linear implementation of this algorithm
is to use, in place of the Hopcroft and Tarjan’s algo-
rithm [5], a new algorithm to decompose a plane graph
into small subgraphs by traversing some facial cycles.
Although a sophisticated analysis shows that each of the
edge is traversed at most constant time during one exe-
cution of Hamiltonian path finding algorithm and hence
the algorithm runs in linear time, the linear-time im-
plementation of the algorithm looks non-trivial. In this
section we present a very simple linear-time algorithm
for finding Hamiltonian path between any pair of ver-
tices of a doughnut graph. In our algorithm we exploit
the simple structure of a doughnut graph.

We have the following theorem on a doughnut graph.

Theorem 3.1 LetG be a doughnut graph. Then a Hamil-
tonian path between any pair of vertices ofG can be
found in linear time.

Proof. We first show a Hamiltonian path between
any pair of vertices of a doughnut graph. LetΓ be a
doughnut embedding ofG and letC1, C2 andC3 be the
outer cycle, the middle cycle and the inner cycle ofΓ.
We have the following four cases to consider.

Case1: Both the verticesu, v are either onC1 or on
C3.

We assume that both ofu andv are onC1, since the
case where both ofu andv are onC3 is similar. Letu =
xi andv = xj . Without loss of generality, we assume
that i < j. We take the following paths.(i) P1 = xi,



z2i−1, z2i, xi+1, z2i+1, z2i+2, . . ., xj−1, z2j−3, z2j−2;
(ii) P2 = yj , yj−1, . . ., yj+1; (iii) P3 = z2j−1, z2j ,
. . ., z2i−2; and(iv) P4 = xi−1, xi−2, . . ., xj . The path
P1 contains vertices ofC1 and C2. By Lemma 2.4,
z2i−1 is a neighbor ofxi. By Lemma 2.3,xi+1 is a
neighbor ofz2i since2i is even. The pathP2 contains
all the vertices ofC3. The pathP3 contains all the ver-
tices ofC2 those are not appear inP1 and the PathP4

contains vertices ofC1 those are not appear in the path
P1. We can concatenate the pathsP1 andP2 sinceyj

is a neighbor ofz2j−2 by Lemma 2.3. The pathsP2

andP3 can be concatenated sincez2j−1 is a neighbor
of yj+1 by Lemma 2.5. The pathsP3 andP4 can also
be concatenated sincexi−1 is a neighbor ofz2i−2 by
Lemma 2.3. Thus we can concatenate the four paths and
the resulting path isHPxi,xj

whereHPxi,xj
= P1 P2

P3 P4. The pathHPxi,xj
is a Hamiltonian path since

P1, P2, P3 andP4 contain all the vertices ofG. Fig-
ure 4 illustrates the case whereu = x2 andv = x5.
In this example(i) P1 = x2, z3, z4, x3, z5, z6, x4,
z7, z8; (ii) P2 = y5, y4, y3, y2, y1; (iii) P3 = z9, z10,
z1, z2; and(iv) P4 = x1, x5. The Hamiltonian path is
HPx2,x5

= P1P2P3P4.
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Figure 4: Illustration for case 1.

Case2: Both verticesu, v are onC2.
Let u = zi andv = zj. Without loss of generality

we may assume thati < j. We have two subcases to
consider.

Subcase2a: i is odd.
We take the following paths.(i) P1 = zi, x⌈i/2⌉,

x⌈i/2⌉+1, . . ., x⌈i/2⌉−1; (ii) P2 = zi−1, y(i−1)/2+1,
zi−2, zi−3, y(i−3)/2, . . ., y(j+1)/2+1 if j is odd, other-
wiseP2 = zi−1, y(i−1)/2+1, zi−2, zi−3, y(i−3)/2, . . .,
zj+1; (iii) P3 = y(j+1)/2, y(j+1)/2−1, . . ., y⌈i/2⌉+1

if j is odd, otherwiseP3 = y⌈(j+1)/2⌉, y⌈(j+1)/2⌉−1,
. . ., y⌈i/2⌉+1; and (iv) P4 = zi+1, zi+2, . . ., zj. By
Lemmas 2.3, 2.4, 2.5, we can prove the adjacency be-
tween two consecutive vertices of each path. We can
also prove the adjacency between the end vertex and the
starting vertex of pathsP1 andP2, P2 andP3, P3 and

P4 using the Lemmas 2.3, 2.4, 2.5. Therefore we can
concatenate the pathsP1, P2, P3, P4; and the resulting
pathHPxi,xj

= P1 P2 P3 P4 is a Hamiltonian path
since the pathsP1, P2, P3, P4 contain all the vertices of
the graph.

Subcase2b: i is even.
We take the following paths.(i) P1 = zi, xi/2+1,

xi/2+2, . . ., xi/2; (ii) P2 = zi−1, zi−2, y(i−2)/2+1,
zi−3, . . ., y(j+1)/2+1 if j is odd, otherwiseP2 = zi−1,
zi−2, y(i−2)/2+1, zi−3, . . ., zj+1; (iii) P3 = y(j+1)/2,
y(j+1)/2−1, . . ., y⌈i/2⌉+1 if j is odd, otherwiseP3 =
y⌈(j+1)/2⌉, . . ., y⌈i/2⌉+1; and(iv) P4 = zi+1, zi+2, . . .,
zj . Using the same arguments as inSubcase2a, we
can prove thatHPxi,xj

= P1P2P3P4 is a Hamiltonian
path.

Case3: The vertexu either onC1 or onC3 andv

onC2.
We assume thatu is onC1 andv is onC2, since the

case whereu is on C3 andv is on C2 is similar. Let
u = xi andv = zj . In this case, we have two subcases
to consider.

Subcase3a: j is even.
We take the following paths.(i) P1 = xi, xi+1, . . .,

xi−1; (ii) P2 = z2i−3, z2i−2, yi, z2i−1, . . ., zj−1; (iii)
P3 = y⌈(j−1)/2⌉, y⌈(j−1)/2⌉ + 1, . . ., yi−1; and (iv)
P4 = z2i−4, z2i−5, . . ., zj . Using the same arguments
as inSubcase2a, we can prove thatHPxi,xj

= P1 P2

P3 P4 is a Hamiltonian path.
Subcase3b: j is odd.
We take the following paths.(i) P1 = xi, xi+1,

. . ., xi−1; (ii) P2 = z2i−3, z2i−2, yi, z2i−1, . . ., y⌈j/2⌉;
(iii) P3 = y⌈j/2⌉+1, y⌈j/2⌉+2, . . ., yi−1; and(iv) P4 =
z2i−4, z2i−5, . . ., zj. Using the same arguments as in
Subcase2a, we can prove thatHPxi,xj

= P1 P2 P3 P4

is a Hamiltonian path.
Case4: The vertexu onC1 andv onC3.
We assume thatu is on C1 and v is on C3 since

the case whereu is on C3 andv is on C1 is similar.
Let us assume thatu = xi andv = yj . We take the
following paths. (i) P1 = xi, xi+1, . . ., xi−1; (ii)
P2 = z2i−3, y⌈(2i−3)/2⌉, z2i−4, z2i−5, y⌈(2i−5)/2, . . .,
z2j−1; (iii) P3 = z2j−2, z2j−3, . . ., z2i−2; and (iv)
P4 = yi, yi+1, . . . , yj . Using the same arguments as in
Subcase2a, we can prove thatHPxi,xj

= P1 P2 P3 P4

is a Hamiltonian path.
ThereforeG has a Hamiltonian path between any

pair of vertices. One can find such a path in linear time
easily. Q.E .D.

4 k-Partition of a Doughnut Graph

A p-doughnut graph is a5-connected planar graph. One
may think that ap-doughnut graphG for p ≥ 5 can be



partitioned using Nagai and Nakano’s [9] algorithm af-
ter triangulation of one of the face ofG with p-vertices.
But it is not possible since after removing the dummy
edges used for triangulation the partition may not be
connected. In this section, we give an algorithm for
finding ak-partition of a doughnut graph. We have the
following theorem.

Theorem 4.1 LetG be a doughnut graph. ThenG ad-
mitsk-partitioning. Furthermore, one can find such a
partition in linear time.

Proof. By Theorem 3.1,G has a Hamiltonian path
between any pair of vertices. We first find a Hamilto-
nian pathHPu,v between any pair of verticesu andv

of G. Then starting from one end vertex ofHPu,v, we
divide the path intok subpaths where each subpath con-
tains the number of vertices exactly equal to the natu-
ral number associated with the corresponding partition.
Each of the partition is a subgraph induced by the ver-
tices of the corresponding subpaths. Figure 5 illustrates
ak-partitioning ofG. Figure 5(i) illustrates a Hamilto-
nian path ofG between verticesx2 andz6. Figure 5(ii)
illustrates ak-partition ofG for k = 7 where the natural
numbers are 3, 2, 5, 3, 2, 4, 1, respectively. Figure 5(iii)
illustrates ak-partition ofG for k = 4 where the nat-
ural numbers are 4, 6, 3, 7, respectively. The edges
of Hamiltonian path and the connected subgraphs are
drawn by thick lines, and the remaining edges are drawn
by thin lines. One can find a Hamiltonian path by The-
orem 3.1 in linear time and a subgraph induced by the
vertices on a subpath can also be obtained in linear time.
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Figure 5: (i) Hamiltonian pathHPx2,z6
of G, (ii) a 7-partition of

G, and (iii) a4-partition ofG.

Q.E .D.

Ourk-partition algorithm is based on finding a Hamil-
tonian path between any pair of vertices of a doughnut
graph. The two end vertices of a Hamiltonian path can
be used as two basis vertices of ak-partition. So, the
following theorem also holds.

Theorem 4.2 LetG be a doughnut graph. ThenG ad-
mitsk-partitioning with basis at most two.

By using the Chiba and Nishizeki’s [1] algorithm,
we now have the following result for any4-connected
planar graph.

Theorem 4.3 Let G be a 4-connected planar graph.
ThenG admitsk-partitioning with the basis at most
two.

5 Conclusion

In this paper, we gave a linear-time algorithm for find-
ing ak-partition of a doughnut graph. A doughnut graph
G is a fault tolerant graph since the vertices ofG lies on
three vertex disjoint cycles andG is 5-regular. There-
forek-partitioning ofG is interesting. We can also have
a k-partition for a4-connected planar graph using the
same method. Finding a5-partition of a doughnut graph
with basis five is left as an open problem.
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