
A Framework for Component Design using MVC Design Pattern

ABHIK SENGUPTA
�

SABNAM SENGUPTA
�

SWAPAN BHATTACHARYA
�

�

Cognizant Technology Solutions, Plot GN-34/3, Sector V,
Salt Lake Electronic Complex, Kolkata - 700091, India

abhik.sengupta@cognizant.com
�

Dept. of Information Technology,
B. P. Poddar Institute of Management and Technology,

137, V.I.P Road, Kolkata - 700052, India
sabnam_sg@yahoo.com

�

National Institute of Technology, Durgapur - 713209, India
bswapan2000@yahoo.co.in

Abstract. In this paper, we propose a framework where functional requirements are traced from use
case model to component model via analysis and design models. Here, components of the component
models are derived by grouping and packaging design classes based on the type of analysis classes they
are derived from. As there are three different types of analysis classes: boundary, controller and entity,
the design classes derived from the corresponding analysis classes get classified at the first iteration. The
components thus derived using this approach form the components of Model View Controller Architec-
ture; different components having design classes of similar functionalities. This framework can be used
to verify and ensure that use case flow of events is traced in analysis model and then to component model
via design models. The architecture with the components designed using this framework also ensures
separation of concerns, roles among the components to achieve high cohesion and low coupling.

Keywords: Model-View-Controller design pattern, Requirement Traceability, Use case model, analysis
model, design model, component model, Component based architecture, UML Component diagram,
XML.

(Received July 17, 2008 / Accepted November 05, 2008)

1 Introduction

Component-Based development, realizing the intuitive
and attractive idea of rapidly obtaining complex soft-
ware systems by the assembly of simpler components,
has long captivated the industrial practitioners with the
promise of cheaper products with higher reliability and
maintainability. A software component is a unit of com-
position with contractually specified interfaces and ex-
plicit context dependencies only. Reusability, whose
benefits include both the reduction of costs and time-to-
market of software products, is a key issue in software

engineering. Component-based software development
has emerged to increase the reusability and interoper-
ability of pieces of software. Component-based devel-
opment aims at constructing software artifacts by as-
sembling prefabricated, configurable and independently
evolving building blocks, the so-called components.
However, it is only via a rigorous design discipline and
by adopting standard modeling notations as well as strict
documentation and design rules that components inde-
pendently built can effectively interact. This is the basic
notion of Design-by-Contract [22], discipline originally
conceived for Object-Oriented systems, but even better

suited for Component Based development; indeed Ob-
jects and Components, though differing concepts, share
many aspects. In recent years, the focus of software de-
velopment has progressively shifted upward, in the di-
rection of the abstract level of architecture specification.
High-level and standardized models must be adopted, in
such a way that the consistency (compatibility and the
interoperability) among components can be verified as
early as possible. The widespread adoption of the Uni-
fied Modeling Language (UML) evidences this trend,
and its flexibility to specialized yet standard-compatible
extensions, where necessary, provides a valuable tool
for pursuing this direction. In particular, Cheesman and
Daniels [11] describe how UML can be specialized for
modeling within a Component Based paradigm embrac-
ing the basic principles of the Design-by-Contract ap-
proach [22]. Very recently, the OMG Model Driven
Architecture (MDA) approach to development pursues
a complete separation between the base platform in-
dependent model of an application, and the descrip-
tions of one or more platform-specific models, describ-
ing how the base is implemented on each of the sup-
ported platforms [6]. The base model in MDA is speci-
fied in UML.
Model-view-controller (MVC) is an architectural pat-
tern used in software engineering. In complex com-
puter applications that present lots of data to the user,
one often wishes to separate data (model) and user in-
terface (view) concerns, so that changes to the user in-
terface do not affect the data handling, and that the data
can be reorganized without changing the user interface.
The model-view-controller solves this problem by de-
coupling data access and business logic from data pre-
sentation and user interaction, by introducing an inter-
mediate component: the controller.
This work focuses in that direction of designing and
packaging components with the design classes. These
design classes trace the analysis model that is derived
from the use case model. As there can be three types of
analysis classes: boundary, controller and entity, the de-
sign classes also get categorized accordingly. The com-
ponents, too, being derived by packaging design classes
of similar functionalities get their roles defined at a very
early stage. There can be three types of roles:
Model: Domain specific representation of the informa-
tion, i.e., the data models,
View: Components, through which the users interact
with the system,
Controller: Components that get invoked directly with
the user interaction and they invoke the appropriate mod-
els based on the user input.
These components build Model-View-Controller (MVC)

architecture, which is essentially component-based ar-
chitecture.

2 REVIEW OF RELATED WORKS

Lots of research works are going on in the field of Com-
ponent based architecture. In most of these works, spe-
cial interest has been given recently to the reconfigura-
tion and migration of components in component-based
system. In [19], Wallnau K et al have discussed about
the relationship of software architecture to software com-
ponent technology.
Some design methodologies addressing component-based
development have been proposed recently. Most of them
are based on the UML [5], c.f. [14].
Cheesman and Daniels [11] describe how UML can be
specialized for modeling within a Component Based
paradigm embracing the basic principles of the Design-
by-Contract approach [22]. Amber [29] is an abstract
component based modeling language combines a model-
based approach [29] with a UML-based approach [14].
This combined approach aims at profiting from the ad-
vantages of both approaches.
Catalysis [15]is another complex software development
process based on UML. Similarly to the Unified Pro-
cess [17], Catalysis is much like a process template,
which can be tailored according to a particular devel-
opment project. Catalysis being flexible and scalable, it
is popular among software developers. A major benefit
of Catalysis is its explicit use of components.
However, being a broad software development process,
Catalysis is not completely component-oriented. A soft-
ware component is a unit of composition with contrac-
tually specified interfaces and explicit context depen-
dencies only. The differences of Component Based Ap-
proach to the Object Oriented approach are discussed in
[27].
Component-based software development (CBSD) focuses
on building large software systems by integrating pre-
viously existing software components. By enhancing
the flexibility and maintainability of systems, this ap-
proach can potentially be used to reduce software de-
velopment costs, assemble systems rapidly, and reduce
the spiraling maintenance burden associated with the
support and upgrade of large systems. CBSD shifts the
development emphasis from programming software to
composing software systems [12]. According to Bach-
mann et al. [7], in a CB system, components and frame-
works should have certified properties; and these certi-
fied properties should provide the basis for predicting
properties relative to the whole system built out of those
components. In recent years, the focus of software de-
velopment has progressively shifted upward, in the di-

rection of the abstract level of architecture specification.
High-level and standardized models must be adopted,
in such a way that the compatibility and the interoper-
ability among components can be verified as early as
possible. The widespread adoption of the UML evi-
dences this trend, and its flexibility to specialized yet
standard-compatible extensions, where necessary, pro-
vides a valuable tool for pursuing this direction [18].
At the foundation of the Component-Based approach is
the assumption that certain parts of large software sys-
tems reappear with sufficient regularity that common
parts should be written once, rather than many times,
and that common systems should be assembled through
reuse rather than rewritten over and over. CBSD em-
bodies the “buy, don’t build" philosophy espoused by
Fred Brooks [8]. CBSD is also referred to as component-
based software engineering (CBSE) [9], [10].
Component-based systems encompass both commercial-
off-the-shelf (COTS) products and components acquired
through other means, such as non-developmental items
(NDIs).
Because individual components are written to meet dif-
ferent requirements, and are based on differing assump-
tions about their context, components often must be ada-
pted when used in a new system.
Components must be adapted based on rules that ensure
conflicts among components are minimized. The de-
gree to which a component’s internal structure is acces-
sible suggests different approaches to adaptation [28].
One recent trend is toward a “product line" approach
that is based on a reusable set of components that ap-
pear in a range of software products. This approach as-
sumes that similar systems have similar software archi-
tecture and that a majority of the required functionality
is the same from one product to the next. The common
functionality can therefore be provided by the same set
of components, thus simplifying the development and
maintenance life cycle. Results of implementing this
approach can be seen in two different efforts [21], [1].
While there are several efforts focusing on component
qualification, there is little agreement on which qual-
ity attributes or measures of a component are critical to
its use in a component-based system. A useful work
that begins to address this issue is “SAAM: A Method
for Analyzing the Properties of Software Architecture"
[16]. Another technique addresses the complexity of
component selection and provides a decision framework
that supports multi-variable component selection anal-
ysis [20]. Other approaches, such as the qualification
process defined by the US Air Force PRISM program,
emphasize “fitness for use" within specific application
domains, as well as the primacy of integratebility of

components [4]. Another effort is Product Line Asset
Support [3].
There are a handful of systems where COTS has been
implemented successfully, e.g., Deep Space Network
Program at the NASA Jet Propulsion Laboratory [25],
Lewis Mission at NASA’s Goddard Space Center [2],
Air Force Space and Missile System Center’s teleme-
try, tracking, and control (TT & C) system called the
Center for Research Support (CERES) [13].
As in recent time the focus in the software industry
has moved into reusability of components and creation
of repository of components, it would be effective if
we can design a component model where the roles of
different components are very well defined that would
make the components easily replaceable and modifi-
able as the components become highly cohesive and
less coupled with each other. With that aim we have
proposed a XML based framework for designing com-
ponents from requirements in [24]. In [23] and [26],
we have proposed formal approaches using Z notation
for formalization of functional requirements and some
of the widely used UML diagrams in analysis and de-
sign phases of software development. In [24], we have
proposed a methodology for deriving components from
requirements. This paper is an extension of that ap-
proach. In this paper, we propose architecture, based
on Model-View-Controller design pattern in designing
a component that trace functional requirements.

3 SCOPE OF WORK

A software component is a physical, replaceable part
of a software system that packages implementation and
provides realization of a set of interfaces. When we
are considering software architecture based on compo-
nents, a component should have a specification, it should
have an implementation, it should conform to some stan-
dards, it has to be package able into modules, and it
should be deployable. A component specification is
usually complete; it contains all the information that
a client of the component needs to know. A compo-
nent specification makes it easier to buy, sell, and re-
place components if the component fulfils its contract, it
should function correctly in the system. From a client’s
perspective or user’s perspective, there is no need to ex-
plore into a lower level of detail before using the com-
ponent.
But, from an architectural perspective it is extremely
important how these components are built so that there
is a very clear separation of concerns. The architec-
ture based on these components can achieve a very high
cohesion and very low coupling. With that vision, we
here propose to derive component models that trace to

the use case models that handle functional requirements
specified in the Software Requirement Specification (SRS)
Document. Analysis classes in the analysis model real-
ize use case models and analysis classes are traced to
design classes.
As analysis classes are classified as: boundary, control
and entity classes, the design classes also get classified
accordingly.
Packaging design classes that play similar kind of roles
in the architecture derives the components of compo-
nent model. This approach is illustrated in Figure 1.
When different components are assembled, they are as-
sembled through the interfaces they implement. Inter-
faces are specifications of services provided by classes
or components. Interfaces are most closely associated
with components; a component without an interface may
be technically well formed, but suspect. Functional Spec-
ification of these components and consistency verifica-
tion among them are very important to ensure cost ef-
fectiveness at a very early stage of deployment.
In this paper, we propose a component based archi-
tectural framework that follows Model-View-Controller
design pattern where roles of the components are well
defined; ensuring separation of concerns. Packaging
design classes of similar roles; ensuring high cohesion
and low coupling build these components. We propose
several XML schemas for different models used in dif-
ferent phases of software development.

Figure 1: The Component Design Model

4 FUNCTIONAL REQUIREMENTS TO COMPO-
NENTS

Traditional object-oriented software development aims
at providing reusability of object type definitions (classes),
at design and implementation levels. In contrast, com-
ponent based development aims at providing reusability
of components at deployment level. In this way, com-

ponents represent pieces of functionality that are ready
to be installed and executed in multiple environments.
In this paper, we propose to address a design issue in
component-based development, i.e., separation of con-
cerns, roles of components to achieve low coupling and
high cohesion among the components. For that, we pro-
pose some restrictions, following best practices that are
adhered to by most designers in any case, in designing
these components. The restrictions are:
1. Each use case of use case model has to be traced in
a. One or more boundary classes
b. One or more entity classes
c. One or more control classes
In the analysis model
2. An analysis class has to be traced in one or more de-
sign classes.
3. If a design class in design model traces more than one
analysis classes, then the type of the analysis classes has
to be the same, i.e., either one of boundary, control and
entity.
4. When a design class or a set of classes are grouped
and packaged to build components, the design classes
that trace same type of activity classes have to be grouped.
For example, if there are three design classes, all of
them tracing “boundary" type analysis classes, they can
build a component. But, if they trace different types of
design classes they may not be grouped to build a com-
ponent.
The restriction 4 ensures that each component plays a
unique role in the architecture.
a. They can act as “interfaces" through which the users
interact with the system, or, (View)
b. They can act as components that invoke different data
models based on user input, or, (Controller)
c. They can act as the data models themselves. (Model)
This builds MVC architecture.
In the following sections, we propose XML schemas for
different models used in software development. These
XML schemas conform to OMG’s XMI standard. Java
programs that use XML parser are used to verify the re-
strictions proposed.

4.1 Use Case Models to Analysis Models

UML use case diagrams have become the de-facto stan-
dard for defining and capturing functional requirements.
In Unified software development process use case mod-
els consist of UML use case diagrams. A use case di-
agram is composed of use cases, their actors, their re-
lationships and their flow of events (also known as Ac-
tivity Flows). In the analysis model, a use case is real-
ized in collaboration and collaborations are mapped to

the analysis classes. There can be three types of anal-
ysis classes: Boundary, Control and Entity. Boundary
classes in general are used to model interaction between
the system and its actors. Entity classes in general are
used to model information that is long-lived and often
persistent. Control classes are generally used to repre-
sent coordination, sequencing, transactions, and control
of other objects. And it is often used to encapsulate
control related to a specific use cases. Here, in order
to trace functional requirements into component design,
we propose a restriction: A use case has to be traced in
one or many analysis classes. This translation is dia-
grammatically represented in Figure 2.

Figure 2: From Use Case to Analysis Model

For this tracing, we propose XML schemas repre-
senting use case model and analysis model as shown in
Schema 1 and 2 respectively.
<?xml version=“1.0" encoding=“UTF-8"?>
<xsd:schema targetNamespace=“URI" xmlns:
xmi=“http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:p=“URI">
<xsd:import namespace=http://www.omg.org/XMI schema Lo-
cation=“xmi20.xsd"/>
<xsd:complexType name=“UseCaseModel">
<xsd:sequence>
<xsd:complexType name=“UseCase">
<xsd:element name=“ucId" type=“xsd:integer"/>
<xsd:element name=“ucName" type=“xsd:string"/>
<xsd:complexType name=“Events">
<xsd:complexType name=“Event">
<xsd:attribute name=“eventId" type=“xsd:integer"
use=“required"/>
<xsd:element name=“eventDesc" type=“xsd:string"/>
<xsd:complexType name=“tracedByAnalysisClasses" >
<xsd:element name=“analysisClass" type=“xsd:string" />
</xsd:complexType>
</xsd:complexType>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Schema 1: XML Schema representing Use Case Models

<?xml version=“1.0" encoding=“UTF-8"?>
<xsd:schema targetNamespace=“URI" xmlns:
xmi=“http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/XMLSchema xmlns:p=“URI">
<xsd:import namespace=http://www.omg.org/XMI schemaLo-
cation=“xmi20.xsd"/>
<xsd:complexType name=“AnalysisModel">
<xsd:sequence>
<xsd:complexType name=“AnalysisClass">
<xsd:attribute name=“type" type=“xsd:string"/>
<xsd:element name=“name" type=“xsd:string"/>
<xsd:complexType name=“EventsDealt">
<xsd:sequence>
<xsd:complexType name=“Event">
<xsd:attribute name=“id" type=“xsd:integer" use=“required"/>
</xsd:sequence>
</xsd:complexType>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
Schema 2: XML Schema representing Analysis Models

These XML schemas follow the XMI standards.
A Java program that uses an XML parser is used to ver-
ify if all the events in activity flows of use case model
has got mapped to the analysis classes in the Analysis
model. The same program is also used to ensure that
the type of analysis classes can be either one of bound-
ary, control and entity.

4.2 Analysis Models to Design Models

The analysis classes derived in the analysis models get
traced to the design classes of the Design Model. This
is shown in Figure 3.

Figure 3: From Analysis to Design Model

Here we propose a XML schema representing a de-

sign model in schema 3.
<?xml version=“1.0" encoding=“UTF-8"?>

<xsd:schema targetNamespace=“URI" xmlns:xmi=
“http://www.omg.org/XMI"
xmlns:xsd=http://www.w3.org/2001/
XMLSchema xmlns:p=“URI">
<xsd:import namespace=http://www.omg.org/XMI schemaLo-
cation=“xmi20.xsd"/>
<xsd:complexType name=“DesignModel">
<xsd:sequence>
<xsd:complexType name=“DesignClass">
<xsd:element name=“name" type=“xsd:string"/>
<xsd:complexType name=“TracedAnalysisClasses">
<xsd:element name=“analysisClass" type=“xsd:string"/>
</xsd:complexType>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType></xsd:schema>
Schema 3: XML Schema representing a Design Model

Similarly a Java program that uses an XML parser is
used to verify that each analysis class in Analysis model
gets traced to one or more design classes. The same
Java program is also used to ensure that if a design class
in design model traces more than one analysis classes,
then the type of the analysis classes has to be the same,
i.e., either one of boundary, control and entity.

4.3 Design Models to Component Models

The Design classes that trace the activity classes are
packaged to build components. This is shown in Fig-
ure 4. Here, we propose a XML schema that represents

Figure 4: The Component Model from the Design Classes

the component model as shown in schema 4.
<?xml version=“1.0" encoding=“UTF-8"?>
<xsd:schema targetNamespace=“URI" xmlns:
xmi=“http://www.omg.org/XMI"

xmlns:xsd=http://www.w3.org/2001/
XMLSchema xmlns:p=“URI">
<xsd:import namespace=http://www.omg.org/
XMI schemaLocation=“xmi20.xsd"/>
<xsd:complexType name=“ComponentModel">
<xsd:sequence>
<xsd:complexType name=“Component">
<xsd:attribute name=“id" type=“xsd:integer" use=“required"/>
<xsd:element name=“name" type=“xsd:string"/>
<xsd:element name=“type" type=“xsd:string"/>
<xsd:complexType name=“DesignClasses">
<xsd:complexType name=“class"> <xsd:attribute name=“name"
type=“xsd:string" use=“required">
</xsd:complexType>
</xsd:complexType>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
Schema 4 : XML Schema representing a Component Model

A Java program that uses a XML parser is used to
verify that the design classes that build a component
trace the same type of analysis class in the analysis
model; as stated in restriction 4. In the following sec-
tion we explain our approach with the help of a case
study.

5 CASE STUDY

We have considered a simple example of a Library Sys-
tem where a member can register, cancel membership,
issue and return books from the library. The use case
diagram is shown as in Figure 5.

Figure 5: The Component Model from the Design Classes

The Flow of events for “Registration" is:
1. Person details are entered.
2. Checking is made whether an existing member or
not.
3. If not an existing member, membership is created
and a member ID is generated.
The Flow of events for “Issue Book" is:
1. Member ID is entered and validated
2. Every Member has a maximum allowable limit for is-

suing books, which depends on member category. Check
whether member is allowed for issuing books
3. If issue is allowed accept Book ID and validate it.
4. Check if the book is already issued to the member
and needs re-issue.
a. If re-issue request then check if there is any demand
pending
b. If yes, re-issue request rejected.
c. If no, the book is re-issued.
5. If request is for issue
a. Check for availability of book
b. If available, issue the book
6. Otherwise, place demand on hold.
The Flow of events for “Return Book" is:
1. Member ID is entered and validated.
2. Book ID is entered and validated.
3. Checking is made whether that book was issued to
that member or not.
4. Book data is updated.
5. Member data is updated.
The flow of events for “Cancel Membership" is
1. Member ID is entered and validated
2. Check if any book is already issued to the member
or not.
3. If no book is issued to the member, the membership
is cancelled.
The part of the XML file representing this use case model
is shown in schema 5.

<?xml version=“1.0"?>
<UseCaseModel>
<UseCase>
<ucId> 01 <ucId>
<ucName> Register </ucName>
<Events>
<Event eventId = ‘1.1’>
<eventDesc>
Person details are entered.
</eventDesc>
<tracedByAnalysisClasses>
<analysisClass>
Authorization Interface
</analysisClass>
</tracedByAnalysisClasses>
</Event>
<Event EventId = ‘1.2’>
<eventDesc>
Checking is made whether an existing member or not.
</eventDesc>
<tracedByAnalysisClasses>
<analysisClass>
Authentication

</analysisClass>
<analysisClass>Member
</analysisClass>
</tracedByAnalysisClasses>
</Event>
</Events>
</UseCase>
<UseCase>
<ucId> 01 <ucId>
<ucName> Issue Book </ucName>
<Events>
<Event EventId = ‘2.1’>
<eventDesc></eventDesc>
<tracedByAnalysisClass>
</tracedByAnalysisClass>
</Event>
<Event EventId = ‘2.2’>
<eventDesc></eventDesc>
<tracedByAnalysisClass>
</tracedByAnalysisClass>
</Event>
.......
</Events>
</UseCase>
................
</UseCaseModel>
Schema 5: XML Document representing Use Case Model
of Library System

The use cases of the Use Case Model are traces to
the Analysis classes that build the analysis model as
shown in Figure 6.
The part of the XML file that represents the analysis
model is shown in schema 6.

<?xml version=“1.0"?>
<AnalysisModel>
<AnalysisClass type=‘boundary’>
<name> Authorization Interface </name>
<EventsDealt>
<Event id=‘1.1’ />
</EventsDealt>
</AnalysisClass>
<AnalysisClass type=‘control’>
<name> Authentication </name>
<EventsDealt>
<Event id=‘1.1’ />
<Event id=‘4.3 />
</EventsDealt>
</AnalysisClass>
..................
</AnalysisModel>

Schema 6: XML Document representing Analysis Model
of a Library System

The Analysis classes are traced to the design classes.
The process is depicted in Figure 7.

Figure 6: Analysis Model of LMS

Figure 7: Analysis Classes traced to Design Classes

From this, we can derive the design model of the
Library System as shown in Figure 8.
The part of the design model is represented in XML as
shown in schema 7.
<?xml version=“1.0"?>
<DesignModel>
<DesignClass>
<name>Display</name>
<TracedAnalysisClasses>
<analysisClass> Authorization-Interface
</analysisClass>
<analysisClass> Issue-Return-Interface
</analysisClass>
</ TracedAnalysisClasses >
</DesignClass>
<DesignClass>
<name>Transaction-Management</name>
<TracedAnalysisClasses>

<analysisClass>Issuance</analysisClass>
<analysisClass>Return</analysisClass>
</ TracedAnalysisClasses>
</DesignClass>
</DesignModel>
Schema 7: XML Document representing Design Model of
a Library System

Figure 8: The Design Model of LMS

We now propose to package classes into compo-
nents to generate the Component Model of the Library
System as shown in Figure 9.
It is a Component-Based Model-View-Controller Ar-
chitecture. Part of a Component Model of the Library
System is represented in XML format in schema 8.

<?xml version=“1.0"?>
<ComponentModel>
<Component id=‘01’>
<name>Library-Interface </name>
<type>View</type>
<DesignClasses>
<class name=“Display"/>
<class name=“Keyboard"/>
<class name=“Librarian"/>
</DesignClasses>
</Component>
<Component id=‘04’>
<name>Transaction-Management</name>
<type>6 Controller </type>
<DesignClasses>
<class name=‘Transaction-Manager"/>
</DesignClasses>
</Component>
</ComponentModel>
Schema 8: XML Document representing Component Model
of a Library System

Figure 9: The Component Model of LMS

6 CONCLUSION

In this paper, we propose a framework for designing a
system based on Component Based Architecture. Here,
we propose to achieve separation of concerns among
these components using Model-View-Controller design
pattern. This would enable us building components that
are highly cohesive and less coupled with other compo-
nents making them easily replaceable and modifiable.
Reusability of such components will be high as the roles
of the components are going to be well defined and non-
overlapping.

References

[1] Air force/stars demonstration project home
page. Available at http://www.stsc.hill.af.mil/
crosstalk/1994/08/xt94d08e.asp, 1995.

[2] Mechanisms/incentives for reuse
and cots use. Available at
www.sei.cmu.edu/str/descriptions/cbsd.html,
1996.

[3] "plas". Available at http://plas.fit.qut.edu.au,
1996.

[4] Portable, reusable, integrated software
modules (prism) program. Available at
http://stinet.dtic.mil/oai/oai?& verb=getRecord&
metadataPrefix=html& identifier=ADA284567,
1996.

[5] Object management group. UML Revision Task
Force: OMG UML v. 1.3: Revisions and Recom-
mendations, 1999.

[6] Model driven architecture, a technical perspective.
doc. n. ab/2001-01-01, n. ormsc, July 26-29 2001.

[7] Bachman Felix, B. L., Charles, B., Santi-
ago, C.-D., and Fred, L. Technical con-
cepts of component-based software engi-
neering. Technical Report CMU/SEI-2000-
TR-008, Available at www.sei.cmu.edu/
pub/documents/00.reports/pdf/00tr008.pdf,
May 2000.

[8] Brooks, F. P. J. No silver bullet: Essence and acci-
dents of software engineering. Computer Vol. 20,
Issue 4, April 1987.

[9] Brown, A. W. Preface: Foundations for
component-based software engineering.
Component-Based Software Engineering:
Selected Papers from the Software Engineering
Institute, Los Alamitos, CA, IEEE Computer
Society Press, pages pp. 8–10, 1996.

[10] Brown, A. W. and Wallnan, K. C. Engineer-
ing of component-based systems. 2nd IEEE In-
ternational Conference on Engineering of Com-
plex Computer Systems (ICECCS’ 96), Montreal,
CANADA, pages pp. 414–419, October 21-25
1996.

[11] Cheesman, J. and Daniels, J. Uml components,
a simple process for specifying component-based
software. Addison Wesley, 2001.

[12] Clements, P. C. From subroutines to subsys-
tems: Component-based software development.
Component-Based Software Engineering: Putting
Pieces Together, Addison-Wesley Longman Pub-
lishing Co., Inc, pages pp 189–198, 1996.

[13] Col., R. D. M. L. Lessons learned in the devel-
opment and integration of a cots-based satellite tt
& c system. 33rd Space Congress. Cocoa Beach,
FL, April 23-26 1996.

[14] C.R.G. de Farias, L. F. P. and van Sin-
deren, M. A component-based groupware
development methodology. 4th Int. Enter-
prise Distributed Object,Computing Conference
(EDOC’00) Makuhari, Japan, pages pp. 204–213,
September 25-28 2000.

[15] D’Souza, D. F. and Wills, A. C. Objects, com-
ponents and frameworks with uml: the catalysis
approach. Addison Wesley, USA, 1999.

[16] et al., G. A. Saam: A method for analyzing
the properties of software architecture. 16th In-
ternational Conference on Software Engineering
(ICSE’94), Sorrento, Italy, pages pp 81–90, May
16-21 1994.

[17] I. Jacobson, G. B. and Rumbaugh, J. The unified
software development process. Addison Wesley,
USA, 1999.

[18] Ivar Jacobson, G. B. and Rumbaugh, J. The uni-
fied software development process. Addison Wes-
ley, USA, 1999.

[19] K. Wallnau, S. H., J. Stafford and Klein, M. On
the relationship of software architecture to soft-
ware component technology. 6th International
Workshop on Component-Oriented Programming
(WCOP’06), Budapest, Hungary, June 19 2001.

[20] Kontio, J. A case study in applying a system-
atic method for cots selection. 18th International
Conference on Software Engineering (ICSE’96),
pages 201-209, Berlin, Germany, pages pp 201–
209, March 25-30 1996.

[21] Lettes, J. A. and Wilson, J. Army stars
demonstration project experience report (stars-vc-
a011/003/02)". Manassas, VA: Loral Defense
Systems-East, 1996.

[22] Meyer, B. Applying design by contract. Com-
puter, 25 (10), pages pp 40–52, October 1992.

[23] Sabnam Sengupta, A. K. and Bhattacharya, S.
Requirement traceability in software development
process: An empirical approach. 19th IEEE/IFIP
Symposium for Rapid Systems Prototyping RSP
2008, Monterey, CA, USA, pages pp 105–111,
June 2-5 2008.

[24] Sabnam Sengupta, A. S. and Bhattacharya, S.
Requirements to components: A model-view-
controller architecture. 14th Monterey Workshop,
Monterey, CA, USA, 2007, pages pp 167–184,
September 10-13 2007.

[25] Seaman, C., Morisio, M., Basili, V., Parra, A.,
Kraft, S., and Condon, S. Cots-based software de-
velopment: processes and open issues. Journal of
Systems and Software, Vol. 61, Issue 3, page pp
189, April 2002.

[26] Sengupta, S. and Bhattacharya, S. Formalization
of functional requirements of software develop-
ment process. Journal of Foundations of Com-
puting and Decision Sciences (FCDS), Institute
of Computing Science, Poznan University of Tech-
nology, Poland Vol 33, issue 1, pages pp 83–115,
2008.

[27] Szyperski, C. Component software: Beyond
object-oriented programming. Second Edition
Addison-Wesley / ACM Press, 2002.

[28] Valetto, G. and Kaiser, G. Enveloping so-
phisticated tools into computer-aided software
engineering environments. 7th IEEE Interna-
tional Workshop on CASE Los Alamitos, CA:
IEEE Computer Society Press, Toronto, Ontario,
Canada, pages pp 40–48, July 10-14 1995.

[29] van Sinderen, D. Q. M. and Pires, L. F. A model-
based approach to service creations. 7th Interna-
tional Workshop of Future Trends in Distributed
Computing FTDCS’99, Cape Town, South Africa,
pages pp. 102–110, December 20-22 1999.

