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Abstract. Data compression is the most important step in many signal processing and pattern recogni-
tion applications. We come across very high dimensional data in such applications. Before processing of
large-dimensional datasets, we need to reduce the dimensions to have lesser storage space and reduced
computational complexities while retaining the maximum information. Principal Component Analysis
(PCA) is one such technique that helps in reduction of high dimensional data. It is an unsupervised,
useful statistical technique that has been successfully used in dimensionality reduction in pattern recog-
nition applications. There are number of ways of performing Principal Component Analysis. This paper
reviews the performance of three such methods, Eigen Decomposition, Singular Value Decomposition
and Hebbian Neural Networks. It shows the application of the methods for face images for compres-

sion/dimensionality reduction and face recognition.
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1 Introduction

Principal Components Analysis (PCA) is a statistical
technique that linearly transforms an original set of vari-
ables into substantially smaller set of uncorrelated vari-
ables that represent most of the information contained
in the original set of variables. It transforms the data to
a new coordinate system in such a way that the largest
variance by any projection of the data comes to lie on
the first coordinate. This first coordinate is known as
first principal component, the second largest variance

on the second coordinate, and so on. These principal
components are orthogonal. PCA is theoretically the
optimum linear transform for a given data in least mean
square errors. It is used to reduce the dimensionality
of the original high dimensional data set by compress-
ing them into lower dimensions and reconstructing the
original data. A small set of uncorrelated variables is
much easier to understand and use in further analysis
than a larger set of correlated variables. The idea was
originally conceived by Pearson and independently de-



veloped by Hotelling [1, 2, 4, 17]. In some applications
it is also known as Karhunen-Loéve (KL) Transform or
Hotelling Transform.

This technique has been used successfully for many
image processing and pattern recognition applications
[16,7]. In such applications we choose the features that
are often correlated with each other and a number of
them are of no use so far as the discriminability is con-
cerned. We can reduce the number of features that would
require lesser storage and computational complexity is
also reduced. Eigen Decomposition (ED) is one such
method for computing the principal component analy-
sis. PCA has also been developed based on the matrix
theory for Singular Value Decomposition (SVD) [6, 9]
and using neural networks [12, 13, 14]. This paper re-
views performance of PCA using ED, SVD and Neural
Networks for two different applications. These appli-
cations are data compression/dimensionality reduction
and face recognition. The remainder of this paper is or-
ganized as follows. Section 2 presents basics of PCA.
Section 3 explains data compression/dimensionality re-
duction methods followed by the description of how
these methods are used for compression/dimension re-
duction and face recognition applications in section 4.
Section 5 shows the experimental results and discussion
for data compression and face recognition and paper is
finally concluded in section 6.

2 Principal Component Analysis

In many real world problems, reducing dimensionality
of a problem is an essential step before any analysis of
data is performed. The general criterion for reducing
the dimensions is the need to preserve most of the rele-
vant information of the original data according to some
optimality criteria. PCA [15] is concerned with explain-
ing the variance-covariance structure of a set of vari-
ables through linear combinations of these variables.

Consider a random vector X = (x1,z2,...,Zp).
The covariance matrix of X is C and the eigenvalues are
A1, A2, .., Ap suchthat Ay > Ag >, -+, > Ap and the
eigenvector-eigenvalue pairs are (V1, A1), (V2, A2), - - -
» (Vp, Ap). Then Principal Components (PCs) are linear
combinations (y1,Yys,- - -,Yp), With the changed coor-
dinate system of p random variables (21, 22,...,%p).
The first principal component, y; is a linear combina-
tion of z1, %2, ...,Zp thatis

p
Y1 = (b11$1 + -+ b1p.'L'p) = th’mi = br{X (1)

i=1

The first principal component y; is such that its vari-
ance is maximized given the constraint that b7, = 1.

Principal components analysis finds the optimal weight
vector (bi1,b12, ..., b1p) and associated variance of y;
which is usually denoted as A;. The second princi-
pal component involves finding a second weight vector
(ba1,b22, ..., bap) such that the variance of y, is max-
imized subject to the constraints that bJb, = 1 and
the associated variance value is denoted by Ap. This
process can be continued until as many components as
variables have been calculated. The sum of variance of
principal components is equal to the sum of the variance
of original variables such that Y7 , A\; = >0 o7
where ); is the variance of the ith principal component.
This way there are p linear transformations (PCs) of the
original p variables. These are

P P
Y1 =Y b1, Yp = O bpiti )
i=1 i=1

These can be expressed as Y = BTX where Y =
(Y1,Y2, - Yp). BT is ap x p matrix.

3 Data Compression/Dimensionality Reducti-
on Methods

Broadly speaking, there are two methods to perform
PCA. One method includes computation of variance-
covariance structure of the data and it is expressed in
the form of matrix and hence known by the name matrix
method. In this the matrix is diagonalized using some
numerical technique such as KL Transform or Singular
Value Decomposition. Second type of method works
directly on the data and hence known as data method.
There is no computation of covariance of the data. This
method is highly suited where we have very high di-
mensional data and the computational cost is of prime
importance. This is also suitable for real time applica-
tions. Hebbian Networks for adaptive PCA is one such
example of data methods.

3.1 PCA by Eigen Decomposition

In PCA, we find the directions in the data with the most
variation, i.e., the eigenvectors corresponding to the lar-
gest eigenvalues of the covariance matrix, and project
the data onto these directions. The motivation for doing
this is that the most of second order information is in
these directions. The choice of the number of directions
is often guided by principled methods. If we denote
the matrix of eigenvectors sorted according to eigenval-
ues, by VT, then, PCA transformation of the data is as
Y = VTX. The eigenvectors are called the principal
components. Using the eigenvector-eigenvalue pair, the
ith principal component may be written as



yi=VIX =vpz1 4+ +vpzp,i=1,2,...p (3)

such that
Var(y;) =VICVi =X Cov(yi,yr) =0, i #k
We have

Y =VTX =(W,V,...V,)TX 4)

Var(Y) =VCVT = diag(\i, A2, -, Ap) ()

We can retain the maximum information by retaining
the coordinate axes that have largest eigenvalues and
delete those that have less information. This technique
involves

e Gather x; wheres =1,2,...,p.

e Compute the mean Z and subtract it to obtain z; —
x.

e Compute the covariance matrix C; = (z;—Z) (z;—

z)T.

e Determine the eigenvectors and eigenvalues of co-
variance matrix C such that CV = AV where
A = diag(A1, A2, ..., Ap), a diagonal matrix de-
fined by the eigenvalues of matrix C and V =
(V1, V4, ..., V}) be the associated eigenvectors.

e Sort the eigenvalues and corresponding eigenvec-
tors such that Ay > Ay >,---, > Ap.

e Select the first | < p eigenvectors and discard p—1
eigenvectors to find the data in the new directions.

If the orthogonal matrix V' = (V1, V4, ..., V}) contains
the eigenvectors of C, then C can be decomposed as
C = VAV7T where A is a diagonal matrix of eigenval-
ues.

3.2 Singular Value Decomposition

Singular Value Decomposition (SVD) is an important
topic in linear algebra. PCA is closely related to sin-
gular value decomposition (SVD). From the numerical
perspective, it is a better method and is applied directly
to data matrix. Suppose, we have a matrix A with n
rows and m columns, with rank r and r < n < m. This
matrix A can be factorized into three matrices [9, 18,
19, 8](figure 1).

A=USV"T (6)
where matrix U is an n X n orthogonal matrix
sun] (D)

U= [u1,u2,u3, - Up, Upy1,- -

The column vectors of U that are u;, fori =1,2,...,n
form an orthonormal set

uiTuj =0ij = { (1): ftlie?vjise ®)
and and matrix V is an m X m orthogonal matrix
V =[v1,v2,03,. .., Up, Upi1y-- -, U 9)
The column vectors of V that are v;, fori = 1,2,...,m
form an orthonormal set
U’ij =0 = { (1): i)ftli;vgise (10)

and S is an n X m diagonal matrix with singular values
(SV) on the diagonal. The v;’s and u;’s are called right

|-m- |-n_ |-m- |_m_

n A —|n U n 3 m

Figure 1: Factorization of A to USVT

and left singular-vectors of A. We can define (6) as that
any matrix can be converted into three, orthogonal (n x
n), diagonal (nxm), and orthogonal (m x m) matrices.
The numbers in figure 2, 01,02, ...,07,0r415---,0m

[ O 00 we 0]
0 g 00 - 0

Figure 2: Singular Matrix S

are called the singular values of the data matrix A where

(1)

o1>20,>0,0p41=-"=0p, =0

The number of nonzero singular values equals the rank
of the matrix A. If we multiply both sides of the equa-
tion A = USVT by AT we get

ATA = WwsvhHT(wsvt) =vstuTusv?t

Since UTU = I, we get

ATA=vS8TsvT =vs2vT (12)



So V diagonalizes A™ A, it means that columns v;’s of
V (right singular vectors), are the eigenvectors of A7 A
(m x m matriz). The eigenvalues are the square of
the elements of S (Singular Values). Similarly if we
multiply both sides of A on the right by AT, we get
AAT = (USVTYUSVTYT =usvTvsTuT
Since VTV = I, we get

AAT = (UssTuTy =us?uT (13)
It follows that columns u;’s of U (left singular vectors),
are the eigenvectors of AAT (n x n matriz). The
eigenvalues are the square of the elements of S (Singu-
lar Values).

3.3 Hebbian Neural network Based PCA

There is a close correspondence between the behav-
ior of neural networks and the statistical methods of
PCA. A single linear neuron with a Hebbian type adap-
tation rule for its synaptic weights can evolve into a
filter (called Maximum Eigenfilter) for the first princi-
pal component of the input distribution [14]. This sin-
gle linear neuronal model can be expanded into a feed-
forward network with a single layer of linear neurons
for the purpose of principal component analysis [12].
It gives us full PCA and provides us most significant
principal components in an ordered fashion. This algo-
rithm is called Generalized Hebbian Algorithm (GHA)
or Sanger Rule. Consider the simple linear neuronal
model shown in figure 3. The neuron receives a set of
m input signals 1,2, .. .,Z, through a correspond-

%) W, (1)

S (”}

i

Figure 3: Signal flow graph representation of maximum eigenfilter

ing set of m synapses with weights wy,ws, . .., Wy, re-
spectively. The resulting output y is thus defined by
y = Y i, wiz;. According to Hebb postulate of learn-
ing, a synaptic weight w;, varies with time, and grows
strong when presynaptic signal z; and postsynaptic sig-
nal coincide with each other. We may write

wi(n+1) = w;(n) + ny(n)z;(n),i =1,2,...,m
(14)
where n denotes discrete time and 7 is learning-rate
parameter. But, this learning rule leads to unlimited

growth of the synaptic weight w;, which is not accept-
able. To overcome this problem, Oja proposed new
learning rule [14]

wi(n + 1) = wi(n) + ny(n)[zi(n) — y(n)wi] (15)

This learning rule extracts the first principal component
of the input. Sanger [12] expanded this single neuronal
model into a feedforward network with a single layer
of linear neurons for the purpose of PCA of arbitrary
size on the input. Consider the feedforward network
shown in figure 4. The network has m inputs and 1
outputs. Each neuron in the output layer of the net-
work is linear. The set of synaptic weights w;; con-

Figure 4: Feed forward network with a single layer of computation
nodes

necting source nodes i in the input layer to computation
nodes j in the output layer, where ¢ = 1,2,...,m and
Jj=1,2,...,1. The output y;(n) of neuron j at time n,
produced in response to the set of inputs is given by

yi(n) =Y wji(n)zi(n) (16)

The synaptic weight w;(n) is adapted in accordance
with a generalized form of Hebbian learning [12, 14],
and is given by

Awji(n) = nly;(n)zi(n) — y;(n) Z wii (n)yk(n)

A7)
wherei¢ =1,2,...,mandj =1,2,...,land Awj;(n)
is the change applied to the synaptic weight wj;(n) at
time n and 7 is the learning rate parameter. GHA is
an indirect method in which correlations between fea-
tures of input vectors are estimated through the accu-
mulation of repeated weight changes during training,
without computing the covariance matrix of input data.
It results in significant computational saving specially
if the dimensionality m of the input data is very large
and the required number of the eigenvectors associated



with the 1 largest eigenvalues of the covariance matrix
is a small fraction of m. In order to perform GHA, we
initialize the weights of the networks, w;, to small ran-
dom values at time n = 1. Assign a small positive
value to learning rate parameter . Then forn = 1,
j=1,2,...,landi =1,2,...,m, compute

yj(n) =20 wji(n)zi(n) and

Awji(n) = nlyj(n)zi(n) —y;(n) Y=y wki(n)yk (n)]
where z;(n) is the ith component of the m-by-1 in-
put vector z(n) and 1 is the desired number of princi-
pal components. Increment n by 1, compute y;(n) and
Awj;(n) until weights reach their steady-state values.

4 Data Compression/Dimensionality Reduction

and Face Recognition using SVD, ED and
Hebbian PCA

4.1 Data Compression/Dimensionality Reduction

Data compression deals with the problem of reducing
the amount the data required to represent the image [3].
It is of two types, lossless and lossy data compression.
Lossless data compression algorithms allow the exact
original data to be reproduced from the compressed data
whereas with lossy data compression algorithms the ex-
act reconstruction of original data is not obtained. Run
Length Encoding, Huffman Coding, Shannon-Fano Cod-
ing are some examples of lossless data compression tech-
niques. Discrete Cosine Transform, Wavelet Compres-
sion, Vector Quantization are among the lossy compres-
sion techniques. The technique presented in this paper
belongs to lossy data compression algorithms category.
The advantage of lossy methods over lossless methods
is that in some cases a lossy method can produce a much
smaller compressed file than any other lossless method,
while still satisfying the requirements of the applica-
tion.

In the previous section we saw that the number of
nonzero singular values in Singular Value Decomposi-
tion (SVD) is equal to the rank of the matrix A. In many
applications, these singular values decrease quickly as
the rank of the matrix is increased. We can use the rank
of the matrix to remove the redundant information.

A=USVT =3 giuv] (18)
i=1

This can be expanded and written as

A = oyuiv] +oausvd ++ -+ opu vl +0ur vl +
Dropping the terms where the singular values are zeros,
we get

A= alulvlT + Uzuzvg + -4 aruTv,,T (19)

Further approximation can be done by dropping more
singular terms. We know that the singular values are
arranged in descending order. The last terms will have
least effect on the overall image. We can have first d
terms and drop (r-d) sum terms to get A4. The storage
will then be

STR=dx (n+m+1) (20)

The compression ratio for the image is
CR=nxm/STR = (nxm)/dx(n+m+1) (21)

Further the quality of the compressed image is com-
puted in terms of the Mean Square Error

n m

MSE = l/anZ(fA(m,y) — fa,(z,y)) (22)

y=1lz=1

The dimensionality reduction in Eigen Decomposi-
tion PCA and Hebbian Neural Network based PCA, is
obtained by reducing the number of features needed for
effective data representation. We know that Y = VTX,
premultiply both sides of Y = V7' X by the matrix V
and then using the fact that V7 = V~!, we may recon-
struct the original data which is as follows

p
X=VY = Zym (23)

i=1

The number of features is reduced by discarding those
linear combinations of (23) that have small eigenvalues
and retain those terms that have large eigenvalues. Let
A1, A2, ..., A denote the largest 1 eigenvalues of the co-
variance matrix C. The approximation of original data
is done by retaining the first | terms and truncating those

after 1 terms.
l
X =) g
i=1

and the Mean Square Error (MSE) between the actual
data X and the approximation X is calculated using
(22). Face images have been considered for data com-
pression and dimensionality reduction.

For SVD, when applied to face image for data com-
pression, get the matrices U, S and V. Take suitable
value d for the compression. Calculate the compression
ratio and the quality of the image (MSE).

For ED, gather a set of face images x; where i =
1,2,...,p in the form of matrix where each column
represents one image we get after vertical concatena-
tion. Compute the mean Z and subtract it to obtain
x; — . Compute the covariance matrix C;; = (x; —

(24)



7)(z; — 2)T. Determine the eigenvectors and eigenval-
ues of covariance matrix C such that CV = AV where
A = diag(A1, Az, ..., Ap), a diagonal matrix defined by
the eigenvalues of matrix C and V' = (V4,V5,...,V})
be the associated eigenvectors. Sort the eigenvalues
and corresponding eigenvectors such that Ay > Ay >
;005> Ap. Select the first I < p eigenvectors and
discard p — [ eigenvectors to find the data in the new
directions.

In Hebbian Neural Network based PCA, after gath-
ering a set of face images x; and computing the mean &
to obtain x; —Z, we initialize the weights of the network,
w;j, to small random values. The size of the weight ma-
trix depends on the total number of face images and the
number of eigenvectors to be retained for reconstruc-
tion. The Generalized Hebbian Algorithm of (17) will
give us a matrix whose columns are the first d eigenvec-
tors ordered by the decreasing eigenvalues.

4.2 Face Recognition

Face Recognition[7,10] has always been a hot research
area. It has drawn the attention of many researchers
because of its practical applications. Security systems,
criminal identification, human-computer interaction, en-
tertainment, and video surveillance (etc.) are among
the most common applications that fascinated many re-
searchers. For face recognition, there are broadly two
categories namely i) Holistic or Appearance Based tech-
niques that use the whole face as the input to recog-
nition system, and ii) Feature Based techniques where
the local features such as the eyes, and local statistics
are fed to the recognition system. Principal Component
Analysis has been successfully used for face recogni-
tion.

Consider a set of N sample images I'1,I's,..., 'y
taking values in an n-dimensional image space. Assume
each face image has m x n = M pixels, and is repre-
sented as a M x 1 column vector. A training set I" with
N number of face images of known individuals forms
an M x N matrix.

=[T,Ts,...,TnN] (25)
1) is the mean image of all the samples.
N
Y =1/N Z T; (26)
i=1

subtract ¢ from all sample images to get a new set F' =
[¢1, P2, .., dN] where ¢; = I'; — ). Principal Compo-
nent Analysis is applied to the new set F. We get a set of
N orthonormal vectors V;. The kth vector V}, is chosen

such that N
M =1/NY (Vi6:)? 27)
i=1
is maximum subject to
T _ ]., lf] = k
ViV _{ 0, otherwise (28)

The vectors Vi and the scalars Ay are the eigenvectors
and the eigenvalues, respectively, of the covariance ma-
trix

N

C=1/NY ¢ip} =FF" (29)
k=1

Only d number of eigenvectors V' = [V, V5, ..., V4] of

C is chosen that correspond to the d largest eigenvalues

[)‘17 )‘27 ey )‘d]

For SVD, we compute singular value decomposi-
tion of F. This process gives us three matrices U, S and
V. Choose first d columns of the matrix U that are the
eigenvectors of matrix FFT.

For Hebbian Neural Network PCA, initialize the we-
ights of the network, w;;, to small random values. The
size of the weight matrix W depends on the total num-
ber of face images and the number of eigenvectors (say
d) to be retained. The Generalized Hebbian Algorithm
of (17) will give us a matrix whose columns are the first
d eigenvectors ordered by the decreasing eigenvalues.

Thus for performing the dimensionality reduction
on input data, we need to compute the eigenvalues and
eigenvectors and then project the data orthogonally onto
the subspace spanned by the eigenvectors belonging to
the dominant eigenvalues and leaving those that possess
less information.

For a given set of eigenvectors, [V1,V2,...,Vy] in
ED, [U1,Us,...,Uyg] of U in SVD and the d columns
of the matrix (F x WT), in Hebbian Neural Network
PCA, project the new image f¢,, onto the eigenvectors
to give [7]

wg = Ul frew for k=1,2,...,d (30)
The wy, form a weight distribution vector
w = [w1,wa, . .., w4 31

Euclidean norm has been used as the measure of sim-
ilarity. The test image (new image) weight vector is
matched with those of known (training) images. A ma-
tch is said to occur if the image, out of known im-
ages, having the minimum Euclidean distance among
all known images, is of the same class to which the test
image belongs to. The flowchart for face recognition is
shown in figure 5.
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Figure 5: Flow chart of face recognition

5 Experimental Results and Discussion

We use ORL face database for experimentation in this
paper [11]. It is composed of 400 images with each im-
age having a resolution 92x112. As many as 40 differ-
ent persons (subjects/classes) are contained in the data-
base and each person has his/her 10 different images.
Figure 6 shows some sample images of this database.
These images vary in terms of facial expressions and
facial details. These images have been taken at differ-
ent times, varying lighting slightly, facial expressions
(open/close eyes, smiling/no-smiling), and facial details
(glasses/ no-glasses). All the images are taken against
a dark homogeneous background and the subjects are
in up-right, front position with slight left right rota-
tion. For computational simplicity, the original image
92x112 was resized to 60x60 prior to further process-
ing of the face image.

5.1 Data Compression/Dimensionality Reduction

The first experiment was performed to show the results
of image reconstruction for different singular values.
Figure 7 shows the original image. Figure 8 shows the
graph between singular values and the number of com-
ponents. It is not easy to determine the number of com-
ponents d to be used. We can use energy fraction to se-
lect the number of components. The other way to deter-
mine the number of components could be the character-
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Figure 6: Some images of ORL database
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Figure 7: Original image
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Figure 8: Singular values (a) first 15 components (b) all components



istics of the singular values. When the singular values
stabilize, the remaining components are usually are of
no use as they are contaminated by the noise. In figure
8, we see that from the component number 9 and above,
the singular values are almost constant, indicating that
d should range 8 to 10.

The image was reconstructed using different num-
ber (d) of singular values. The reconstructed images are
shown in figure 9. Figure 9 clearly shows that for less

Figure 9: Reconstructed image for different d values

value of d, the images are blurry.The quality increases
and the images are close to the original as the d value
increases. Table 1 shows the storage space and the error
measures for the face image. Table 1 shows that as d is

Table 1: Results for Image Compression

| d | MSE | STR(Bytes) | CR |
Original - 3600 -
05 1.952900 0605 5.9507
10 0.780850 1210 29752
15 0.346040 1815 1.9835
20 0.158330 2420 1.7876
25 0.077049 3025 1.1901

increased, it results in lesser value of MSE and hence
we get better quality image. The reconstructed image is
more close to the original one but at the same time the
storage space is increased. In order to achieve better
compression ratio, the value of d must be low. From ta-
ble 1 we see that the compression ratio is 1.1901 when d
=25, the reconstructed image is closer to original image
as the error is 0.077049.

In the next experiment, 5 out of total of 10 images
were taken from each class for a total of 20 classes.
PCA was applied on the set of 100 images (matrix form,
one column representing one image). Figure 10 shows a
graph between the eigenvalues and the number of eigen-
vectors. Again, in order to select the number of eigen-
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1 4 7 10013 16 18 22 25 28
Ho of Eigenvectors (First Thirty)
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1 11 21 31 41 5 61 71 81 9
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[

Figure 10: Eigenvalues (a) first 30 components (b) all components

vectors, we need to calculate either the total variance we
want to retain or we need to refer to the graph shown in
figure 10. The graph shows the plot of jth eigenvalue
corresponding to the jth eigenvector. The number of
eigenvectors d is chosen to be the point at which the
line on the graph is steep to the left but not steep to the
right. In the figure 10 we see that such point could be
the component number 12. The eigenvalues are almost
constant beyond 12, indicating that d should be 12. Ta-
ble 2 shows the Total Variance Contribution Rate corre-
sponding to the number of eigenvalues. It is calculated

as d
Ei: Ai
JAd) = pil)\

i=1 7\
where p is the total number of eigenvalues and d is the
number of selected eigenvalues. From Table 2, it is
clear that if we consider number of eigenvalues as 10,
then TVCR value is 63.8 percent and if the number of
eigenvalues is 80 then TVCR value is 98.6 percent. De-
pending upon the value of the TVCR to be retained, we
can select the number of eigenvectors.

TVCR(AL, As, - - 32)



Table 2: TVCR for Different Number of Eigenvalues

No. of Eigvalues 90 80 60 40 20 10

TVCR 99.5 | 98.6 | 956 | 90.3 | 78.6 | 63.8

The experiment was performed for reconstruction of
the images. Mean Square Error (MSE) value was deter-
mined for three different sets (1 image, 3 images, 5 im-
ages/class) for a total of 20 classes. Figure 11 shows the
reconstructed image for a set of 5 training images for
first 20 classes. Upon applying PCA, we get a total of
as many as 100 eigenvectors for the set of images under
consideration. The images have been reconstructed for
different number of eigenvectors. MSE value for differ-

Figure 11: Reconstructed image for different number of eigenvectors

ent sets of training images for a total of 20 classes is as
shown in figure 12. The results show that Mean Square

MSE Value
|—¢—1image"class —8— 2 images/class —&— 5 images/class|
g
£ 5|
418
0 T T T ¥

o 20 40 B0 g0 100
Humber of eigenvectors (%)

Figure 12: MSE for different number of eigenvectors

Error between the original and reconstructed image de-
creases as the number of eigenvectors increase. The re-
constructed image approaches more towards the origi-
nal one. Further if there is more than one image per
class in the training set of images, it results in reduction
of error as compared to that we have when single image
per class is used.

The next experiment was performed for Hebbian N-
eural Network PCA. Here also MSE between the orig-
inal and reconstructed image was determined for the
above said three sets of training images. Prior to find-
ing the MSE value, we took a set of 10 classes, 5 im-
ages per class and it was trained. A particular image
was reconstructed using 50 percent of the total number
of eigenvectors and MSE between the original and the
reconstructed image was found for different values of
the learning rate parameter. This experiment was per-
formed to find the value of the learning rate for which
the error was minimum. The number of iterations was
taken as 100. From figure 13, it is clear that the MSE

MSE vs Learning Rate
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Figure 13: MSE for different values of n

value is minimum for n = 0.0010. A similar experi-
ment was performed to see the effect of number of iter-
ations on the MSE value for learning rate 0.0010. The
results are shown in figure 14. Figure 14 shows that

MSE vs No. of lterations
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Figure 14: MSE for different values of iterations

as the number of iterations is increased beyond 100, it
results in very little change in the MSE value. So the
number of iterations was kept as 200 for further experi-
mentation.

This experimentation included the reconstruction of
the image. The neural network considered a set of 5
training images for first 20 classes for a total of 100
neurons at the input layers. The images were recon-
structed considering 20, 40, 60, and 80 neurons at the
output layer and hence the number of eigenvectors re-
spectively. Figure 15 shows the reconstructed images.



Hebbian Neural Network was also trained for three dif-

Figure 15: Reconstructed image for different numbers of eigenvec-
tors

ferent sets (1 image, 3 images, 5 images/class) for a to-
tal of 20 classes with the number of neurons at the out-
put layer as 10, 20, 30, 40, 50, 60, 70, 80 and 90 percent
of the total number of eigenvectors respectively. Figure
16 shows the MSE value for the experiment. The re-
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Figure 16: MSE for different number of eigenvectors

sults show that if only one image per class is used for
training the network, the reconstruction of the image
results in lesser error as the number of eigenvectors in-
crease. But this is not true when the number of images
per class is increased for training. It increases the MSE
value as the number of eigenvectors increase. Whereas
keeping one image per class and increasing the number
of classes does indicate that as the number of eigenvec-
tors increase, the error is reduced as shown in figure 17.

5.2 Face Recognition

A set of five images from each class for total of 10, 20
and 40 classes was used as the training images and a set
of remaining non overlapping five images was used for
testing. Figure 18 shows the set of training images and
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Figure 17: MSE for different number of eigenvectors

test images. The recognition rate was measured for 20,
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Figure 18: (a) Training images (b) Test images

40, 60 and 80 percent of the total number of eigenvec-
tors. The number of classes was varied from 10 to 20
to 40. We get same results with PCA-ED or PCA-SVD
method. But the results differ for PCA- Hebbian Neu-
ral Network. These are as shown in figures 19 and 20
respectively.
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Figure 19: Recognition rate for different number of eigenvectors for
PCA-ED/PCA-SVD

As we see (figures 19 and 20) that the recognition
rate decreases as the number of classes are increased.
This may be due to the fact that as the number of images
(classes) increase, there are more chances of image be-
ing wrongly recognized because of more similar faces.
It has also been observed that for 10 classes, the recog-
nition rate is almost same be it PCA using ED/SVD or
PCA for Hebbian Neural Network method. Moreover
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Figure 20: Recognition rate for different number of eigenvectors for
PCA-Hebbian NN

for 40 classes, the recognition rate remains almost same
for different number of eigenvectors though it is less in
PCA for Hebbian Neural Network method than that of
PCA using ED/SVD.

6 Conclusions

This paper presents a review of various methods, Eigen
Decomposition, Singular Value Decomposition and He-
bbian Neural Network to perform Principal Component
Analysis. These methods have been applied to data
compression/dimensionality reduction and face recog-
nition. Eigen Decomposition and Singular Value De-
composition are related techniques. SVD has the nu-
merical advantage over ED. For a prescribed accuracy
of computation, SVD procedure requires half the nu-
merical precision of the ED procedure. ED and SVD
are known as batch methods of computations. The He-
bbian-based Neural Network is of adaptive method of
computation. The results shows that as the number of
singular values are increased, it results in lesser value of
MSE and hence we get better quality image. The recon-
structed image is more close to the original one but at
the same time the storage space is increased. The results
(table 1) reveal that the compression ratio is 1.1901 wh-
en d = 25, the reconstructed image is closer to original
image as the error is 0.077049. It gives a very good
compression ratio (5.9507) when d = 5 only but the er-
ror (1.952900) is more. The results also show that the
two methods, ED and Hebbian Neural Network yield
almost same output in terms of MSE if only one image
per class is considered. But as the number of images per
class increase, ED performs better than Hebbian Neu-
ral Network method. So far as recognition rate is con-
cerned, we get the same results irrespective of which of
the two methods (ED or SVD) is used. It has also been
observed that for 10 classes, the recognition rate is al-
most same be it PCA using ED/SVD or PCA for Heb-
bian Neural Network method. Moreover for 40 classes,
the recognition rate remains almost same for different
number of eigenvectors though it is less in PCA for

Hebbian Neural Network method than that of PCA us-
ing ED/SVD.
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