
A Dynamic Biased Random Sampling Scheme for Scalable and

Reliable Grid Networks

O. A. RAHMEH1

P. JOHNSON2

A. TALEB-BENDIAB3

(1,2)School of Engineering, Liverpool John Moores University, L3 3AF, Liverpool, UK
3School of Computing and Mathematical Sciences, Liverpool John Moores University, L3 3AF, Liverpool, UK

(1,2,3)(enroabur,p.johnson,a.talebbendiab)@livjm.ac.uk

Abstract. The growth in computer and networking technologies over the past decades produced new

type of collaborative computing environment called Grid Network. Grid is a parallel and distributed

computing network system that possesses the ability to achieve a higher throughput computing by taking

advantage of many computing resources available in the network. Therefore, to achieve a scalable and

reliable Grid network system, the load needs to be efficiently distributed among the resources accessible

on the network. In this paper, we present a distributed and scalable load balancing framework for Grid

networks using biased random sampling. The generated network system is self-organized and depends

only on local information for load distribution and resource discovery. We demonstrate that introducing

a geographic awareness factor in the random walk sampling can reduce the effects of communication

latency in the Grid network environment. Simulation results show that the generated network system

provides an effective, scalable, and reliable load balancing scheme for the distributed resources available

on Grid networks.

Keywords: Load balance, Grid, Modeling, Simulations, Complex Networks, Random algorithms.

(Received March 17, 2008 / Accepted August 25, 2008)

1 Introduction

For decades, numerous methods have been developed

to maximize the use of networked computers for large-

scale computing, and several protocols have been de-

veloped to efficiently utilize the resources within a dis-

tributed computing system. All these developments in

technology have led to the possibility of using wide-

area distributed computers for solving large-scale prob-

lems. Large-scale computing networks can provide the

ability to achieve higher throughput computing by tak-

ing advantage of many networked computers that simu-

lates a virtual computer architecture environment where

process execution is distributed among the computers in

the network. An example of such network system is the

Grid Network [7]. Grid networks use the resources of

many computers connected within the network to solve

large-scale computational problems. With Grid’s huge

number of distributed resources, an effective load bal-

ancing paradigm to distribute the load among the avail-

able computers in the network can lead to improvement

in the overall system performance. When one node is

overwhelmed by work, it can make use of unused com-

puting power in the network. Therefore, implement-

ing and integrating an efficient load distribution and re-

source discovery protocol will have an essential role in

the self-configuration and self-optimization character-

istics of Grid networks. One of the essential features

of the Grid networks is that the resources accessible in

the network are distributed geographically. However,

one of the fundamental challenges to run Grid appli-

cations across geographically distributed computational

resources is overcoming the effects of the latency be-



tween them. While high performance clusters and su-

percomputers can deliver data to applications with la-

tencies of few microseconds, latency across the wide

area networks is measured typically in milliseconds.

Therefore, reducing the effects of communication la-

tency is critical for achieving good performance with

Grid applications that involve significant amounts of

communication. In this paper, an efficient biased ran-

dom sampling (BRS) algorithm is shown to reduce com-

munication latency in Grid networks and thus enabling

the network to achieve load balancing which is scalable

and reliable.

This paper is organized as follows. Section 2 re-

views the related work on load balancing. Section 3 de-

scribes the proposed load balancing mechanism and the

stochastic network system generated. Section 4 presents

the mathematical analysis of the network system and

provides a stationary distribution solution. Section 5

provides a description of network and simulation imple-

mentation. Finally, simulation results and conclusion

have been discussed in section 6 and section 7 respec-

tively.

2 Related work

Due to the critical role played by the need for load bal-

ancing in high-performance computing, there exists a

large amount of research addressing various load bal-

ancing techniques, and numerous algorithms have been

proposed to address this issue [5][12][14][16]. The uses

of polling, agent-based methods, global random choice,

randomized algorithms, and local diffusion methods have

produced great advances in the field of load balancing

[8][15][17][19][20]. However, most of these methods

depend on central server techniques, which can be ef-

ficient in small-scale networks or on particular proper-

ties of load distribution in larger networks. As central

servers require high computing power and large band-

width, network systems that depend on such techniques

are un-scalable [10][11]. Besides, reliability is another

concern since the central server is a single point of fail-

ure.

Recently, a new field called Complex Networks The-

ory emerged, which has deep roots in statistical and

non-linear physics. Complex networks theory is the

field where the structural and dynamic properties of the

networks are analyzed. Statistical models of large sys-

tems will let the systems detect or predict overall per-

formance problems from the stream of data from indi-

vidual devices.

Complex networks have been described using Graph

Theory [6][4]. Random graph theory was the simplest

theory to describe complex network. Pául Erdős and

Alfréd Rényi were the first to study Random Graphs

[6]. According to the Erdős-Rényi (ER) model, we

start with N nodes and connect every pair of nodes with

probability p. At the end of this process, the graph will

have approximately pN(N-1)/2 edges distributed rando-

mly. Therefore, the probability of having a graph with

N nodes and k edges follows a Binomial distribution,

and it is given by

PN,k,p (G) = pk(1 − p)
N(N−1)

2 −k (1)

In a large random graph, there are several nodes

with the same degree, and the number of nodes with

a given degree can be calculated. Accordingly, in a ran-

dom graph with connection probability p, the number

of nodes with degree k is

P (k) = Ck
N−1p

k(1 − p)N−1−k (2)

where Ck
N−1 is the probability space in which k edges

are chosen from the total N − 1 number of edges.

Thus, in ER model, the probability that an ER graph

has more or less than the expected number of edges (k)

decreases exponentially. This binomial distribution im-

plies that each node will have a degree, which is close to

the average degree, and that the number of nodes with

much higher or much lower degree than average is very

small. Thus, the probability that any node has the ex-

pected number of edges is the same, which gives us load

balancing.

3 Proposed load balancing scheme

For efficient usage of resources in Grid networks, one

would want to distribute processes as evenly as possi-

ble, so that no server is more loaded than the others.

Therefore, we need to create a dynamical network sys-

tem that gives balanced load distribution and efficient

resource discovery.

In order to design such dynamic system, we have to

analyze the degree distribution of nodes in a stochastic

network system with a fixed number of nodes and fixed

average number of edges. A node’s in-degree refers to

the free resources of the node. The job assignment and

resource updating processes required for load balancing

are encoded in the network structure. Therefore, when a

node receives a new job, it will remove one of its edges

to decrease its in-degree.

Similarly, when the node completes a job, it will

add an edge to itself to increase its in-degree. In steady

state, the rate at which jobs arrive would equal the rate

at which jobs are completed, and hence the underlying

network has a fixed average number of edges. Hence,



the generated graph using this protocol will be a strongly

connected directed graph.

The increment and decrement of node’s in-degree is

performed via Biased Random Sampling (BRS). Ran-

dom sampling is the process whereby the nodes in the

network are randomly picked up with equal probabil-

ity. The sampling starts at some fixed node, and at each

step, it moves to a neighbor of the current node, which

is chosen randomly according to an arbitrary distribu-

tion.

Similar techniques have been used for load balanc-

ing which produced some significant results [15][3].

However, the proposed scheme has an advantage over

the previous methods in that the network structure is dy-

namically changed to efficiently distribute the load, and

the load balancing process will not require any moni-

toring mechanisms since it is encoded in the network

structure. Moreover, the number of sampling steps will

be limited to a finite length, and the nodes’ selection

will be based on a predefined criteria rather than the last

node in the walk. In this paper, biased random sampling

will be used where nodes’ selection will depend on the

free resources (in-degree) available for each node.

Lovász and Winkler [13] mentioned that in undi-

rected graph, if the random walk was long enough, then

in stationary state, the probability that the walk will

stop at a specific node is proportional to its stationary

in-degree distribution. We found that this can also be

applied to our directed graphs since the underlying net-

work has fixed average number of edges. Therefore,

biased random sampling technique will be used in our

network to provide dynamic load balancing, and the in-

sertion and deletion strategy of edges assures that the

load will be distributed equally across all the nodes in

the network.

4 Load distribution analysis

The proposed load distribution mechanism is difficult

to analyze mathematically due to the dynamic nature of

the network and the way the biased random sampling

works. Therefore, the analytical analysis was simpli-

fied by restricting the load distribution mechanism to

use a simple random sampling scheme that selects the

last node in the walk, rather than using the biased ran-

dom sampling [18]. A network system with N nodes

is considered for this work, and it is assumed that all

the nodes in the network have similar capabilities and

jobs can be executed in any node. Suppose pk is the

probability that a node has k edges. Then, the average

number of edges, E, in the network is

E = N ·
∑

kpk (3)

At each step, a randomly chosen edge will be deleted,

and a randomly chosen edge will be inserted. Thus, the

total numbers of edges inserted and deleted in the net-

work are both random variables that are selected to have

a fixed average number of edges. Let D be the average

number of deleted edges in the network, and let M be

the maximum number of edges a node can have. To

make our system compatible with ER random graphs, it

is assumed that each node can have up to N − 1 edges,

thus M≤ N-1. It should be noted that this assumption

is not a limitation of the mechanism, but it is only to

show that this system is designed for large-scale net-

works. The expected number of edges in the network is

given by

E = NM − D (4)

Since the probability that a random sampling with a

sufficient length will stop at a specific node is propor-

tional to its stationary in-degree, if a node’s edges have

been deleted uniformly randomly, then the probability

that the node will lose one or more of its edges is pro-

portional to its in-degree. Hence, the rate at which the

in-degree of a specific node will decrease is given by

Rk =
k

E
=

k

NM − D
(5)

Similarly, the probability that the in-degree of a cer-

tain node will increase is proportional to the number

of deleted edges from this node. Thus, the node’s in-

degree will increase at a rate given by

Sk =
M − k

D
(6)

And since the average number of edges is assumed

to be fixed, we can describe this network as a Markov

Chain [9] with insertion and deletion rates given by

Equations (5) and (6). In Markov Chain, the in-degree

of a node is represented as a state of chain where the

probabilitiesof going from one state to another are given

by Rk and Sk.

By mathematically analyzing the above insertion and

deletion rates, the probability pk that a node has k edges

is given by

pk =
Sk−1

Rk

pk−1 =
Sk−1Sk−2 . . .S0

RkRk−1 · · ·R1
p0 (7)

From the above equation, we can see that in steady

state, the rate at which the node’s in-degree increases

will equal the rate at which node’s in-degree decreases.

Therefore, our network system has a fixed expected num-

ber of edges.



Since the total probability Pk is equal to one, and

by inserting equations (5) and (6) into equation (7), and

by using the Binomial Expansion Theorem [1] to sim-

plify the equations, we will find that pk is binomially

distributed and it is given by

pk =

(

M

k

)

(

NM−D
D

)k (

D
NM

)M

=

(

M

k

)

(

1 − D
NM

)k (

D
NM

)M−k
(8)

This degree distribution implies that the proposed

network system is equivalent to the degree distribution

of ER random network as illustrated in Equation (2) in

Section 2. These analytical results show that the sta-

tionary distribution is compatible with ER random net-

works. Thus, the proposed algorithm gives nearly op-

timal load distribution by creating almost regular net-

work system where each node’s in-degree refers to its

free resources.

The performance of load balancing technique has

been improved by assigning the new job to the least

loaded (highest in-degree) node in the walk, instead of

the last node in the walk. When the node with the most

free resources on a walk is preferred to receive the new

job, its resources must be greater than or equal to the

resource of the last node on the random walk. There-

fore, we can expect that it will have the same scalabil-

ity as the standard random walk, and the balancing per-

formance is much improved as shown in the following

simulation results.

5 Network implementation and simulation

methodology

The proposed network system can be easily implemented

in Grid networks. We can implement it on top of Grid

network as a virtual network [2], or, we can integrate

the proposed load balancing scheme inside Grid mid-

dleware [7]. For example, this network system can be

built directly on top of any of the physical transport lay-

ers and use the Grid Network as its underlying network.

Thus, the network does not need to consist of phys-

ical links between nodes; the edges can be a routing

table that gives the actual physical links or the possi-

ble routes between the nodes in the underlying physical

layer. Furthermore, the network can be implemented by

using small and fast transport protocols sockets that can

be used to represent the edges of the network with min-

imum overhead. Each node will have local information

about its status (i.e. its free resources available), which

can be used for resource allocation and load distribu-

tion.

For network simulations, we will create a network

system with N nodes, and the number of edges in each

node will be proportional to its free resources. Each

node in the network is a computer with power equal to

its maximum degree. One unit of power can process a

unit of load in each unit of time. Two types of simu-

lation experiments were carried out. The first experi-

ment considered the CPU power alone as the key factor

for load balancing. In the second experiment, the geo-

graphical distance (communication delay) is added as a

second factor for load balancing.

Nodes’ edges are added or removed to keep the in-

degree of a node proportional to its free resources. Hence,

when a node initiates a new job, it randomly samples

the network to assign the new job to the node that has

the highest in-degree. A new edge from the node that

initiated the random sampling to the node that has the

largest in-degree is created, and one of its edges will

be randomly deleted to show that its load has increased

and its free resources have decreased.

Similarly, when a job is executed, the in-degree of

the node that executed the job is increased to show that

its load decreased and its free resources increased. This

is done by randomly sampling the network, and then, a

new edge will be created to connect it to the last node

in the random sampling. A node can process a unit of

job at each time step and the number of jobs that will

be created or completed is a random variable with Pois-

son distribution. Simulation timing unit (iteration) is

the time required to send a message or a data packet

from one node to another node.

The edge insertion and deletion process described

above will simulate the change in the workload of the

network, and the amount of free resources available for

the nodes will show the job distribution status of the

network. Simulation results will be used to validate the

reliability and scalability of the proposed load balanc-

ing mechanism.

6 Evaluation and simulation results

We used extensive simulation results with various pa-

rameters to evaluate our load balancing scheme, and to

verify that the proposed network system generates al-

most regular graphs and matches the analytical results.

The simulation results are discussed in this section.

The steady state in-degree distribution and the in-

degree standard deviation have been used to assess the

load balancing performance. It is known that regular

graphs have zero standard deviation and zero variance

since every node in the graph has the same in-degree.

However, a zero standard deviation is only possible if

the graph has an even number of nodes. Another bal-



anced network is a network where half of its nodes have

the expected in-degree <k>, and the other half have in-

degree <k+1> or <k-1>. In this case, the in-degree

standard deviation is +0.5 and −0.5 respectively (i.e.

the variance is equal to 0.25). Thus, the network is

also considered a balanced network when its variance

is close to 0.25.

In this section, simulation results have been used to

analyze and discuss the performance of the load balanc-

ing algorithm and to determine the length of random

sampling required to achieve the required load balanc-

ing. Then, we evaluate the scalability and reliability of

the algorithm under several conditions. We also study

the effect of modifying the random sampling by includ-

ing localization information on the average communi-

cation latency of the network.

6.1 The load balancing performance

Here, we discuss the performance of proposed load bal-

ancing mechanism under ideal conditions, where all nodes

have the same resources. The simulation results con-

firm that the proposed network dynamic creates ER ran-

dom networks. As can be seen in Figure 1, the simu-

lation show that the steady in-degree distributions are

very close to the binomial distribution described in sec-

tion 4. The network under consideration for this simu-

lation has N=512 nodes, with maximum in-degree N-1.

Thus, the random sampling technique can be used to

efficiently distribute the load between the nodes.

Figure 2 shows the simulation results for the in-degree

distribution of the network plotted as the network evolved

�

����

����

����

����

����

����

���	

���


� �� �� �� 
� ��� ���

�

����

��������������

������������������

��������������

������������������

�

Figure 1: Simulation results of the steady state in-degree distribu-

tions compared with the predicted binomial distribution for networks

with N =512.

�

����

���

����

���

����

� 	� �� ��

�

����

�

�

����

���

����

���

����

� 	� �� ��
�

����

�

����

���

����

���

����

� 	� �� ��
�

����

�

�������

�������

�����	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�

�
��
�

Figure 2: The in-degree distribution plotted as the network evolves

over different time slots (T).

through different time slots (T ), which shows the pro-

cess of reaching the load balancing. Here the time dy-

namics of the in-degree distributions of the network can

be clearly seen. In Figure 2.a, the network is initial-

ized in a completely random state with variance approx.

46.3. Then, the network starts reshaping itself by bal-

ancing the load distribution among the nodes, and in-

degree variance decreases to approx. 11.4 at T = 2500;

see Figure 2.b. Over time, the network settles down to

a nearly regular graph with variance approx. 0.32 as

seen in Figure 2.c. Thus, when all the nodes have the

same capabilities, the network will be almost a regular

graph.



We extended our simulations to analyze our load

balancing technique under several parameters and con-

ditions. For example, to study the performance of the

algorithm under different network loads, we examined

our network under various load sizes. As can be seen

from Figure 3, whether the network is overloaded or is

nearly idle, the load balancing performance is almost

identical. Thus, the algorithm is effective for networks

with different network loads.

Figure 4 shows the state of the in-degree variance of

our network system with time as the network evolves.

The network is initialized randomly; for example, it

starts with an in-degree variance of approximately 42.6.

Then, the network starts reshaping with time by adding

and deleting nodes’ edges to reach an in-degree vari-

ance value of around 63.3. Then, the network starts

to settle down and the variance rapidly decreases un-

til the network becomes almost regular with in-degree

variance close to 0.38.

6.2 Scalability

The simulation results as depicted in Figures 5 and 6

show that the proposed algorithm is scalable and that

the generation of regular graphs using biased random

sampling is effective for various network sizes. Simu-

lations have been carried out for growing values of net-

work size and results presented here to demonstrate the

true scalability of the algorithm.

As we can see from theses graphs, the performance

of the algorithm scales well specially for large network

sizes. The figures show in-degree distributions are for

graphs with N = 512 and N = 8192 respectively.

In addition, by increasing the network size N , the in-

degree distribution is closer to the binomial distribution

of regular graphs, which indicate that this algorithm is

designed for large-scale networks. Simulations have

been carried out not only at discrete values of differ-

ent network sizes, but also to capture the dynamics of

network growth. So, this algorithm is found suitable for

growing networks.

6.3 Random sampling length

Intensive simulations have been carried out to observe

the number of steps needed to efficiently sample the

network to achieve the required load distribution, and

evaluate its effect on the performance of load balancing

algorithm. We found that the performance of the load

balancing algorithm improves as the sampling length

increases.

As we can see from Figure 7, increasing the sam-

pling length will decrease the in-degree variance. Here

we performed our simulations on a network size of 2048

�

����

����

����

����

����

����

���	

���


����

� �� �� �� �� �� �� 	�
�

����


��������

���������

���������

�

Figure 3: The in-degree distributions under different network loads

and N=1024 and M= 64.

�

��

��

��

��

��

��

��

� ���� ���� ����

����

�
�
�
��
�
	
�

�

Figure 4: The variance of the in-degree distribution vs. Time for a

network with N=2048 and M=48.

�

����

����

����

����

����

����

���	

���


����

���

� �� �� �� �� ��
�

����

�

������

Figure 5: The in-degree distributions for a network with N=512 and

M= 48.



�

����

����

����

����

����

����

���	

���


����

���

� �� �� �� �� ��
�

����

�������

Figure 6: The in-degree distributions for a network with N=8192

and M= 48.

nodes with several values for sampling lengths. We

found that if the random sampling is too short, the load

distribution is not very efficient and the variance is very

high. However, if the random sampling length is 16
or more, then the in-degree variance is small and very

close to 0.25, which is the variance for balanced net-

works.

Moreover, we observed that if the number of steps

used to sample the network is very large, then the decre-

ment in the in-degree variance is very small. This is

also observed in larger network sizes, and the perfor-

mance achieved by using very large sampling steps is

very close to that when random samples of length close

to log(N) are used. Thus, using random samples with

length around log(N)will be sufficient to reach an in-

degree variance very close to the optimal variance, and

this confirms that random sampling technique is very

efficient in load balancing.

6.4 Reliability

To further measure the efficiency and robustness the

proposed load balancing mechanism, we extended our

simulations to investigate how the nodes’ in-degree and

load distribution in the network will be affected by ran-

dom errors at run time. To do this, we have introduced

the possibility of node failure to the network after it has

settled down and distributed the load properly among

the nodes. Node failure can happen due to node errors

or attack. The number of nodes that will fail is a random

variable with Poisson distribution.

Figure 8 shows the in-degree variance with time un-

der this condition. As we can see from the figure, the

variance has increased dramatically when nodes failed.

However, the network starts to heal itself and dynami-

cally reshapes itself by re-distributing the load between

���

�

��

���

� �� �� �� �� �� �� 	� 
�

����������	
���������

�
�
��
�
�
�
�

�

Figure 7: The effect of random sampling length on the in-degree

variance. N=2048 and M=48.

�

�

�

�

�

��

��

��

���� ���� ���� ���� ���� ���� 	���

����

�
�
�
��
�
	
� ��
����
�����


�
����
�����


��
����
�����


�
����
�����


	
����
�����


��
����
�����


Figure 8: The in-degree variance for a network affected by random

attack. N=2048 and M=48.

the nodes. As a result, the in-degree variance will rapidly

decrease and the network will become almost regular

again. Thus, the proposed load balancing scheme is re-

liable and robust to random errors, and it will enable

the network to dynamically and efficiently reorganize

and heal itself against node failure or attack

6.5 Geographic aware load distribution

In reality, load balancing is not restricted to the use of

resources or computing power, but also is influenced by

the geographical distance between the nodes. There-

fore, we included locality information into the random

sampling scheme. Thus, the random walk may prefer a

geographically closer node even if it is not the highest

degree on the walk. We implemented this by adding the

geographical distance and communication delay factors

in sampling the nodes to distribute the load balancing.



��

��

��

��

��

���

���

���

� ��� ��� 	�� 
�� ��� ���
����������	�

�
	

�
�
�

��
�
�
�

��������������
�����������������

�

Figure 9: The average round trip latencies observed for finished jobs

in a network with N=512.

Simulation results show that adding the locality fac-

tor reduced the overall network latency. We performed

two experiments and recorded the average round trip la-

tencies for each executed job; see Figure 9.

As we can see from Figure 9, the latencies observed

in the offered load using geographic-aware scheme are

reduced by at least 22% on average from that observed

for the non-geographic aware scheme. For example,

for networks with 512 nodes distributed with a radius

of 1000km, the overall average latency decreased from

92.58ms to 70.17ms. Moreover, we observed that la-

tencies for individual loads by using this algorithm will

always remain close to the average latency with no big

overshoots (fluctuations), which make the network sta-

ble and reliable and a suitable environment for applica-

tions that require specific quality of service.

Furthermore, to examine the efficiency of adding lo-

cality factor on load balancing, simulation results were

analyses for the network under consideration over sev-

eral sampling lengths, and compared with the original

scheme. As we can see from Figure 10, the Geographic-

aware load balancing requires few additional sampling

steps to achieve the required variance for balanced net-

work. For example, for a network with 2048 nodes,

a random sampling length of 16 was sufficient for the

original scheme, while the Geographic-aware scheme

required a random sampling length of 20 to balance the

load distribution, which still in order of log(N). How-

ever, this increase in number of steps is negligible com-

pared to the size of the network.

6.6 Performance comparison

To evaluate the performance of the proposed biased ran-

dom sampling algorithm, we examined two important

���

�

��

���

� �� �� �� �� �� �� 	� 
�

����������	
���������

�
�
��
�
�
�
�

�������������

����������

�

Figure 10: Comparison of the variance vs. random sampling length

for a network with N=2048.

performance measurements in distributed systems: the

total job throughput achieved and the bandwidth required

by the load distribution mechanism. Then we compared

the performance the biased random sampling scheme

with the performance of the centralized mechanism.

Here, we analyses the bandwidth consumed by the

biased random sampling (BRS) algorithm and we com-

pared it with the centralized algorithm. As we can see

from Figure 11, the central server algorithm requires

less total bandwidth than the biased random sampling

algorithm. In the centralized scheme, the central node

has to know the load status in each of the nodes that in

the network. Therefore, the central node needs to peri-

odically check the status of every node in the network,

and the nodes have to inform the central node if they

finished executing the jobs so that the central node can

update network load status. As a result, the total band-

width consumed by the network is in order of O(N ).

For the biased random sampling algorithm, each node

that initiates a new job must initiate a random sampling

to search for a node to give it the job. And since the ran-

dom walk will be O(logN) length, the total bandwidth

of the walk will be in order of O(logN). Therefore, for

N modes network, the total bandwidth consumed by

the biased random sampling algorithm will be in order

of O(NlogN), which is greater than the total bandwidth

consumed in the centralized scheme.

However, the biased random sampling scheme de-

creases the bandwidth consumed by any node in the

network, as shown in Figure 12. The central node in

the centralized scheme is engaged in all jobs and hand-

shaking transfers. Therefore, the central node consumes

a O(N ) bandwidth. For the biased random sampling al-

gorithm, the bandwidth required for each node depends



on the node in-degree and on the number of jobs it ini-

tiates. Thus, if the N nodes in the network use the to-

tal network bandwidth uniformly, then each node in the

network will consume a bandwidth in order of O(logN).

Although the total bandwidth consumed in the net-

work is a significant performance measurement, the band-

width consumed by any single node in the network can

be a major bottleneck for large-scale networks.

Another important performance criteria in distributed

networks is the system throughput. Throughput is the

number of jobs completed during a specified period of

time. The objective here is to have the maximum amount

of completed jobs (large amount of throughput). There-

fore, we analyses the total throughput achieved by the

biased random sampling algorithm and compared it with

the central system.

Figure 13 show simulation results for the through-

put achieved by both the central load balancing scheme

and the biased random sampling scheme. For the sim-

ulations, the nodes in a network have equal capabili-

ties, and the job sizes and arrival rates are Poisson dis-

tributed. The unit of time (iteration) in this figure is

the time required to send a message or a data packet

from one node to another node. Moreover, we con-

sidered the effect of communication delay on the total

throughput performance by distributing the nodes in a

network of 1000 miles radius area with 10Mbps com-

munication link speed. As we can see from the figure,

the throughput achieved by the biased random sampling

scheme is very close to the throughput achieved by the

optimal centralized scheme. The total throughput for

biased random sampling algorithm is only around 3%

worse than the total throughput of the central algorithm,

with the advantage of being a distributed load balancing

scheme.

To further measure the efficiency of the proposed

biased random sampling mechanism for load balancing

in various situations, the simulations could be extended

to include heterogeneous nodes and cases where jobs

may require certain quality of service (QoS); such as

communications bounded, distance sensitive, and time

bounded services. Examining how these considerations

will affect the efficiency of load balancing is a topic for

future work.

7 Conclusions

In this paper, we proposed an effective, scalable, and

reliable biased random sampling scheme for balancing

the load between the distributed resources available on

Grid networks. We presented a stochastic network sys-

tem, which provides a distributed load balancing scheme

by generating almost regular networks. This network

�

��

��

��

��

���

���

���

���

���

���

� ���� ���� ���� ���� ����� ����� ����� �����

�

�
�
��
��
�
�
	


�
�

�
��
�
�
��
�

	
����

���

�

Figure 11: Simulation results for the total bandwidth consumed in

different network sizes.

�

����

����

����

����

�����

������

� ���� ���� ���� ���� ����� ����� ��		� ��	��

��������	
��

�

�
�
�

�
��
��
�
�
��
�


�����

���

�

Figure 12: Simulation results for the average bandwidth consumed

by single nodes for different network sizes.

�

����

����

����

����

����

����

� ��� ��� ��� ���� ����
����

�
�
��
�
	
�


�
�

	
�

������

�

Figure 13: Figure 13. Simulation results for the average bandwidth

consumed in single nodes for different network sizes.



system is scalable, self-organized, robust, and depends

only on local information for load distribution and re-

source discovery. The developed load balancing scheme

is based on biased random sampling to assign the jobs

and to update resource’s availability. Therefore, load

balancing is achieved without the need to monitor the

nodes for their resources availability. Simulation results

show that the generated network system provides an ef-

fective, scalable, and reliable load balancing paradigm

for Grid networks resources. In addition, we demon-

strated that introducing geographic awareness factor in

the random walk sampling could reduce the effects of

communication latency in Grid network environments.

A number of potential improvements to our load

balancing technique and generalizations of our model

deserve further study. We plan to extend this work to

include heterogeneous nodes and cases where jobs may

require certain QoS services; such as communications

bounded, distance sensitive, and time bounded services.

This will help us in understanding how these situations

will affect on the nodes’ in-degree and load distribution

in the network.

References

[1] Abramowitz, M. and Stegun, I. A. Handbook

of Mathematical Functions with formulas Graphs

and Mathematical Tables. Dover Publications,

NY, 1972.

[2] Adabala, S., Chadha, V., Chawla, P., and

Figueiredo, R. From virtualized resources to vir-

tual computing grids: the in-vigo system. Future

Generation Computer Systems, 6(21), 2005.

[3] Avin, C. and Brito, C. Efficient and robust query

processing in dynamic environments using ran-

dom walk techniques. Proc. of the 3rd Intl. Symp

on Info. Processing in Sensor Networks, 2004.

[4] Bollobás, B. Random Graphs. Academic Press,

London, England, 1985.

[5] Drougas, Y., Repantis, T., and Kalogeraki, V.

Load balancing techniques for distributed stream

processing applications in overlay environments.

ISORC’06, 2006.

[6] Erdös, P. and Rényi, A. On random graphs. Pub-

licationes Mathematicae, 6, 1959.

[7] Foster, I. and Kesselman, K. The Grid: Blueprint

for A Future Computing Infrastructure. Morgan

Kaufmann, 1999.

[8] J. Bustos, D. C. Load balancing: Toward the in-

finite network. 12th Workshop on Job Scheduling

Strategies for Parallel Processing, 2006.

[9] Kleinrock, L. Queueing Systems- Volume I: The-

ory. John Wiley and Sons, NY, 1975.

[10] Kremien, O. and Kramer, J. Methodical analysis

of adaptive load sharing algorithms. IEEE Trans.

On Parallel Distribution System, 6(3), 1992.

[11] Lüling, R. and Monien, B. A dynamic distributed

load balancing algorithm with provable good per-

formance. SPAA 93, 1993.

[12] Lüling, R., Monien, B., and Ramme, F. A study of

dynamic load balancing algorithms. Proceedings

of the Third IEEE SPDP, pages 686–689, 1991.

[13] Lov’asz, L. and Winkler, P. Mixing of random

walks and other diffusions on a graph. surveys

in combinatorics. London Mathematical Society

Lecture Note Series, 1995.

[14] Mitzenmacher, M. The power of two choices in

randomized load balancing. IEEE Transactions

on Parallel Distribution Systems, 10(12), 2001.

[15] Montresor, A., Meling, H., and Babaoglu, O.

Messor: Load-balancing through a swarm of au-

tonomous agents. First Intl. Workshop on Agents

and P2P Computing, 2002.

[16] Murata, Y., Inaba, T., Takizawa, H., and

Kobayashi, H. A distributed and cooperative load

balancing mechanism for large-scale p2p systems.

SAINT-W, 2006.

[17] Oppenheimer, D., Albrecht, J., Patterson, D., and

Vahdat, A. Scalable wide-area resource discovery.

Technical Report, 2004.

[18] Rahmeh, O. A. and Johnson, P. A distributed load

balancing mechanism for large-scale networks.

Intl. Conference on Communications and Com-

puter Applications and Technologies, 2007.

[19] Subramanian, R. and Scherson, I. An analysis of

diffusive load balancing. Proc. of the sixth Annual

ACM Symposium on Parallel Algorithms and Ar-

chitectures, 1994.

[20] Yagoubi, B. and Slimani, Y. Task load balancing

strategy for grid computing. Journal of Computer

Science, 3(3):186–194, 2007.


