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Abstract. The population increase and the growth of buying power of home appliances cause the need
of electricity power to increase every year in Brazil. Electric dispatch is defined as the attribution of
operational values to each generation unit inside a power plant, given some criteria to be fulfilled. In this
context, an optimal dispatch schedule for hydroelectric units in energy plants provides a greater amount
of energy to be generated with less consumption of water. This paper presents an optimization solution to
solve this problem for an actual plant, using Genetic Algorithms. The underlying mathematical modeling
is described in details and practical validation of the proposed approach is performed through simulation
experiments. In the case study, results are analysed and compared to the actual system running in a real
world plant. Finally, the generality of the proposed approach is discussed and possibilities of its use to
solve the same problem to other hydroelectric plants are presented.
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1 Introduction

In Brazil, hydroelectric generation is the main source
of electrical energy. The country presents an array of
electrical generation predominantly renewable and hy-
draulic generation accounts for an amount about 81,7%
of the total supply. According to current estimates from
the brazilian Energy Planning Company - EPC (EPE,
from the portuguese “Empresa de Planejamento En-
ergético”), for a horizon of 10 years, from 2012 until
2021, the average annual growth of total electricity de-
mand in Brazil (which includes retail consumers, free
consumers and auto producers) will average 4.5% per
year over the period [15]. This continuous growth is
considerable and researchers are looking for ways to
improve the efficiency of current production processes
and to account for the forecast needs.

In general, hydroelectric plants use automated con-
trol systems to operate and to manage power generation
processes [2]. Typically such systems receive power de-
mands for specific time intervals and divide this values
by the number of available generation units in a plant.
The electric dispatch is defined as the assignment of
values for each set of operating turbine-generator unit
in the power plant, given some criteria to be met as
the demand for energy to be produced, units operating
limits, etc. In current systems, this demand is equally
distributed among the available units [1]. However,
this distribution not always represents the best operat-
ing points for the units. In other words, the equal dis-
tribution does not guarantee that each generation unit
is operating on its optimal operational point, in terms
of efficiency. This paper proposes a novel mathemati-
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cal model to calculate hydraulic losses in hydroelectric
plants, through statistics nonlinear multivariable regres-
sion techniques, and analyses the use of genetic algo-
rithms (GA) to solve the electric dispatch problem in
the short term. As a case study, this problem is solved
for a large hydroelectric plant operating in Brazil.

The paper is organized as follows: Section 2 de-
tails the problem of electric dispatch and "state-of-the-
art" academic research. Section 3 presents the proposed
mathematical model. Section 4 details the implemented
algorithms. Section 5 shows the case study, experi-
ments and comparative analysis of algorithms and, fi-
nally, Section 6 presents the conclusions regarding the
achieved performance.

2 The Problem of Electric Dispatch

For the purpose of this work, a typical power system
consists of three parts: the generator center, connect-
ing systems and consumer centers. The connecting sys-
tems can be of transmission, subtransmission and dis-
tribution types. In each of these parts, there are operat-
ing limits for the existing electrical equipment in such
a way as to ensure a clear and safe generation of en-
ergy to consumer centers. To ensure power generation
with minimal use of water resources is a big challenge,
when one considers the operational constraints of a hy-
droelectric plant and the connected power system. This
problem can be characterized as an optimization of the
electricity production efficiency or, in other words, to
generate more power with less water.

To solve this problem, it is necessary to model a
hydroelectric plant during its regular operation. This
mathematical modeling must include operational char-
acteristics of the plant under study, and incorporating
inherent hydroelectric penstocks losses in the model is
crucial to obtain practical parameters for describing the
operation of generation units with respect to water con-
sumption and energy generation.

2.1 State of the Art

Finardi [7] proposed a mathematical model to solve
the dispatch problem for hydroelectric generating units.
The developed modeling uses a target amount of wa-
ter being discharged by each unit of the power plant.
Considering the functional non-linearity of the genera-
tion units and the presence of forbidden zones of op-
eration, the proposed approach calculates optimal gen-
eration values for each unit. The results of that work
showed that the adopted model fulfilled the desired op-
timization goal, making it an important reference to this
work.

Dudek [6] used GA as an approach to solve the dis-
patch problem daily energy production. His work took
into account operating costs of turning on and off the
available generating units, showing that the occurrence
of these interrupting events can bring financial damage
to energy production. The proposed algorithm gives a
stable and acceptable (near optimum) solution to the
problem, but the computational cost of implementing
it is high, even using parallel processing.

In his master dissertation, Araújo [2] used the
mathematical model elaborated and described in [7].
With the application of computational intelligence tech-
niques, he obtained feasible solutions to the resulting
optimization problem. In pursuit of finding the best al-
gorithm to satisfy the solution, several algorithms have
been implemented. GA techniques presented the best
results, efficiently achieving the desired power genera-
tion demands.

Baños [3] conducted a review of techniques that, so
far, were used for optimization applied to the generation
of renewable and sustainable energy. The study men-
tions various forms of energy production, among them,
the hydroelectric one. To solve the dispatch problem,
the papers cited by him used techniques as GA and Par-
ticle Swarm Optimization (PSO). The first conclusion
of his survey was that the number of scientific papers
that used optimization methods to solve renewable en-
ergy problems dramatically increased in the last years,
but, in many cases, the computational cost is high, even
when using parallel processing techniques.

Several optimization techniques to improve energy
production efficiency in power systems were discussed
in [15]. That study was motivated by the fact that
the European Union signed the Kyoto Treaty, in May
2002, and since then, scholars come seeking to find
new techniques to reduce by 20% the energy produc-
tion until 2020, which is one of the goals of such agree-
ment. Some of the described techniques are: Search
Algorithms, Evolutionary Algorithms, Simulated An-
nealing, Tabu Search, Ant Colony Optimization, PSO,
GA, Artificial Neural Networks and Evolutionary Pro-
gramming. Among them, GA were recommended to
minimize losses and to maximize efficiency. PSO al-
gorithms were recommended for optimal power gener-
ation seeking.

Marcelino [12] proposed in her dissertation a new
model of hydroelectric power production optimization,
considering the inherent losses existing in the pen-
stocks. To perform the calculation of efficiency for gen-
eration units, she proposed to perform a nonlinear mul-
tivariate regression in order to find the coefficients of a
quadric function. Therefore, coefficients of the quadric
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function were obtained that, in turn, represented hy-
draulic parameters of operating generation units. Evo-
lutionary Algorithms were used to maximize the pro-
ductivity of an actual plant. Experiments have suc-
ceeded in demonstrating water economy during simu-
lated generation processes.

2.2 Problem Modeling

In this section, the mathematical model proposed by
Marcelino [12] to solve the problem of electric dispatch
is described. The power production performed by an
hydroelectric unit, in MW , is given by Eq. 1,

phjt = g · ηjt · hljt · qjt, (1)

in which,

• phjt is the power generated by unit j at time t
(MW );
• g is the acceleration of gravity (9.8 · 10−3km/s2).

It is presented here in this form in order to provide
automatic conversion of power, from kilowatts to
megawatts;
• ηjt is the global efficiency of unit j at time t (%);
• hljt is the net water head of unit j at time t (m)

and
• qjt is the water flow rate of unit j at time t (m3/s).

The hydraulic head of the reservoir, Hb, is given by
subtracting the upstream level value by the downstream
level value, for a given instant of time. This data is
easily measured and delivered by common automation
and control systems operating at a power plant. There-
fore, the net water head hljt is nothing more than Hb

subtracted by the total hydraulic losses. This work,
unlike most current scientific studies, proposes a de-
tailed mathematical model to calculate losses related to
fluid friction in penstocks. Losses can be classified as
distributed (∆Hd) and localized (∆Hl). According to
[14],[16] and [18], the sum of the penstocks losses is
given by Eq. 2,

∆Hjt = ∆Hd + ∆Hl. (2)

The distributed losses (∆Hd) are uniform in any part
of a constant diameter pipe, regardless of the position
of the pipe. So, the distributed load losses, due to fluid
friction with the walls of the penstock along its entire
length, can be obtained by Eq. 3,

∆Hd = F
L

D

V 2

2g
, (3)

in which,

• F is the loss factor in the pipe;
• L is the length of pipe (m);
• D is the pipe diameter (m);
• V is the fluid velocity (m3/s);
• g is the acceleration of gravity (here considered as

(m/s2).

The localized losses (4Hl), or load losses, which
arise at specific points or parts of the pipe, are obtained
by Eq. 4,

∆Hl = λ
V 2

2g
, (4)

in which,

• λ is the curve loss factor;
• V is the fluid velocity (m3/s);
• g is the acceleration of gravity (m/s2).

Using the concepts just discussed regarding losses
inherent in penstocks, the following hydraulic loss cal-
culation model was established. Considering that a
penstock has divisions, which can be represented by
straight sections and curves existing between them, the
total loss ∆Hjt can be mathematically modeled, ac-
cording to Eq. 5, as

∆Hjt =

S(n)∑
s=1

F
L

D

V 2

2g
+

C(n)∑
c=1

λ
V 2

2g
. (5)

As already mentioned, the parameter hljt is ob-
tained by subtracting the hydraulic head of the reser-
voir Hb by the losses related to total hydraulic friction
in penstocks (∆Hjt). Therefore, the net water head for
each unit is given by Eq. 6,

hljt = Hb −∆Hjt. (6)

Finardi [7] has stated that the overall efficiency of
a hydroelectric production unit can be computed as the
product of a constant loss factor by the fluid flow rate
at the turbine. However, this approach does not take
into account the hydraulic losses and spill water into the
turbine. So, in this work, the efficiency of a generation
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unit is represented by the quadratic function given by
Eq. 7,

ηjt = ρ0j + ρ1j .hljt + ρ2j .qjt+ (7)

ρ3j .hljt.qjt + ρ4j .hl
2
jt + ρ5j .q

2
jt,

in which,
• ηjt is the global efficiency of unit j at time t (%);
• ρ0j , ... , ρ5j are the coefficients obtained from the

Hill Diagram using multivariate nonlinear regres-
sion technique (see next section);
• hljt is the net water head of unit j at time t;
• qjt is the water flow rate of unit j at time t.

2.3 Model Adjusting

The existing relationship between generated power, net
water head and water flow rate is usually represented by
Hill Diagrams, given by turbine manufacturers for each
specific unit [7]. For the studied plant, only a unique
Hill Diagram characteristic exists for all the generation
units. Then, the hydraulic loss model proposed in this
work becomes very relevant. It allows for the calcula-
tion of income-generating sets and to distinguish them
from each other, since each machine will be uniquely
characterized by a specific net hydraulic head. In order
to find a good efficiency model for the plant, a non-
linear multivariable regression process was performed.
A Hill Diagram of the studied plant was digitized and
vectorized. Also, a computer program was built to read
the resulting digital image and convert each point of the
original Hill Diagram in rectangular coordinates X, Y
and Z, thus generating a vector of 6,969 points (hljt,
qjt, ηjt) relating power efficiency to the inflow rates and
net hydraulic heads of the generation units. As a result,
Figure 1 presents the actual points generated by the Hill
Diagram digitization process just described. The limits
used to digitize, regarding the Hill Diagram for a Ka-
plan type turbine, were:

• Indep. variable: water flow rate [50, 150] (m3/s);
• Indep. variable: net hydraulic head [32, 56] (m);
• Dependent var.: global efficiency [83, 93] (%).

With these points in hand, a specific technique of
nonlinear multivariable regression was implemented.
This regression process was created using the statisti-
cal toolbox of MATLAB c©R2012b. This process uses
the Levenberg-Marquardt algorithm [11] [13] to be per-
formed. For the execution of this regression process,
a subset of about 1,000 points arbitrarily chosen from
the available set of 6,969 points, were used. Table 1

Figure 1: Hill Diagram resulted from digitization process

Table 1: Efficiency Coefficients obtained by the Regression Process

Coefficient Value
ρ0j 1.4630e-01
ρ1j 1.8076e-02
ρ2j 5.0502e-03
ρ3j -3.5254e-05
ρ4j -1.1234e-03
ρ5j -1.4507e-05

presents the coefficients obtained by the regression pro-
cess, with 99% of accuracy.

The validation of the coefficients shown in Table 1
and the resulting efficiency model represented by Eq. 7
can be seen in Figure 2, which shows the overlap
of original (digitized) points and calculated (obtained
through regression) points.

Figure 2: Original versus calculated points of the Hill Diagram

In order to test the generalization property of the
proposed model, a 3D continuous curve was built, using
the same parameters of Table 1. Figure 3 presents the
overlap between digitized points and calculated points
for the whole operational ranges of the independent
variables water flow rate and net hydraulic head. The
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graph shows that the implemented regression process
was satisfactory, as the coefficients estimated by non-
linear multivariable regression provided a Hill Diagram
very similar to the original one.

Figure 3: Generalization test for the adjusted model of the Hill Dia-
gram

As shown by Eq. 7, power production function de-
pends directly on qjt and hljt. But as the net hydraulic
head hljt can be approximated by a function of the wa-
ter flow rate qjt, Finardi [7] proposed a simplified pro-
duction function as a polynomial of seventh degree in
terms of coefficients associated with qjt, according to
Eq. 8. This function was also used in the model pro-
posed by Araújo [2].

pjt(qjt) = ρ0jqjt + ρ1jq
2
jt + ...+ ρ6jq

7
jt. (8)

According to Finardi [7], coefficients ρ0j ,..., ρ6j are
parameters dependent on operating characteristics and
are calculated using the Hill Diagram, losses in pen-
stocks and gross losses, among others. But using the
efficiency model proposed by Finardi, only 6 operat-
ing coefficients can be obtained, and his function uses
7 coefficients. Then, it becomes impossible to solve the
problem, making use of this function, without further
information about system conditions. Another relevant
fact is that the author does not explain or justify the con-
struction of his model. Given this modeling problem,
this paper proposes a different function for calculating
electric power, according to Eq. 9,

phjt = g · [ρ0j + ρ1jhljt + ρ2jqjt + ρ3jhljtqjt+ (9)

ρ4jhl
2
jt + ρ5jq

2
jt] · [Hbjt −∆Hjt] · qjt,

in which,

• phjt is the power generated by unit j at time t;
• g is the acceleration of gravity (9.8 ·

10−3kg/m2s2);
• ρ0j , ... , ρ5j are the coefficients obtained from the

Hill Diagram using nonlinear multivariable regres-
sion technique;

• hljt is the net hydraulic head of unit j at time t;
• qjt is the water flow rate of unit j at time t;
• ∆Hjt are the total losses referring to the penstock

connected to generation unit j at time t.

2.4 Optimization Model

According to the whole mathematical model presented
so far, the goal of optimization is to maximize the hy-
droelectric production function, taking into account all
the generating units as represented by the objective
function shown by Eq. 10. The vector optimization
variables are represented by the water flow rate of each
generation unit,

x = [q1t; q2t...qjt].

Maximize F (x) =

∑J(r)
j=1 phjt∑J(r)
j=1 qjt

, (10)

subject to:

J(r)∑
j=1

phjt ∼= D,

qjtmin ≤ qjt ≤ qjtmax,

phminjk

∅j∑
k=1

Zjk ≤ phjt ≤ phmaxjk

∅j∑
k=1

Zjk,

Zjk ∈ {0, 1},
∅j∑
k=1

Zjk ≤ 1.

This objective function determines how much power
the plant is able to produce with a given volume of wa-
ter. To maximize this function means to produce more
power using less water. The numerator is the production
function: as this value grows, the objective function in-
creases its value. The denominator, when reduced, also
increases the value of the productivity ratio. This frac-
tional is subject to operative demand constraints, i.e.,
the sum of production from all generation units must
be equal to the total power demand required to be pro-
duced by the plant. The power production must also
comply with the operational limits of generation units,
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represented by the inequality constraints of the objec-
tive function.

The first constraint indicates that the power to be de-
livered should be equal to the power requested by con-
sumer electric demands; the National System Operator
(ONS, from the Portuguese name “Operador Nacional
do Sistema”), a government agency which operates the
whole power production of Brazil, accepts an error rate
of up to 0.5% above or below the demanded power.
The second constraint states that the calculated flow rate
must comply with the minimum and maximum capac-
ity of each generation unit. The third constraint requires
that the corresponding generated power complies with
the minimum and maximum capacity of each genera-
tion unit. At last, the fourth constraint insures that each
generation unit maintains its operating zone, i.e., stays
on or off during the whole production period.

To optimize the proposed objective function, this
work proposes the use of GA, a sub-field of evolution-
ary computation proposed by James Holland [10] in the
seventies, in order to find optimal water flow rates for
each generation unit and seeking to decrease the value
of the optimization variables as low as possible, while
maintaining the desired constraints still valid.

3 Optimization Algorithms

An algorithm is a sequence of executable actions to ob-
tain a solution to a particular problem. In the context
of Operational Research, algorithms are practical im-
plementations of optimization methods, whose goal is
to determine the solutions for a specific problem. This
paper proposes the use of GA to solve the discussed op-
timization problem (see Eq. 10).

3.1 Genetic Algorithms

GA are a metaheuristic technique used in computer sci-
ence to find approximated solutions to optimization and
search problems. GA are a particular class of evolu-
tionary algorithms that use operations inspired by evo-
lutionary biology such as inheritance, mutation, natu-
ral selection and crossover [9]. GA are implemented
as a computer program in which a population of ab-
stract representations of solutions to a given problem is
evolved in a search of better solutions. The evolution
usually starts from a set of randomly created solutions
and is carried through generations. At each generation,
the adjustment of each individual (or solution) in the
population is evaluated. Some individuals are selected
for the next generation, and mutated or recombined to
form a new population.

The new population is used as input for the next it-
eration of the algorithm. This loop is executed until
candidate solutions meet the expected outcome by the
implemented fitness function. The binary representa-
tion is the basic way to translate the actual problem in
a viable way to be processed by the computer program.
Importantly, the representation of a chromosome (or in-
dividual) is critical to GA. The works [2], [3] and [15]
reported that the use of GA gave satisfactory results for
the problem of electric dispatch.

Considering those reports, this technique is applied
as the main strategy to find good solutions for the prob-
lem. Note that this problem is not simple to solve with
conventional techniques. These algorithms are based
on unrealistic assumptions of linearity and convexity,
which cannot be assumed in the case of nonlinear prob-
lems. This work implements two versions of GA: the
first one uses binary representation of solutions as indi-
viduals (called BGA) and other uses real representation
of solutions as individuals (called RGA). Figure 4 ilus-
trates the difference between both approaches.

Figure 4: Binary and real-valued approaches of GA

To solve the dispatch problem, GA algorithms cre-
ate populations of water flow rates, where each individ-
ual represents a feasible water flow rate for each gen-
eration unit in the power plant. The adopted stop crite-
rion is the number of iterations. The “Canonical GA”,
as proposed by Goldberg [8], was chosen to be imple-
mented in both cases. The adopted fitness function is
the objective function (see Eq. 10) with an additional
penalty equal to 0.5. Details of each implemented ver-
sion are depicted in the next sections.

3.1.1 BGA - Operators and Parameters

The crossover operator implemented in BGA uses sin-
gle point crossover (a crossover point is chosen, the bi-
nary string from the beginning of the chromosome to
the crossover point is copied from the first parent and
the rest copied from the other parent). The mutation
operator uses inversion bit (some bits of the chromo-
somes are reversed). Individuals have a length of 16
bits. BGA uses the parameters presented by Table 2.
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Table 2: Parameters used by GA

Parameter Value
Population size 50
Crossover probability 60%
Mutation probability 2%
Exchange bit probability 50%
Gamma adjustment function 1.8
Maximum number of generations 50

3.1.2 RGA - Operators and Parameters

The crossover operator implemented in RGA uses the
Simulated Binary Crossover (SBX) algorithm, as pro-
posed by [5]. SBX is designed respecting the properties
of single crossing point, but by averaging the values of
the individuals, it estimates the best cut-off point for
each crossing. The mutation operator uses a function
polynomial which defines the best gene to be mutated,
as proposed also by [5]. Individuals are represented by
1x6 real valued vectors. RGA used the same parameters
as the BGA algorithm (see Table 2).

4 Case Study

The case study of this paper is a hydroelectric plant
installed in Brazil, with a nominal power production
capacity of about 400MW . This section will discuss
the general characteristics of this plant, which operates
with 6 generation units, as well as the experiments per-
formed to solve the electric unit dispatch problem, with
the use of two GA methods, as discussed in the preced-
ing sections.

To simulate the plant behaviour, the efficiency
model used the same coefficients shown in Table 1. The
inputs to the algorithm are an hourly power demand
generation order to be delivered by the plant and the
hydraulic head of the reservoir Hb, at the time of gener-
ation. The value of Hb for the plant in question ranges
between 32 and 56m. All generation units are consid-
ered as identical, so the Hill Diagram coefficients are
the same. The facility has other constraints as water
flow rates per unit qjt and generated power per unit
phjt, namely:

• qjt must be in the range [70, 140] m3/s;
• phjt must be in the range [35, 66] MW .

4.1 Practical Experiments

To validate the model proposed in this work, this sec-
tion presents two experiments performed with param-
eters above described. As a first experiment, a test of
daily demand was executed to verify the behaviour of

GA algorithms while trying to meet the demand and
to minimize generation units’ water flow rates. The
second experiment tested the hourly demand situation,
which checked evolution behaviour of the proposed al-
gorithms while they were trying to meet the demand
saving water discharge. After all, an statistical analy-
sis was performed to objectively verify what is the best
approach to solve the problem.

The algorithms here described were implemented
using MATLAB c©R2012b. The experiments were per-
formed on a Intel Dual Core 2.1GHz processor ma-
chine, with 3GB of RAM, running MS-Windows.

4.1.1 Experiment 1: Daily Demand

To demonstrate the feasibility of the solutions obtained
by GA algorithms, when implemented as discussed in
Section 3.1, an example of behaviour that shows a ran-
dom daily demand follows. Simulations using all GA
strategies have quite the same performance in terms of
meeting the existing power constraints, as shown by fig-
ures 5 and 6. This experiment used a hydraulic head of
the reservoir Hb of 54m.

Figure 5: Typical plot of power generated through time

As can be seen in Figure 5, the generated power
demand and required power demand curves are over-
lapped, certifying that the algorithm fulfilled the power
production requirements. Moreover, it is clear in this
experiment that the the total water discharge provided
by the algorithm solution (identified by “determined by
the algorithm” in the figure) was lower than the con-
ventional solution (identified by “control mode” of op-
eration in the figure), which corresponds to power de-
mand equally distributed among the available genera-
tion units. As shown by Figure 6, it is noticeable that
the proposed “optimized mode” saves water during gen-
eration, compared to the conventional “control mode”.

To check the behaviour of each generation unit, per
unit graphics were generated and presented in figures 7
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Figure 6: Typical plot of water flow rate through time

and 8. As can be seen, the algorithm respects the limits
of power and water flow rates set by the system con-
straints, because the values found for both, as for power
as for water flow rates, are between the dotted lines,
which represent in the graphics the respective limits of
these variables.

Figure 7: Typical plot of power generated through time, per unit

This result shows that it is possible to optimize hy-
droelectric operation applying different power demands
for each generation unit inside a plant. It then con-
tributes to the deconstruction of the hypothesis raised
by [17], that “the optimal operating point of a hydro-
electric plant is achieved only when the generation de-
mand is equally divided by the number of generation
units”.

4.1.2 Experiment 2: Hourly Demand

The main goal of this experiment is to find the aver-
age processing time of each algorithm to achieve an
optimized solution to dispatch problem. To check the
behaviour of BGA and RGA algorithms, a demand of
320MW was established, since this is a typical demand
of the plant. The hydraulic head of the reservoir, Hb,
was set to 54m. Figures 9 and 10 show plots of typical
behaviour of the fitness functions for each algorithm,

Figure 8: Typical plot of water flow rate through time, per unit

throughout generations, while they tried to maximize
the plant productivity.

Figure 9: BGA - Evolution of fitness function through generations

It is clear from the figures that both algorithms con-
verged to the best result since the 35th generation. One
may notice that there is more sinuosity in BGA, which
features higher falls than RGA. This means that for
BGA it is harder to achieve stability. RGA presents
lower sinuosity when compared to BGA. This fact in-
dicates that RGA algorithm was able to obtain more
confident results at each iteration, until reaching con-
vergence at the 35a generation.

A typical simulation table report for BGA and RGA
results is shown by Table 3. It presents the results for
the best individual obtained by water flow rate qjt and,
through these values, other parameters are calculated
from the mathematical model.

In this experiment, the demand equally divided by
the number of units is 53.33MW per unit, which cor-
responds to an unitary water flow of 109.175m3/s. In
this context, the productivity of plant “control mode”
for this experiment is 0.48. The values found by GA al-
gorithms after maximizing productivity for this exper-
iment were 0.4904 (by BGA) and 0.4905 (by RGA).
So, RGA algorithm achieved the highest savings rate
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Figure 10: RGA - Evolution of fitness function through generations

Table 3: General Experiment Report

BGA | Hb = 54m

UN ph (MW ) q (m3/s) η (%) hl(m) ∆H (m)

1 49,719 101,41 0,93 53,796 0,20377

2 59,383 121,04 0,93 53,83 0,17007

3 62,218 126,81 0,93 53,833 0,16745

4 44,282 90,253 0,93 53,834 0,1656

5 57,078 116,33 0,93 53,834 0,1656

6 47,512 96,838 0,93 53,833 0,16745

SUM 320,19 652,68 Demand request: 320 (MW )

SUB 0,19 2,37 Mode S: 655,05 (m3/s)

RGA | Hb = 54m

UN ph (MW ) q (m3/s) η (%) hl(m) ∆H (m)

1 51,047 104,14 0,93 53,785 0,21489

2 47,343 96,515 0,93 53,821 0,17935

3 58,589 119,44 0,93 53,823 0,17659

4 49,178 100,25 0,93 53,825 0,17464

5 60,31 122,94 0,93 53,825 0,17464

6 53,653 109,37 0,93 53,823 0,17659

SUM 320,12 652,65 Demand request: 320 (MW )

SUB 0,12 2,4 Mode SC: 655,05 (m3/s)

and consequently the highest rate of productivity, cor-
responding to a water flow rate of 2.4m3/s. Expand-
ing to one hour, this is equivalent to approximately 8.6
million litres of water. It is also easy to check that, in
“optimized mode” of operation, all units reached maxi-
mum efficiency of 93% with use of water flow rate de-
termined by the algorithms.

4.2 Comparative Analysis of GA Algorithms

In order to ensure the central limit theorem of normal-
ity, each execution of the algorithms was repeated for
thirty times. Carrano [4] showed that evolutionary algo-
rithms cannot be compared only by means of computa-
tional performance. Being stochastic search heuristics,

it is feasible that each execution have a different result.
With this in mind, a comprehensive analysis of the re-
sults provided by GA approaches were developed and
tested, by means of statistical inference and multiobjec-
tive tools, as discussed in the following sections.

4.2.1 Tukey Test

To perform an objective analysis of the multiple ob-
tained results sets, this study used analysis of vari-
ance (ANOVA) by means of Tukey Test, to find rele-
vant information that could differentiate the tested al-
gorithms. This statistical method can be interpreted as
a comparison between means of different groups of so-
lutions and the variances of all individuals within those
groups. Tukey’s strategy is to define the least signifi-
cant difference between these means. The hypothesis
to be considered in this test is the equality of results of
the series of datasets provided by BGA and RGA algo-
rithms, adopting a confidence interval of 95%. Table 4
shows the results of the performed Tukey Test. It indi-
cates that the hypothesis of equality between means of
factors it not rejected, because P-value is close to zero.
In other words, this test indicated that the results of the
compared algorithms did not have sufficient statistical
evidence to be considered as different (better or worse)
from each other.

Table 4: Tukey Test: BGA x RGA

Levels Center Min Max P-value
BGA-RGA 0.00053 0.00025 0.00816 0.00029

4.2.2 Multiobjective Analysis of a Mono-objective
Problem

So far, this work approached the electric dispatch prob-
lem in a mono-objective way. This section proposes an
multiobjective (MO) analysis for this mono-objective
problem, considering the value of the objective func-
tion and the computational time of each one of the al-
gorithms as two new objectives to be simultaneously
used while comparing them. Here, again, the execu-
tions of each algorithm were repeated for thirty times,
to achieve statistical validation of the experiments. To
differentiate solutions obtained in an MO analysis, an
approach quite widespread in the literature is the con-
cept of “Pareto Dominance”.

According to Carrano [4], the concept of Pareto
Dominance can be used to compare feasible solutions
to a problem. Given two solutions, x and y, it is said
that x dominates y (denoted x � y) if the following
conditions are met:
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1. The solution x is at least equal to y for all purposes;
2. The solution x is greater than y for at least one goal.

Thus, there is a set of solutions that have advantage
over others, an optimal set of alternatives that are non-
dominated by each other. The set of non-dominated so-
lutions to a problem is usually called in the literature
by a “Pareto Front”. For this analysis, a graphic was
generated containing the Pareto Fronts obtained by both
algorithms, as it is shown in Figure 11.

Figure 11: Comparative Pareto Front: BGA x RGA

It is noticeable from the graphic that the algorithm
with the best Pareto Front is RGA, because its set of
solutions has the lowest execution time, around 16.0s,
and yet produced increasing values of power productiv-
ity above 0.4925. It is also clear that the Pareto Front
of RGA algorithm dominates the Pareto Front of BGA
algorithm. From the MO point of view, considering av-
erage execution time as a second goal,it can be stated
that RGA performed better than BGA algorithm, while
solving the electric dispatch problem in this experiment.

5 Conclusion

This paper proposed a novel mathematical modeling ap-
proach to calculate hydraulic losses in penstocks at hy-
droelectric plants, allowing for the calculation of elec-
trical power production in a way distinct from previous
works. This formulation was used inside an optimiza-
tion schema to find optimal operating points for gen-
eration units in an actual plant in Brazil. Given the
discussed experimental results, it can be seen that op-
timization methods based on Genetic Algorithms con-
verged to satisfactory results.

Statistical analysis indicated that the approach using
real representation of individuals (called RGA) showed
better results than the approach using binary individu-
als (called BGA) to solve the problem of electric dis-

patch. The productivity indexes found in “optimized
mode”, using BGA and RGA, are higher than the value
of the same index when running the plant in conven-
tional “control mode”. This finding assures the rele-
vance of the approach adopted in this work. Finally, the
simplicity of the proposed model and the small amount
of operational data necessary to implement it in prac-
tice indicate that this approach can easily be applied to
other case studies, what makes it fairly general.
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