
Faults and Failures in SQL-based Data Manipulation Programming ∗

PLÍNIO DE SÁ LEITÃO JÚNIOR1

PLÍNIO ROBERTO SOUZA VILELA2

MARIO JINO3

1 DCC-UFLA
Federal University of Lavras

Cx Postal 3037 - CEP 37200-000
Lavras, MG, Brazil

psleitao@dcc.ufla.br

2 Methodist Univ. of Piracicaba
Piracicaba, SP, Brazil

prvilela@unimep.br

3 DCA-FEEC-Unicamp
State University of Campinas

Campinas, SP, Brazil
jino@dca.fee.unicamp.br

Abstract. Database applications, including SQL-based applications, have received little attention di-
rected towards improving the knowledge of their possible faults. This paper deals with issues related
to software faults and failures aiming at understanding what types of faults occur in SQL manipulation
commands, and how they are propagated to the output of command execution. SQL manipulation com-
mands are studied and their structure is organized into structural items, a step towards understanding
and grouping fault types. A list of manipulation fault types is determined and presented with SQL com-
mand examples. Failure dimensions are discussed along with query and state changing operations. An
experiment to abstract the types of manipulation faults for SQL was carried out and the results are pre-
sented. The experiment built databases and faulty commands to promote failure in command execution.
A database was built and a set of faulty SQL commands used to map fault types and failure dimensions.
The analysis of data mapping indicates: i) there is a many-to-many mapping between faults and failures;
ii) failure dimensions are dependent on fault type, faulty command, and the database itself; and iii)
manipulation fault knowledge is crucial for SQL programming and testing of database applications. This
work represents an initial step for testing SQL programming.

Keywords: Software Testing; Fault Enumeration; SQL-based Applications; Database Application Test-
ing; Software Failures.

(Received August 06, 2007 / Accepted November 12, 2007)

1 Introduction

Software faults are present in software production.
Faults are introduced in any phase of the software de-
velopment process. One of the reasons is that humans
carry out most of this process frequently using human
made tools. Humans make mistakes that are reflected
in latent software faults. When those faults are exer-
cised they yield inconsistent software states, which may
flourish as failures. That occurs when the inconsistent
state make the software output deviate from its specifi-
cation.

Faults may exist causing no harm if never reached.
When a software input causes the program execution to
reach the software fault a failure may occur. The same
fault may yield different types of failure, depending on
the particular software input used. The type of the fault,
plus the particular software input used, influences the

∗This work was partially supported by a CNPq research grant.

type of failure. Failures cause damage, frustration and
monetary losses, so they must be kept to a minimum in
deployed software. To minimize failures, faults ought
to be identified and removed.

Fault details are dependent on the underlying pro-
gramming language. To reach the desired software
quality it is imperative to understand the relationship
between faults and failures in a specific programming
language. That is intrinsically associated to the knowl-
edge of the language’s syntactical construction and its
common usage to achieve the desired semantics.

Testing is the process of executing a program to
make it fail. It is the search for program inputs that con-
tradict the assertion that the program is correct. When
a failure is perceived, there is a chance to look for and
remove its causing fault (debugging), which contributes
to the quality improvement of the software. The knowl-
edge of faults and failures is pertinent to promote pro-
gram development with lesser faults, guide program

debugging and nourish the development of testing ap-
proaches, towards quality improvement and cost reduc-
tion.

In recent years, a wide range of traditional soft-
ware testing techniques have been proposed, imple-
mented, and evaluated. However, relatively little ef-
fort has been made to develop systematic techniques
towards the quality improvement of the database ap-
plication programs [2, 8]. A database application is
a program whose environment always contains one or
more databases [8]. The main motivation of this work
is the quality improvement of SQL-based applications.
An SQL-based application is one that interacts with the
databases using SQL (Structured Query Language), a
well-known language that is extensively used by the
database community [7, 6].

Differently from what happens with imperative lan-
guages such as C and Java, SQL have received little
attention from the academic community. It is a para-
dox since there is a large amount of source code written
in SQL that needs systematic testing methods. SQL is
used in database applications that deal with real prob-
lems, remaining the most accepted and implemented in-
terface language for relational database systems [5].

A data manipulation operation modifies the database
state or queries the database to retrieve and format in-
formation. Such direct interactions between the pro-
gram and the database are materialized by specific SQL
commands, also mentioned as data manipulation com-
mands. The testing terminology is extended to single
SQL manipulation commands. A fault or likewise a de-
fect is commonly defined as a single item in an SQL
command that is incorrect. A faulty command is an
SQL command, which has at least one fault. An error is
an inconsistent execution state caused by the execution
of a faulty command. A failure occurs when an error
propagates to the outside of the faulty SQL command
resulting in behavior that deviated from the expected
one 1. Failure dimensions abstract the ways where fail-
ures are manifested in faulty manipulation commands.
To conclude, faults are the causes, failures are the symp-
toms, and failure dimensions are symptom types.

This paper discusses issues arising in data manip-
ulation faults and failures, and presents the results of
an investigation aiming at understanding the relation-
ship between faults and failures. The structure of
SQL manipulation commands are extracted from their
basic constructions and organized in structural items.
These items represent a step towards understanding and
grouping faults to evaluate their propagation to outside

1The notion of expected command behavior is extended from the
expected software functionality in the software specification

of the command. The concept of manipulation failure
is examined and two data sets are introduced to capture
the notion of command output. Failure dimensions are
discussed along with query and state changing opera-
tions. A list of manipulation fault types is presented
by SQL command examples in a self-explanatory fash-
ion. A set of faulty SQL commands has been used in an
experiment to build a mapping between fault types and
failure dimensions. The mapping data are discussed and
the analysis results indicate that: i) there is a many-to-
many mapping between faults and failures; ii) failure
dimensions are dependent on fault type, faulty com-
mand, and the database itself; and iii) manipulation
fault knowledge is crucial for SQL programming and
testing of database applications.

The remainder of the paper is organized as follows.
Section 2 describes related work dedicated to enumer-
ate software faults. SQL manipulation commands are
presented in Section 3, with special attention to struc-
tural items extracted from the language constructions.
Section 4 presents manipulation fault types in a self-
explanatory fashion. Section 5 focuses on data manipu-
lation failure dimensions, defining two data sets related
to the command output, and characterizing incorrect
command behavior. Section 6 explores the building of
a mapping aiming at analyzing the relationship between
faults and failures. Section 7 highlights the lessons
learned from building the mapping and extracts knowl-
edge of the relationship between manipulation faults
and failures. Section 8 concludes this work, showing
the contributions and mentioning future work.

2 Related Work

Software fault enumeration, or fault scheme, is built ac-
cording to specific purposes, such as identifying causes
of errors, making decisions during software devel-
opment, developing profiles of software development
methodologies, and guiding the testing activity. These
schemes are either simple or more elaborate. For in-
stance, a simple scheme groups faults as major or mi-
nor, and a more detailed scheme refines the fault de-
scription by establishing successive levels such that the
level above is divided into finer categories.

Chillarege [3] presented a classification scheme, fi-
nanced by IBM, intending to provide analysis and feed-
back of the software process that deal with fault detec-
tion, correction and prevention. The goal is to provide
a measurement paradigm to extract information from
faults and use that information to assess some parts of
a software development process to provide corrective
actions for that process. The original proposal defines
an orthogonal defect classification (ODC) that involves

identifying a trigger, a type, and a qualifier, for each
fault. The trigger indicates the event that prompted the
fault discovery. The type identifies the fault category,
such as assignment, interface and algorithm. The qual-
ifier involves adjectives such as missing or incorrect.
IBM has been improving this scheme by including new
fault dimensions in addition to the three original ones,
while software techniques have evolved. Some dimen-
sions are identified at the time of fault discovery and
others after the fault has been fixed.

Based on Chillarege [3], Kelly and Shepard [9] de-
veloped a fault classification scheme to evaluate and
compare the effectiveness of software inspection tech-
niques. According to the authors, the IBM ODC was
not adequate for inspection purposes, since the fault
types have to reflect the problem at the same time the
inspector perceives it in the code: the defect type must
relate to the code rather than the fixing activity. Related
to the IBM ODC, the number of fault types is substan-
tially expanded. In addition, other fault dimensions are
modified to be more adequate for the program inspec-
tion demands than IBM ODC. For instance, new fault
qualifiers were added, such as superfluous and obscure.
The fault scheme results from the analysis of findings
from the inspection experiments.

In spite of the subjectivity removing intention, both
schemes above are defined using subjective judgment.
The former tries to answer the question “what were you
thinking about when you discovered the defect?”; the
later is related to the question “what task were you car-
rying out when you discovered the defect?”. They are
based on the different levels of understanding that find-
ing represents.

A more complete enumeration of faults was pro-
posed in [1]. The major categories encompass func-
tional faults, passing by integration and internal inter-
faces, up to test definition or execution faults. Each
major category is detailed in levels aiming at properly
including sufficient description for all possible faults.
This scheme serves as a starting point and a point of
reference for building new fault schemes.

According to Beizer [1], there is no universally cor-
rect way to enumerate and categorize faults. Faults
are difficult to enumerate, and a given fault can be put
into one or another category depending on its history
and tester viewpoint. Furthermore, the inherent aspects
of programming languages determine the fault list and
characterize the programming fault propensity. More
important than adopting the “right” fault enumeration
and classification is using any fault scheme on which to
base testing strategies.

Even through there is research related to fault enu-

meration, up to the date of writing this article no soft-
ware testing publication focused on enumeration of data
manipulation faults and failures in SQL-based applica-
tions. This paper does not intend to build the framework
of fault and failure enumeration, but a resource to help
understand the causes and consequences of incorrect-
ness in SQL manipulation commands.

3 Structure of Data Manipulation Commands

The general structure of the SQL manipulation com-
mands is presented in this section and was inspired by a
theoretical study of the manipulation commands based
on SQL foundations, such as mentioned by Fortier [7]
and Elmasri and Navathe [6]. One can validate this
structure by exploring the essence of the manipulation
commands regardless of syntactical details.

Data manipulation is implemented by insert, delete,
update and select commands, to respectively manipu-
late databases by inserting, excluding, modifying and
retrieving operations. The select command is men-
tioned as query database command (or only query com-
mand) and the other ones as state database changing
commands (or only state changing commands).

The general structure of select command is made
up of the [s1] to [s6] items as shown in Table 1. The
simplest form of the select command is made up of the
[s1] and [s2] items; the other items are used according
to the query semantics.

To illustrate the select command semantics, con-
sider the command example in Table 1.The query uses
the empl table as a data source (item [s2]). The selec-
tion mechanism chooses employees whose salary, to-
gether with their bonus, is greater than 1050 (item [s3]).
These employees are grouped based on their salary; in
other words, the employees of each group have the same
salary attribute value (item [s4]). The groups that have
more than one tuple are then selected (item [s5]). For
the remaining employee groups, the salary, tuple quan-
tity, and sum of bonus are abstracted (item [s1]). The
abstracted data are sorted by salary in descending order
(item [s6]).

The structure of the commands, whose execution
can modify the database state, is presented in Table 2.
This table also includes an example for each command,
aiming at illustrating the structural items. Note that the
insert command has two possible constructions: one
that explicitly mentions the data values and another
where data values are obtained from the execution of
a subquery.

The structural items based on SQL foundations are
in no way complete or detailed, the purpose is to capture
the command semantics with no regard to syntactical

Table 1: Structure of the select command.
Structural item Structural item description Command example

[s1] An ordered list of expressions used to compute the value
of returned attributes

select salary, count(*), sum(bonus)

[s2] A list of table names used as data source from empl
[s3] A predicate used for tuple selecting where (salary + bonus) > 1050
[s4] A list of expressions used for data grouping group by salary
[s5] A predicate used for data group selecting having count(*) > 1
[s6] An ordered list of arguments used for data sorting order by salary desc

Table 2: Structures of the insert, delete and update commands.
Command Structural item Structural item description Command example
insert (1) [i1] A table name insert into empl

[i2] An ordered list of attributes (emplno, name, salary, bonus)
[i3] An ordered list of attribute values values (1234 , ’ana’ , 1060 , 35)

insert (2) [i1] A table name insert into empl
[i2] An ordered list of attributes (emplno, name, salary, bonus)
[i4] A subquery select custno, name, salary, 0 from customer

delete [d1] A table name delete from empl
[d2] A predicate used for tuple selecting where (salary + bonus) > 1050

update [u1] A table name update empl
[u2] An attribute value assignment list set salary = salary * 1.01, bonus = bonus * 1.10
[u3] A predicate used for tuple selecting where (salary + bonus) > 1050

details and alternatives. Some clauses, such as union
and intersect, are not covered by the proposed data ma-
nipulation structure since the major interest is explor-
ing faults in basic constructions for each manipulation
command. The subqueries are queries implicitly or ex-
plicitly embedded in any manipulation command, their
structure is the same as presented in Table 1.

4 Fault Type List

Software fault enumeration is the basis to study fault-
proneness and fault distribution. Enumerating faults re-
quires knowledge on constructions of the correspond-
ing programming language. This section introduces the
fault type list for SQL manipulation commands. Based
on command structures listed in Tables 1 and 2, a set
of faulty commands is built for each structural item.
This set attempts to cover all possible mistakes for each
structural item, by exercising different syntactical con-
structions.

Tables 3, 4, 5, and 6 correspond to the fault type
lists of the select, insert, delete and update commands,
respectively. In these tables, each fault type is identified
by [xm]-n, where: xm refers to the structural item as
shown in Tables 1 and 2; and n is a sequential number
for the fault types related to the same structural item.
For each fault type, an identifier, a description, and an
example are presented in these tables. The example il-

lustrates a correct and an incorrect version of the ma-
nipulation command. One can understand the fault type
essence by observing the fault description and compar-
ing the two versions of the command example. The
schema of the database used in the examples is very
intuitive and is omitted from this discussion.

A qualifier could be associated with each fault type,
such as missing, inconsistent and wrong. For example,
fault types [s1]-1 and [s1]-4 concern mistakes related to
the order list of expressions used to compute the value
of the returned attributes; nevertheless, they have differ-
ent qualifiers, missing and wrong, respectively. How-
ever, extending the fault type description by including
the qualifier semantics is a better way of capturing the
fault essence and provides a better comprehension of its
semantics.

One pertinent question is how to check whether fail-
ures were produced in response to the execution of
faulty manipulation commands. The tester must eval-
uate the data returned from the execution of each query
command. For state changing commands, no data are
returned by the command execution and the tester must
pay attention to the state of the database after the com-
mand execution, specifically the state of the underlying
relations.

The select command has a more complex and ex-
tensive structure than the insert, delete and update com-
mands, as one can see from Tables 1 and 2; thus, it re-

Table 3: Fault type list for the select command.
Fault ID Description Correct command example Incorrect command example

[s1]-1 An expression is missing from the or-
dered list of expressions used to compute
the value of returned attributes.

select emplno, name, salary
from empl

select emplno, salary from empl

[s1]-2 An expression is unduly present in the or-
dered list of expressions used to compute
the value of returned attributes.

select emplno, name, salary
from empl

select emplno, name, salary,
salary + bonus from empl

[s1]-3 The order of expressions in the ordered
list of expressions used to compute the
value of returned attributes is wrong.

select emplno, name, salary,
salary + bonus from empl

select emplno, name, salary +
bonus, salary from empl

[s1]-4 A wrong expression is in the ordered list
of expressions used to compute the value
of returned attributes.

select emplno, name, salary
from empl

select emplno, name, bonus *
0.5 from empl

[s2]-1 A table name is missing from the list of
table names used as a data source.

select e.name, e.salary from
empl e, dept d

select e.name, e.salary from
empl e

[s2]-2 A table name is unduly present in the list
of table names used as a data source.

select e.name, e.salary from
empl e

select e.name, e.salary from
empl e, dept d

[s2]-3 A wrong table name is in the list of table
names used as a data source.

select e.name, d.salary from
empl e, dept d

select e.name, d.salary from
empl e, depn d

[s3]-1 The predicate used for tuple selecting is
missing.

select emplno, salary from
empl where salary > 1050

select emplno, salary from empl

[s3]-2 The predicate used for tuple selecting is
unduly present.

select emplno, salary from
empl

select emplno, salary from empl
where salary > 1050

[s3]-3 The predicate used for tuple selecting is
wrong.

select emplno, salary from
empl where salary > 1050

select emplno, salary from empl
where salary < 1200

[s4]-1 The list of expressions used for data
grouping is missing.

select salary from empl group
by salary

select salary from empl

[s4]-2 The list of expressions used for data
grouping is unduly present.

select salary from empl select salary from empl group by
salary

[s4]-3 An expression is missing from the list of
expressions used for data grouping.

select salary, count(*) from
empl group by salary, bonus

select salary, count(*) from empl
group by salary

[s4]-4 An expression is unduly present in the list
of expressions used for data grouping.

select salary, count(*) from
empl group by salary

select salary, count(*) from empl
group by salary, bonus

[s4]-5 A wrong expression is in the list of ex-
pressions used for data grouping.

select salary, count(*) from
empl group by salary, bonus

select salary, count(*) from empl
group by salary, salary - bonus

[s5]-1 The predicate used for data group select-
ing is missing.

select salary, count(*) from
empl group by salary having
count(bonus) > 1

select salary, count(*) from empl
group by salary

[s5]-2 The predicate used for data group select-
ing is unduly present.

select salary, count(*) from
empl group by salary

select salary, count(*) from
empl group by salary having
count(bonus) > 1

[s5]-3 The predicate used for data group select-
ing is wrong.

select salary, count(*) from
empl group by salary having
count(bonus) > 1

select salary, count(*) from
empl group by salary having
count(salary) > 1

[s6]-1 The ordered list of arguments used for
data sorting is missing.

select emplno, name, salary
from empl order by salary

select emplno, name, salary
from empl

[s6]-2 An ordered list of arguments used for
data sorting is unduly present.

select emplno, name, salary
from empl

select emplno, name, salary
from empl order by salary

[s6]-3 The order of the arguments in the ordered
list of arguments used for data sorting is
wrong.

select emplno, name, salary
from empl order by salary,
name

select emplno, name, salary
from empl order by name, salary

[s6]-4 A wrong argument is in the ordered list
of arguments used for data sorting.

select emplno, name, salary
from empl order by salary,
name

select emplno, name, salary
from empl order by salary desc,
name

Table 4: Fault type list for the insert command.
Fault ID Description Correct command example Incorrect command example

[i1]-1 The table name is incorrect. insert into empl (emplno, name, salary)
values (8888, ’mary smith’, 1050)

insert into depn (emplno, name, salary)
values (8888, ’mary smith’, 1050)

[i2]-1 An attribute is missing from
the ordered list of attributes.

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’,
1050, 12)

insert into empl (emplno, name, salary)
values (8888, ’mary smith’, 1050)

[i2]-2 An attribute is unduly
present in the ordered list
of attributes.

insert into empl (emplno, name, salary)
values (8888, ’mary smith’, 1050)

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’,
1050, 12)

[i3]-1 A wrong value is in the or-
dered list of attribute val-
ues.

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’,
1050, null)

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’,
1050, 22)

[i3]-2 The order of the values in
the ordered list of attribute
values. is wrong.

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’,
1050, 22)

insert into empl (emplno, name, salary,
bonus) values (8888, ’mary smith’, 22,
1050)

[i4]-1 There is a fault in the sub-
query.

insert into empl (emplno, name, salary)
select 9999, name, salary from depn
where emplno = 1111

insert into empl (emplno, name, salary)
select 9998, name, salary from depn
where emplno = 1111

Table 5: Fault type list for the delete command.
Fault ID Description Correct command example Incorrect command example
[d1]-1 The table name is incorrect. delete from empl where name like

’ann%’
delete from depn where name like
’ann%’

[d2]-1 The predicate used for tuple
selecting is missing.

delete from empl where name like
’ann%’

delete from empl

[d2]-2 The predicate used for tuple
selecting is unduly present.

delete from empl delete from empl where name like
’ann%’

[d2]-3 The predicate used for tuple
selecting is wrong.

delete from empl where name like
’ann%’

delete from empl where salary between
800 and 1060

Table 6: Fault type list for the update command.
Fault ID Description Correct command example Incorrect command example
[u1]-1 The table name is incorrect. update empl set salary = salary *

1.1 where salary < 550
update depn set salary = salary *
1.1 where salary < 550

[u2]-1 An assignment is missing from the
attribute value assignment list.

update empl set salary = salary *
1.1, bonus = bonus * 1.1 where
salary < 550

update empl set salary = salary *
1.1 where salary < 550

[u2]-2 An assignment is unduly present in
the attribute value assignment list.

update empl set salary = salary *
1.1 where salary < 550

update empl set salary = salary *
1.1, bonus = bonus * 1.1 where
salary < 550

[u2]-3 A wrong expression is in the right
side of an assignment in the at-
tribute value assignment list.

update empl set salary = salary *
1.1 where salary < 550

update empl set salary = 1.1 where
salary < 550

[u2]-4 A wrong attribute is in the left side
of an assignment in the attribute
value assignment list.

update empl set salary = salary *
1.1 where salary < 550

update empl set bonus = salary *
1.1 where salary < 550

[u3]-1 The predicate used for tuple select-
ing is missing.

update empl set bonus = bonus *
1.1 where salary < 550

update empl set bonus = bonus *
1.1

[u3]-2 The predicate used for tuple select-
ing is unduly present.

update empl set salary = salary *
1.1

update empl set salary = salary *
1.1 where salary < 550

[u3]-3 The predicate used for tuple select-
ing is wrong.

update empl set salary = salary *
1.1 where salary < 550

update empl set salary = salary *
1.1 where salary > 1200

sults in a numerous fault type list. State changing com-
mands which embed at least one subquery inherits the
fault type list from the query commands, as the structure
of subqueries are the same of the select command.

An initially assumed fault type for the select com-
mand was the wrong order of expressions in the list
used for data grouping in the select command. It was
observed that these expressions are used together as if
they were an expression concatenation and this order
is not significant to compute the value of returned at-
tributes.

Fault types related to the structural item [s6], [s6]-
1 to [s6]-4, consider no implicit sorting mechanism.
For instance, some implementations automatically or-
der data by expressions in the ordered list used for data
grouping. However, if a data ordering is expected, the
command must have an explicit sorting clause.

The structural items represent a way towards knowl-
edge improvement and grouping fault types. The
fault type list is the first element of a comprehensive
study towards manipulation faults and their implica-
tions in SQL-based applications. The following sec-
tions present an investigation to define failure dimen-
sions and mapping them to fault types is in progress,
aiming at understanding how an error caused by a spe-
cific fault type is propagated as the command output.

5 Manipulation Failure Dimensions

To understand the effects of the execution of faulty ma-
nipulation commands, two sets are defined in this sec-
tion, aiming at capturing the notion of the command
output. They are two-dimensional tabular sets, but are
not relations according to the relational theory [4], as
may have duplicate lines. Nonetheless, they are de-
scribed using relational terminology, such as tuple and
attribute.

Each manipulation command execution is associ-
ated to two set versions: the expected and the obtained.
If the obtained one is distinct from the expected one in
some dimension, then the fault was propagated to the
command output and a failure has manifested. The di-
mensions where the obtained version differs from the
expected version are called failure dimensions. Failure
dimensions are related to the following aspects of a data
set. The attribute list describes the attributes for the ma-
nipulation command output; this dimension is related to
the attribute domain and the attribute semantics. The at-
tribute order in the attribute list is significant when the
underlined order of attributes characterizes the expected
tuples. The number of tuples defines the cardinality of
the expected set of tuples. The attribute value list estab-
lishes for all tuples the expected value of each attribute

without considering the attribute value order. The tu-
ple order defines unambiguously the expected order of
tuples, when it is relevant.

The execution of a select command results in a set
of tuples called returned tuple set. It is described by an
ordered returned attribute list, (Ar1, ..., Arp), resulting
from the command execution, where Ari, 1 ≤ i ≤ p, is
mentioned as a returned attribute. The returned tuple
set resulting from a command execution is incorrect if
one or more of the above dimensions are not the ex-
pected ones.

Defined tuple set is the denomination of the whole
set of tuples related to the data that was actually in-
serted, deleted or updated by a state changing command
execution. It is described by a defined attribute list,
(Ad1, ..., Adq), where Adj , 1 ≤ j ≤ q, is mentioned as
a defined attribute. Consider C to be a state changing
command, the execution of which can change the state
of the relation r. If C is an insert command, the de-
fined attribute list is the same that describes r. If C is
a delete command, the defined attribute list is made up
of the primary key attributes of r. If C is an update
command, of which the defined tuple set is related to
the database image after the command execution, the
defined attribute list is determined by the attribute value
assignment list in the command together with the pri-
mary key attributes of r. The defined tuple set resulting
from a command execution is incorrect if one or more
of the following dimensions are not the expected one:
the attribute list; the number of tuples; and the attribute
value list.

6 A Mapping Between Faults and Failures

This section explores the building of a mapping aim-
ing at analyzing the relationship between faults and
failures. As a result, it is possible to know how data
manipulation faults are manifested in command output,
supporting the identification of common causes for fail-
ures in order to determine corrective actions to be taken
[10].

The mapping is made in three steps: the first one is
to understand the fault semantics based on the knowl-
edge extracted from SQL documents, having in mind
the fault effect projection on the command output; the
second one is to make a mapping between faults and
their potential failures, resulting in a useful resource
for the testing and debugging activities; the latter is to
execute faulty commands to preliminarily validate and
evolve the mapping. The authors’ former experience
with SQL was beneficial as it provided skills in fault
discovery and fixing. The main idea was to build a
unique mapping for all manipulation faults, despite the

manipulation command.

6.1 Experiment

Based on faults listed in Tables 3 to 6, a set of faulty
commands was elaborated for each fault type. This set
was intended to cover all mistake possibilities and dif-
ferent syntactical constructions for the fault type.

The commands are executed aiming at observing the
failure dimensions manifested. Database states were
prepared to cover all failure dimensions caused by the
execution of faulty commands related to the same fault
type. If any failure dimension was not exercised for the
fault type at that point a new database state was created
by inserting new tuples until all failure dimensions are
covered, or it was assumed that it was not possible to
exercise the remaining failure dimensions. The same
reasoning is applied if any failure dimension were not
exercised for that fault type, thus a new list of faulty
commands is built. Once a failure dimension is man-
ifested to a fault type, no additional effort is spent for
that failure dimension. As a result, over 130 faulty com-
mands were executed for all fault types using an Oracle
database. Fault type is unique in each faulty command
and no attempt was made to minimize the number of
faulty commands used in each fault type. The database
was composed of 3 relations, which had 2 to 6 tuples.
This database is restored before starting the evaluation
of a new fault type. As a consequence, the mapping
evolved to the content of Table 7. The first column lists
failure dimensions related to a returned tuple set or a
defined tuple set if the command is a query command
or a state changing command, respectively. The second
column presents, for each failure dimension, the list of
fault types that cause such a failure.

In the state changing operations, the faulty com-
mands that violate any of the integrity constraints of
the database, such as primary and foreign keys, are dis-
carded. These commands are replaced by new ones that
do not violate the constraints, otherwise all fault types
of state changing operations are related to the number
of tuples failure dimension. If it is expected that a com-
mand execution violates database constraints, aspects
related to the exception raising must be observed in the
application context.

The compilation of SQL commands by the database
management system eliminates a sort of fault com-
mands, thus reducing the number of possible manipu-
lation faults. For instance, consider the fault type [i3]-
2, where the order of the values in the ordered list of
attribute values is wrong. If this incorrect order results
in conflicts of data types and no implicit conversion of
data type could be carried out, an error message is re-

turned by the static command checking.
Null values required special attention in command

execution. A null value is treated as an unknown value
and any computation using a null value yields other un-
known value. A problem arises when tuples have null
values for attributes that are used in join operations. An-
other problem is how to count when aggregate functions
such as count and sum are applied. In some cases, the
fault is the absence of a dedicated function that prevents
the possibility of null values for some attributes.

7 Analysis of Data Mapping

Fault propagation is used in the command context, since
the analysis focuses on failure dimensions observed in
the command output. The intention is not to com-
ment on all the mapping data, but highlight the lessons
learned by building the mapping and present the results
of data mapping analysis.

Even though there is a unique mapping, some as-
pects of query commands are distinct from state chang-
ing commands. For instance, in database state changing
commands, the attributes in the attribute list failure di-
mension are qualified by the database relation name in
addition to the attribute name itself. Fault type [i1]-1
changes the state of an incorrect relation, thus applying
the state changing operation to an incorrect list of at-
tributes. The same reasoning is extended to fault types
[d1]-1 and [u1]-1. Also, faults in the attribute value
assignment list of update command could change the
attribute list of the defined tuple set, thus resulting in
this failure dimension. In query commands, this fail-
ure dimension is related to mistakes in the ordered list
of expressions used to compute the value of returned
attributes.

The attribute order in the attribute list dimension is
caused by a unique fault, [s1]-3. This fault is difficult
to discover when the domain order of the attribute list
is not changed. One may argue that it is not relevant
to spend a great deal of testing efforts to reveal such a
fault, because it is a unique fault causing dimension.
However, the correct argument is that any fault can
propagate to the command output and the subsequent
damage is dependent on the fault context. Furthermore,
a program under test is observed with several faults and
the use of testing criteria surpasses a unique fault type
discovery.

The tuple order dimension considers no implicit
sorting mechanism. For instance, some implementa-
tions automatically order the returned tuple set by ex-
pressions in the ordered list used for data grouping.
However, if a tuple order is expected in the returned
tuple set, the command must have an explicit sorting

Table 7: The mapping between faults and failures for manipulation commands.
Failure dimension Fault type list

Attribute list [s1]-1, [s1]-2, [s1]-4, [i1]-1, [d1]-1, [u1]-1, [u2]-1, [u2]-2, [u2]-4
Attribute order in the attribute list [s1]-3

Number of tuples [s2]-1, [s2]-2, [s2]-3, [s3]-1, [s3]-2, [s3]-3, [s4]-1, [s4]-2, [s4]-3, [s4]-4, [s4]-5,
[s5]-1, [s5]-2, [s5]-3, [d2]-1, [d2]-2, [d2]-3, [i4]-1, [u3]-1, [u3]-2, [u3]-3

Attribute value list [s2]-1, [s2]-2, [s2]-3, [s3]-1, [s3]-2, [s3]-3, [s4]-3, [s4]-4, [s4]-5, [i2]-1, [i2]-2,
[i3]-1, [i3]-2, [i4]-1, [d2]-3, [u2]-3, [u3]-1, [u3]-2, [u3]-3

Tuple order [s6]-1, [s6]-2, [s6]-3, [s6]-4

clause. Faults [s6]-1 to [s6]-4 share the same failure
dimension and the perception of their effects are pro-
portional to the cardinality of the expected set.

The fault types causing the attribute list dimension
could also be associated to the attribute value list di-
mension, since they result in wrong tuples (or in val-
ues of wrong attributes). This fact was omitted from
the data mapping because the attribute list dimension
is related to the attribute domain and the attribute se-
mantics. The former reasoning hinders the failure di-
mension understanding and, consequently, the failure
causing discovery. The tester’s primary attention could
be the attribute list of the returned or defined tuple set
rather than the attribute value list. However, what is
commonly done is to check only the attribute value list.

Fault types related to the same structural item do not
share the results of fault propagation analysis. These
fault types can produce disjoint failure dimensions. It is
the case for item [s1], where fault type [s1]-3 produces
a particular failure dimension, contrasting its other fault
types in this item. In item [s2], only one fault type, [s2]-
3, is related to multiple failure dimensions. Neverthe-
less, all fault types in item [s6] have a well-known fail-
ure dimension. Although structural items do not cap-
ture the whole notion of failure dimension semantics, it
was found that they organize the faults in groups to aid
failure comprehension.

In the command analysis context, the fault propaga-
tion is controlled by the fault type, faulty command, and
database state. For instance, consider fault type [s4]-4
in Table 3. Depending on the database state, the number
of tuples or the attribute value list failure dimension, or
both, will be manifested by the command execution. It
complicates the tracking down of the relationship be-
tween a failure and its types of faults, since it augments
the dubiousness of causing failure and hinders the use
of a fault-revealing database. A typical database do-
main is infinite; it reinforces the necessity for system-
atic testing approaches.

The number of tuples and attribute value list dimen-
sions are caused by a great diversity of fault types that
encompass query and state changing commands. More

than 50% of fault types were the reason for these fail-
ure dimensions. In this sense, testing strategies could
give more attention to these dimensions to require fault
revealing software elements.

Some of the fault types are associated to more than
one failure dimension, such as [s4]-4, [d2]-3, [u3]-2.
This fact is observed only for the number of tuples and
the attribute value list dimensions, and the most fault
type causing occurrences is in select command (9 of
13). It could be an evidence that select command has a
great deal of real faults related to these failure dimen-
sions, and they demand a lot of tester attention. Fur-
thermore, almost all of the failure dimensions are ex-
posed by more than one fault type. As a consequence,
it is very unlikely to discover the causing failure at a
first glance. Thus, there is a many-to-many mapping
between faults and failures. This corroborates that the
failure-to-fault way is non-trivial and the manipulation
fault knowledge is crucial for SQL programming and
testing of database applications.

8 Conclusions

This paper discusses issues arising in data manipulation
failures and presents the results of an investigation aim-
ing at understanding the relationship between faults and
failures. The main motivation is the quality improve-
ment of SQL-based applications, due to the extensive
use of this language in database applications.

The structure of SQL manipulation commands was
extracted from their basic constructions and organized
in structural items. These items represent a way towards
understanding and grouping faults in order to evaluate
their propagation to the outside of the command. The
concept of manipulation failure was examined and two
data sets were introduced to capture the notion of com-
mand output, the returned and defined tuple set, related
to query commands (select) and state changing com-
mands (insert, delete, and update), respectively. Failure
dimensions were discussed along with query and state
changing operations. A list of manipulation fault types
was presented by SQL command examples in a self-

explanatory fashion. A database was built and a set of
faulty SQL commands has been used to build a mapping
between fault types and failure dimensions.

The mapping data were discussed in the manipula-
tion command context. The lessons learned with build-
ing the mapping and the results of data mapping anal-
ysis were highlighted. The analysis results indicated:
i) there is a many-to-many mapping between faults and
failures; ii) failure dimensions are dependent on fault
type, faulty command, and the database itself; and iii)
manipulation fault knowledge is crucial for SQL pro-
gramming and testing of database applications.

8.1 Contributions

Some contributions of this article are:

• A data manipulation fault list is introduced and
identified based on structural items of manipula-
tion commands. The faults are described and il-
lustrated by examples. This is the first element of
a comprehensive investigation towards systematic
testing approach proposal.

• The notion of manipulation command execution
output presented by two expected sets. The re-
turned and defined sets, respectively related to
query and state changing commands, capture suf-
ficient data for test case design and oracle correct-
ness checking.

• A list of failure dimensions is proposed based on
content of the returned and defined expected sets.
These dimensions represent a resource for a major
issue in general testing techniques: the determina-
tion of whether or not the output produced, as the
result of running a test case, is correct.

• A mapping between faults and failures is built and
preliminarily validated by applying a set of faulty
commands, aiming at increasing the knowledge of
fault discovery and fixing.

This work can be extended by applying test cases
with real faulty manipulation commands, aiming at val-
idating the fault list with concrete data, extracting fault-
prone structural items, evolving the fault-failure map-
ping, and building fault ranking models to guide pro-
gramming and testing.

The results of this study are an insight into the faults
and failures related to data manipulation in SQL-based
applications, and suggest that fault knowledge is crucial
to software quality.

References

[1] Beizer, B. Software Testing Techniques. John Wi-
ley and Sons Inc., New York, NY, 1990.

[2] Chays, D., Dan, S., Frankl, P. G., Vokolos, F. I.,
and Weyuker, E. J. A Framework for Testing
Database Applications. In Proc. of. the Intl. Sym-
posium on Software Testing and Analysis, Port-
land, Oregon, 2000.

[3] Chillarege, R., Bhandari, I. S., Chaar, J. K., Halli-
day, M. J., Moebus, D. S., Ray, B. K., and Wong,
M. Y. Orthogonal Defect Classification - A Con-
cept for In-Process Measurements. IEEE Transac-
tions on Software Engineering, 18(11):943–956,
November 1992.

[4] Codd, E. F. A Relational Model of Data for Large
Shared Data Banks. In Communications of the
ACM, volume 13, pages 377–387, 1970.

[5] Daou, B., Haraty, R. A., and Mansour, N. Regres-
sion Testing of Database Applications. In Pro-
ceedings of the 2001 ACM Symposium on Applied
Computing, Las Vegas, Nevada, 2001.

[6] Elmasri, R. and Navathe, S. Fundamentals of
Database Systems. Addison Wesley, Boston, MA,
4th edition, 2003.

[7] Fortier, P. J. Implementing the SQL Foundation
Standard. McGraw-Hill, 1999.

[8] Kapfhammer, G. M. and Soffa, M. L. A
Family of Test Adequacy Criteria for Database-
Driven Applications. In European Software En-
gineering Conference and ACM SIGSOFT Sym-
posium on the Foundations of Software Engineer-
ing, ESEC/FSE 2003, Helsinki, Finland, Septem-
ber 2003.

[9] Kelly, D. and Shepard, T. A Case Study in the
Use of Defect Classification in Inspections. In
Proceedings of the 2001 Conference of the Centre
for Advanced Studies on Collaborative Research,
Toronto, Ontario, November 2001.

[10] Leitao-Junior, P. S., Vilela, P. R. S., and Jino,
M. Mapping Faults to Failures in SQL Manip-
ulation Commands. In Proceedings of the 3rd
ACS IEEE International Conference on Computer
Systems and Applications (AICCSA-05), Egypt,
Cairo, January 2005.

	Introduction
	Related Work
	Structure of Data Manipulation Commands
	Fault Type List
	Manipulation Failure Dimensions
	A Mapping Between Faults and Failures
	Experiment

	Analysis of Data Mapping
	Conclusions
	Contributions

