
Hierarchical Clustering for Software Systems Restructuring

ISTVÁN GERGELY CZIBULA 1

GABRIELA ŞERBAN1

Babeş-Bolyai University
Department of Computer Science

1, M. Kogălniceanu Street, Cluj - Napoca
RO-400085, Romania

1(istvanc,gabis)@cs.ubbcluj.ro

Abstract. Improving the quality of software systems design is the most important issue during the evo-
lution of object oriented software systems. In this paper we are focusing on the problem of determining
refactorings that can be used in order to improve the design of object oriented software systems.Refac-
toring ([6]) is a major issue to improve internal software quality. This paper aims at presenting a new
hierarchical agglomerative clustering algorithm,HARS(Hierarchical agglomerative clustering algorithm
for restructuring software systems), that identifies the refactorings needed in order to restructure a soft-
ware system.Clustering([10]) is used in order to recondition the class structure of the system. The
proposed approach can be useful for assisting software engineers in their daily works of refactoring soft-
ware systems. We evaluate our approach using the open source case study JHotDraw ([7]), emphasizing
its advantages in comparison with existing approaches.

Keywords: Software engineering, system design, refactoring, hierarchical clustering.

(Received May 05, 2007 / Accepted July 13, 2007)

1 Introduction

Non-trivial software systems usually evolve over time
and have many releases. These new releases resolve
new requirements or are due to technological improve-
ments. Improving the quality of software systems de-
sign is the most important issue during the evolution of
object-oriented software systems.

The software maintenance cost increases with the
complexity of the software systems. Without continu-
ous restructurings of the code, the structure of the sys-
tem becomes deteriorated. Thus,program restructuring
is an important process in software evolution.

Refactoringis one major issue to increase internal
software quality. It is used by most modern develop-
ment methodologies (extreme programming and other
agile methodologies), as a solution to keep the software
structure clean and easy to maintain. Refactoring be-
comes an integral part of the software development cy-

cle: developers alternate between adding new tests and
functionalities and refactoring the code to improve its
internal consistency and clarity.

In [6], Fowler defines refactoring as “the process of
changing a software system in such a way that it does
not alter the external behavior of the code yet improves
its internal structure. It is a disciplined way to clean up
code that minimizes the chances of introducing bugs”.
Refactoring is viewed as a way to improve the design of
the code after it has been written. Software developers
have to identify parts of code having a negative impact
on the system’s maintainability, and to apply appropri-
ate refactorings in order to remove the so called “bad-
smells” ([3]). All existing Integrated Development En-
vironments offer support for automatic application of
various refactorings.

Our approach takes an existing software system and
reassembles it using a hierarchical agglomerative clus-

(istvanc, gabis)@cs.ubbcluj.ro

tering algorithm, in order to obtain a better design. The
proposed approach would help developers to identify
the appropriate refactorings. Applying the proposed
refactorings remains the decision of the software engi-
neer.

Related Work

There are various approaches in the literature in the
field of refactoring. In [13], a search based approach
for refactoring software systems structure is proposed.
The authors use an evolutionary algorithm for identify-
ing refactorings that improve the system structure.

An approach for restructuring programs written in
Java starting from a catalog of bad smells is introduced
in [5]. Based on some elementary metrics, the approach
in [16] aids the user in deciding what kind of refactoring
should be applied. The paper [15] describes a software
vizualization tool which offers support to the develop-
ers in judging which refactoring to apply.

Clustering techniques have already been applied for
program restructuring. In [17], a clustering based ap-
proach for program restructuring at the functional level
is presented. This approach focuses on automated sup-
port for identifying ill-structured or low cohesive func-
tions. The paper [11] presents a quantitative approach
based on clustering techniques for software architecture
restructuring and reengineering as well for software ar-
chitecture recovery. It focuses on system decomposi-
tion into subsystems.

A clustering approach for identifying refactorings in
order to improve the structure of software systems is de-
veloped in [4]. To our knowledge, there is no approach
in the literature that uses clustering in order to improve
the class structure of a software system, excepting the
approach introduced in [4]. The existing clustering ap-
proaches handle methods decomposition ([17]) or sys-
tem decomposition into subsystems ([11]).

The main contributions of this paper are:

• To propose, based on the approach developed in
[4], a novelagglomerative hierarchicalclustering
algorithm for identifying refactorings in order to
improve the structure of software systems. The
proposed approach can be useful for assisting soft-
ware engineers in their daily work of restructur-
ing software systems and it improves the approach
from [4].

• To evaluate the obtained results on an open source
case study ([7]) illustrating the advantages of the
proposed approach in comparison with existing ap-
proaches.

The rest of the paper is structured as follows. Sec-
tion 2 presents the main aspects related to the problem
of clusteringand particularly to the problem ofhier-
archical clustering. The approach (CARD) for deter-
mining refactorings using a clustering technique, previ-
ously introduced in [4], is presented in Section 3. A new
hierarchical agglomerativeclustering algorithm for re-
structuring software systems,HARS, is introduced in
Section 4. Section 5 provides an experimental evalu-
ation of our approach using the open source case study
JHotDraw ([7]). Some conclusions and further work are
given in Section 7.

2 Hierarchical Clustering

Unsupervised classification, orclustering, as it is more
often referred as, is considered the most importantun-
supervised leraningproblem. It is a data mining activity
that aims to differentiate groups (classes or clusters) in-
side a given set of objects ([8]). The resulting subsets
or groups, distinct and non-empty, are to be built so that
the objects within each cluster are more closely related
to one another than objects assigned to different clus-
ters. Central to the clustering process is the notion of
degree of similarity (or dissimilarity) between the ob-
jects.

Let O = {O1, O2, . . . , On} be the set of objects
to be clustered. The measure used for discriminating
objects can be anymetric or semi-metricfunction d :
O × O −→ <. The distance between two objects ex-
presses the dissimilarity between them.

A large collection of clustering algorithms is avail-
able in the literature. [8], [9] and [10] contain com-
prehensive overviews of the existing techniques. Most
clustering algorithms are based on two popular tech-
niques known aspartitionalandhierarchicalclustering.

In this paper we are focusing only onhierarchical
clustering, that is why, in the following, an overview of
the hierarchical clustering methods is presented.

Hierarchical clustering methods represent a major
class of clustering techniques ([10]). There are two
types of hierarchical clustering algorithms:agglomera-
tiveanddivisive. Given a set ofn objects, the agglomer-
ative (bottom-up) methods begin withn singletons (sets
with one element), merging them until a single cluster
is obtained. At each step, the most similar two clusters
are chosen for merging. The divisive (top-down) meth-
ods start from one cluster containing alln objects and
split it until n clusters are obtained.

The agglomerative clustering algorithms that were
proposed in the literature differ in the way the two most
similar clusters are calculated and the linkage-metric
used (single, complete or average).

Single link algorithms merge the clusters whose dis-
tance between their closest objects is the smallest. Com-
plete link algorithms, on the other hand, merge the clus-
ters whose distance between their most distant objects
is the smallest ([10]). In general, complete link algo-
rithms generate compact clusters while single link al-
gorithms generate elongated clusters. Thus, complete
link algorithms are generally more useful than single
link algorithms.

Average link algorithms merge the clusters whose
average distance (the average of distances between the
objects from the clusters) is the smallest. So, average
link clustering is a compromise between the sensitivity
of complete-link clustering to outliers and the tendency
of single-link clustering to form long chains that do not
correspond to the intuitive notion of clusters as com-
pact, spherical objects ([12]).

3 Refactorings Determination using a Cluster-
ing Approach

In this section we briefly describe the clustering ap-
proach (CARD) that was previously introduced in [4] in
order to find adequate refactorings that would improve
the structure of software systems.

CARDapproach consists of three steps:

• Data collection - The existing software system is
analyzed in order to extract from it the relevant en-
tities: classes, methods, attributes and the existing
relationships between them.

• Grouping - The set of entities extracted at the pre-
vious step are re-grouped in clusters using a clus-
tering algorithm (HARSin our approach). The goal
of this step is to obtain an improved structure of the
existing software system.

• Refactorings extraction- The newly obtained soft-
ware structure is compared with the original soft-
ware structure in order to provide a list of refactor-
ings which transform the original structure into an
improved one.

3.1 Theoretical model

A theoretical model on whichCARDapproach is based
on is introduced in [4]. Because we base our approach
on this model, in the following we will briefly describe
it.

LetS = {s1, s2, ..., sn} be a software system, where
si, 1 ≤ i ≤ n can be an application class, a method
from a class or an attribute from a class.

We will consider that:

• Class(S) = {C1, C2, . . . , Cl}, Class(S) ⊂ S, is
the set of applications classes in the initial struc-
ture of the software systemS.

• Each application classCi (1 ≤ i ≤ l) is a set of
methods and attributes, i.e.,Ci = {mi1,mi2, . . .
,mipi

, ai1, ai2, . . . , airi
}, 1 ≤ pi ≤ n, 1 ≤ ri ≤

n, wheremij (∀j, 1 ≤ j ≤ pi) are methods and
aik (∀k, 1 ≤ k ≤ ri) are attributes fromCi.

• Meth(S) =
l⋃

i=1

pi⋃
j=1

mij , Meth(S) ⊂ S, is the

set of methods from all the application classes of
the software systemS.

• Attr(S) =
l⋃

i=1

ri⋃
j=1

aij , Attr(S) ⊂ S, is the set of

attributes from the application classes of the soft-
ware systemS.

Based on the above notations, the software system
S is defined as in Equation (1):

S = Class(S)
⋃

Meth(S)
⋃

Attr(S). (1)

As described above, at theGrouping step ofCARD,
the software systemS has to be re-grouped. This re-
grouping is represented in [4] as apartition of S.

Definition 1 ([4]) Partition of a software systemS.
The setK = {K1,K2, ...,Kv} is called apartition of
the software systemS = {s1, s2, . . . , sn} iff

• 1 ≤ v ≤ n;
• Ki ⊆ S, Ki 6= ∅,∀i, 1 ≤ i ≤ v;

• S =
v⋃

i=1

Ki andKi ∩ Kj = ∅, ∀i, j, 1 ≤ i, j ≤

v, i 6= j.

In the following, we will referKi as thei-th cluster
of K,K as aset of clustersand an elementsi from S as
anentity. A clusterKi from the partitionK represents
an application class in the new structure of the software
system.

4 A Hierarchical Agglomerative Clustering Al-
gorithm for Restructuring Software Systems
(HARS)

In this section we propose a hierarchical agglomera-
tive clustering algorithm,HARS. It aims at identifying
a partition of a software systemS that corresponds to
an improved structure of it.HARScan be used in the
Grouping step ofCARD in order to re-group entities
from the software system.

4.1 HARS algorithm

HARSalgorithm is an improvement ofkREDalgorithm
introduced in [4], as it can be seen in Section 5.

HARSis an adaptation of the traditional agglomera-
tive clustering algorithm ([10]) that stops whenp clus-
ters are reached. The numberp of clusters (application
classes) to be determined is obtained using a heuristic
that will be presented below.

In our clustering approach, the objects to be clus-
tered are the entities from the software system S, i.e.,
O = {s1, s2, . . . , sn}. Our focus is to group similar
entities from S in order to obtain high cohesive groups
(clusters).

We will adapt the generic cohesion measure intro-
duced in [14] that is connected with the theory of simi-
larity and dissimilarity. In our view, this cohesion mea-
sure is the most appropriate to our goal. We will con-
sider the dissimilarity degree between any two entities
from the software systemS. Consequently, we will
consider the distanced(si, sj) between two entitiessi

andsj from S as expressed in Equation (2).

d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

(2)
where, for a given entitye ∈ S, p(e) defines a set of
relevant properties ofe, expressed as:

• If e ∈ Attr(S) (e is an attribute) thenp(e) consists
of: the attribute itself, the application class where
the attribute is defined, and all the methods from
Meth(S) that access the attribute.

• If e ∈ Meth(S) (e is a method) thenp(e) consists
of: the method itself, the application class where
the method is defined, and all the attributes from
Attr(S) accessed by the method.

• If e ∈ Class(S) (e is an application class) then
p(e) consists of: the application class itself, and all
the attributes and the methods defined in the class.

We have chosen the distance between two entities
as expressed in Equation (2) because it emphasizes the
idea of cohesion. As illustrated in [2], “Cohesion refers
to the degree to which module components belong to-
gether”. Our distance, as defined in Equation (2), high-
lights the concept of cohesion, i.e., entities with low
distances are cohesive, whereas entities with higher dis-
tances are less cohesive. We are currently working on
giving a theoretical validation of this statement.

Based on the definition of distanced (Equation (2))
it can be easily proved thatd is a semi-metric function,
so a hierarchical clustering approach can be applied.

In the following we will introduce the heuristic for
choosing the number of clusters. The determined num-
ber of clusters represents the number of application clas-
ses in the restructured software system. This heuristic
is particular to our problem and it will provide a good
enough choice for the number of application classes in
the restructured software system. In order to determine
the appropriate numberp of clusters, we are focusing on
determiningp representative entities, i.e., a representa-
tive entity for each cluster.

The main idea ofHARS’s heuristic for choosing the
representative entities and the numberp of clusters is
the following:

(i) The initial numberp of clusters isn (the number
of entities from the software system).

(ii) The first representative entity chosen is the most
“distant” entity from the set of all entities (the en-
tity that maximizes the sum of distances from all
other entities).

(iii) In order to choose the next representative entity we
reason as follows. For each remaining entity (that
was not already chosen), we compute the mini-
mum distance (dmin) from the entity and the al-
ready chosen representative entities. The next rep-
resentative entity is chosen as the entitye that max-
imizes dmin and this distance is greater than a
positive given threshold (distMin). If such an en-
tity does not exist, it means thate is very close to
all the already chosen representatives and should
not be chosen as a new representative (from the
software system structure point of view this means
thate should belong to the same application class
with an already chosen representative). In this case,
the numberp of clusters will be decreased.

(iv) The step (iii) will be repeatedly performed, untilp
representatives will be chosen.

We have to notice that step (iii) described above as-
sures, from the software system design point of view,
that near entities (with respect to the given threshold
distMin) will be merged into a single application class
(cluster), instead of being distributed in different appli-
cation classes (clusters).

We mention that at steps (ii) and (iii) the choice
could be a non-deterministic one. In the current version
of HARSalgorithm, if such a non-deterministic case ex-
ists, the first selection is chosen. Heuristics can be used

in non-deterministic selection cases. Improvements of
HARSalgorithm will deal with these kind of situations.

After determining the numberp of clusters,HARS
algorithm behaves like the classicalhierarchical agglom-
erative clusteringalgorithm that stops whenp clusters
are reached.

We will considercomplete linkas linkage metric in
our hierarchical agglomerative clustering approach, be-
cause we have obtained the best results with this metric.
Consequently, the distance between two clustersKi and
Kj is considered to be the largest distance between the
objects from the clusters, i.e,

dist(Ki,Kj) = maxs′∈Ki, s′′∈Kj
{d(s

′
, s

′′
)}. (3)

The main steps ofHARSalgorithm are:

• Determine the numberp of clusters using the heuris-
tic presented above.

• Each entity from the software systemS is put in
its own cluster (singleton).

• The following steps are repeated untilp clusters
are reached:

– Select the two most similar clustersKi and
Kj from the current partition, i.e, the pair
of clusters that minimize the distance from
Equation (3).

– Merge the clustersKi andKj into a single
new cluster. The number of clusters in the
partition is decreased.

We give nextHARSalgorithm.

Algorithm HARS is

Input: - the software system S = {s1, . . . , sn},
- the threshold distMin,

- the semi-metric d between the entities.

Output: - the partition K = {K1, K2, ..., Kp}, i.e.,

the new structure of S.

Begin

//heuristically determine the number of

//clusters

p← n //the initial number of clusters

//the index i1 of the first representative

//is chosen

i1 ← argmaxi=1,n

{
n∑

j=1,j 6=i
d(si, sj)

}
//nr is the number of the already chosen

//clusters

nr ← 1

While nr < p do

D ← {j | 1 ≤ j ≤ n, j /∈ {i1, ..., inr},
d = minl=1,nr

{
d(sj , sil

)
}

, d > distMin}
If D = ∅ then

//the number of clusters is decreased

p← p− 1

else

//another representative is chosen

nr ← nr + 1

inr ← argmaxj∈D

{
minl=1,nr−1{d(sj , sil

)}
}

endif

endwhile

For i ← 1 to n do

//each entity is put in its own cluster

Ki ← {si}
endfor

K ← {K1, . . . , Kn} //the initial partition

noClus← n //the initial number of clusters

While noClus > p do

//the most similar clusters are chosen

(Ki, Kj)← argmin(Ki∗ ,Kj∗)dist(K∗
i , K∗

j)

Knew ← Ki ∪Kj

K ← (K \ {Ki, Kj}) ∪ {Knew}
noClus← noClus− 1

endwhile

//K is the output partition

End.

In the current implementation ofHARS, we have
chosen the value1 for the thresholddistMin, because
distances greater than1 are obtained only for unrelated
entities (Equation (2)).

We mention thatHARSalgorithm provides a parti-
tion of a software systemS, partition that represents a
new structure of the software system.

4.2 Refactorings identified by HARS algorithm

In this section we briefly discuss about the refactorings
thatHARSalgorithm is able to identify. Let us assume
the theoretical model from Subsection 3.1.

Let us consider thatS is the analyzed software sys-
tem and thatK = {K1,K2, . . . ,Kp} is the partition
provided byHARS, i.e., the new structure ofS.

The main refactorings identified byHARSalgorithm
are:

1. Move Method([6]) refactoring.
It moves a methodmij from a classCi into another
classCu that uses the method most; the method
mij should be turned into a simple delegation, or
it should be removed completely. The bad smell
motivating this refactoring is that a method uses or
is used by more features of another class than the
class in which it is defined ([15]).

This refactoring is identified byHARSalgorithm
by moving the methodmij into the clusterKt cor-
responding to the application classCu, i.e.,∃t, 1 ≤
t ≤ p, s.t. Cu ∈ Kt, mij ∈ Kt andmij 6∈ Kv,
whereCi ∈ Kv.

2. Move Attribute([6]) refactoring.
It moves an attributeaij from a classCi into an-
other classCu that uses the attribute most. The
bad smell motivating this refactoring is that an at-
tribute is used by another class more than the class
in which it is defined ([15]).

This refactoring is identified byHARSalgorithm
by moving the attributeaij into the clusterKt cor-
responding to the application classCu, i.e.,∃t, 1 ≤
t ≤ p, s.t. Cu ∈ Kt, aij ∈ Kt andaij 6∈ Kv,
whereCi ∈ Kv.

3. Inline Class([6]) refactoring.
It moves all members of a classCi into another
classCu and deletes the old class. The bad smell
motivating this refactoring is that a class is not do-
ing very much ([15]).

This refactoring is identified byHARSalgorithm
by decreasing the number of application classes in
S. Consequently, classesCi andCu with their cor-
responding entities (methods and attributes) will
be merged into the same clusterKt, i.e.,∃t, 1 ≤
t ≤ p, s.t. Ci ∈ Kt, Ci ⊂ Kt, Cu ∈ Kt, Cu ⊂
Kt.

4. Extract Class([6]) refactoring . It creates a new

classC and moves some cohesive attributes and
methods into the new class. The bad smell moti-
vating this refactoring is that one class offers too
much functionality that should be provided by at
least two classes ([15]). This refactoring is identi-
fied byHARSalgorithm by increasing the number
of application classes inS. Consequently, a new
cluster appears, corresponding to a new applica-
tion class in the new structure ofS.

We have currently implemented the above enumer-
ated refactorings, butHARSalgorithm can also identify
other refactorings, like:Pull Up Attribute,Pull Down
Attribute, Pull Up Method,Pull Down Method,Col-
lapse Class Hierarchy. Future improvements will deal
with these situations, also.

5 Experimental validation

In order to validateHARSalgorithm, we will consider
two evaluations, which are described in Subsections 5.1

and 5.2. In the following, theData Collectionstep from
our approach will be briefly described.

Each of the systems evaluated in Subsections 5.1
and 5.2 are written in Java. In order to extract from the
systems the data needed in theGroupingstep ofCARD
approach (Subsection 3) we use ASM 3.0 ([1]). ASM
is a Java bytecode manipulation framework. We use
this framework in order to extract the structure of the
systems (attributes, methods, classes and relationships
between all these entities).

5.1 Code Refactoring Example

In the following we aim at illustrating how theMove
Methodrefactoring is obtained after applyingHARSal-
gorithm. We have chosen this example in order to com-
pare our approach with the one in [15], as this example
is the only result provided by the authors.

Let us consider the Java code example shown below.

public class Class_A {

public static int attributeA1;

public static int attributeA2;

public static void methodA1(){

attributeA1 = 0;

methodA2();

}

public static void methodA2(){

attributeA2 = 0;

attributeA1 = 0;

}

public static void methodA3(){

attributeA2 = 0;

attributeA1 = 0;

methodA1();

methodA2();

}

}

public class Class_B {

private static int attributeB1;

private static int attributeB2;

public static void methodB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.methodA1();

}

public static void methodB2(){

attributeB1=0;

attributeB2=0;

}

public static void methodB3(){

attributeB1=0;

methodB1();

methodB2();

}

}

Analyzing the code presented above, it is obvious
that the methodmethodB1() has to belong toclass_A,
because it uses features ofclass_Aonly. Thus, the refac-
toringMove Methodshould be applied to this method.

We have appliedHARSalgorithm, introduced in Sec-
tion 4, and theMove Methodrefactoring formethodB1()
was determined.

The two obtained clusters are:

• Cluster 1:
{Class_A, methodA1(), methodA2(), methodA3(),
methodB1(), attributeA1, attributeA2}.

• Cluster 2:
{Class_B, methodB2(), methodB3(), attributeB1, at-
tributeB2}.

The first cluster corresponds to application class
Class_Aand the second cluster corresponds to applica-
tion classClass_B in the new structure of the system.
Consequently,HARSalgorithm proposes the refactor-
ing Move MethodmethodB1() from Class_Bto Class_A.

We mention that the refactoring proposed by our ap-
proach coincides with the one given in [15].

5.2 JHotDraw Case Study

Our second evaluation is the open source software JHot-
Draw, version 5.1 ([7]). It is a Java GUI framework for
technical and structured graphics, developed by Erich
Gamma and Thomas Eggenschwiler, as a design exer-
cise for using design patterns. It consists of173classes,
1375methods and475attributes. The reason for choos-
ing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a
good design.

Our focus is to test the accuracy ofHARSalgorithm
on JHotDraw, i.e., how accurate are the results obtained
after applyingHARSalgorithm in comparison to the
current design of JHotDraw. As JHotDraw has a good
class structure, theGroupingstep ofCARDshould gen-
erate a nearly identical class structure. In order to cap-
ture the similarity of the two class structures (the one
obtained byHARSalgorithm and the original one) we
use a measure,ACC, that was previously introduced in
[4].

Let us consider the theoretical model from Subsec-
tion 3.1 and let us consider thatK = {K1, . . . Kp} is a
partition reported after applyingHARSalgorithm. We

will denote byl the number of application classes from
the software systemS.

Definition 2 ([4]) Accuracy of classes recovery - ACC.
The accuracy of partitionK with respect to the soft-

ware systemS, denoted byACC(S,K), is defined as:

ACC(S,K) =
1
l

l∑
i=1

acc(Ci,K).

acc(Ci,K) =

∑
k∈MCi

|Ci ∩ k|
|Ci ∪ k|

|MCi
| (whereMCi = {Kj |

1 ≤ j ≤ p, |Ci∩Kj | 6= 0} is the set of clusters fromK
that contain elements from the application classCi), is
the accuracy ofK with respect to application classCi.

ACC defines the degree to which the partitionK
is similar to S. For a given application classCi ∈
Class(S), acc(Ci,K) defines the degree to which ap-
plication classCi, all its methods and all its attributes
were discovered in a single cluster.

Based on Definition 2, it can be proved that
ACC(S,K) ∈ [0, 1]. ACC(S,K) = 1 iff acc(Ci,K) =
1,∀ Ci ∈ Class(S), i.e., each application class was
discovered in a single cluster. In all other situations,
ACC(S,K) < 1.

Larger values forACC indicate better partitions with
respect toS, meaning thatACC has to be maximized.

After applyingHARSalgorithm for JHotDraw case
study, we have obtained the following results:

(i) ACC = 0.974.

(ii) The algorithm obtained a new class after the re-
group-ing step, meaning that anExtract Classrefac-
toring was suggested. The methods placed in the
new class were:PertFigure.handles,GroupFig-
ure.handles,TextFigure.handles,StandardDraw-
ing.handles.

(iii) The algorithm suggested twoMove Attributerefac-
torings: attributesColorEntry.fColor andColorEn-
try.fName were placed inColorMap class.

(iv) There were four misplaced methods,UngroupCom-
mand.execute,FigureTransferCommand.
insertFigures,SendToBackCommand.execute,
andBringToFrontCommand.executewhich were
placed inStandardDrawing class.

In our view, the refactorings identified at (ii) and (iii)
can be justified.

• All the methods enumerated at (ii) provide similar
functionalities ([7]), so, in our view, these methods
can be extracted into a new class in order to avoid
duplicated code, applyingExtract Classrefactor-
ing.

• ColorMap andColorEntry ([7]) are two classes
defined in the same source file.ColorMap is an
utility class which manages the default colors used
in the application.ColorEntry is a simple class
used only byColorMap, that is why, in our view,
ColorEntry.fColor andColorEntry.fName attributes
can be placed in either of the two classes.

6 Advantages of our approach in comparison
with previous approaches

A search-based approach for refactoring software sys-
tems structure wass proposed in [13]. The authors use
an evolutionary algorithm in order to obtain a list of
refactorings using JHotDraw case study.

The advantages ofCARDapproach usingHARSal-
gorithm, in comparison with the approach presented in
[13] are illustrated bellow:

• The accuracy obtained by the refactoring technique
from [13] cannot be determined, because the au-
thors provide only the list of methods proposed to
be refactored, and in order to computeACC mea-
sure we need the complete resulting structure of
the software system (including the attributes, also).

• In the approach from [13] there are10 misplaced
methods, while in our approach there are only4
misplaced methods.

• Our technique is deterministic, in comparison with
the approach from [13]. The evolutionary algo-
rithm from [13] is executed10 times, in order to
judge how stable are the results, whileHARSalgo-
rithm from our approach is executed justonce.

• The overall running time for the technique from
[13] is about300minutes (30 minutes for one run),
while HARSalgorithm in our approach provides
the results in about3.68minutes. We mention that
the execution was made on similar computers.

• Because the results are provided in a reasonable
time, our approach can be used for assisting devel-
opers in their daily work for improving software
systems.

Based on the above considerations,HARSalgorithm
providesbetter results than the approach from [13].

In [4], a clustering approach for identifying refac-
torings in order to improve the structure of software
systems was developed. For this purpose, a clustering
algorithm, namedkRED, was introduced.

The advantages ofHARSalgorithm introduced in
this paper in comparison withkREDalgorithm are il-
lustrated below.

• The number of misplaced methods from both ap-
proaches is4.

• The overall running time for the technique from
[4] is about5 minutes , whileHARSalgorithm in
our approach provide the results in about3.68min-
utes. We mention that the execution was made on
similar computers.

• Unlike kRED algorithm, HARSalgorithm identi-
fies theExtract Classrefactoring, also.

In [15], the authors describe a software vizualization
tool which offers support to the developers in judging
which refactoring to apply and provide a short example.
A comparison betweenHARSand the approach from
[15] was illustrated in Subsection 5.1.

We cannot make a complete comparison with other
refactoring approaches, because, for most of them, the
obtained results for relevant case studies are not avail-
able. Most approaches (like [11], [17]) give only short
examples indicating the obtained refactorings. Other
techniques address particular refactorings: the one in
[17] focuses on automated support only for identifying
ill-structured or low cohesive functions and the tech-
nique in [11] focuses on system decomposition into sub-
systems.

7 Conclusions and Future Work

Based on the approach from [4], we have presented in
this paper a new hierarchical agglomerative clustering
algorithm (HARS) that can be used for restructuring ob-
ject oriented software systems.HARSalgorithm is used
in order to obtain an improved structure of a software
system, by identifying the needed refactorings. For this
purpose, a heuristic that determines the number of ap-
plication classes is proposed.

We have demonstrated the potential of our algorithm
by applying it to the open source case study JHotDraw
and we have also presented the advantages of our ap-
proach in comparison with existing approaches.

Further work can be done in the following direc-
tions:

• To use heuristics for the stopping criterion ofHARS
algorithm.

• To determine other distance metrics (or semi-met-
rics) between the entities from the software sysem.

• To use other search-based approaches in order to
determine refactorings that would improve the de-
sign of a software system.

• To develop a tool (as a plugin for Eclipse) that is
based on determining refactorings usingHARSal-
gorithm.

• To apply our approach in order to transform non
object-oriented software into object-oriented sys-
tems.

• To perform a case study on a large software sys-
tem for which the needed refactorings are already
known.

References

[1] ObjectWeb: Open Source Middleware.
http://asm.objectweb.org/.

[2] Bieman, J. M. and Kang, B.-K. Measuring design-
level cohesion.Software Engineering, 24(2):111–
124, 1998.

[3] Brown, W. J., Malveau, R. C., Hays W. Mc-
Cormick, I., and Mowbray, T. J.AntiPatterns:
refactoring software, architectures, and projects
in crisis. John Wiley & Sons, Inc., New York,
NY, USA, 1998.

[4] Czibula, I. G. and Serban, G. Improving Systems
Design Using a Clustering Approach.Interna-
tional Journal of Computer Science and Network
Security (IJCSNS), 6(12):40–49, 2006.

[5] Dudzikan, T. and Wlodka, J. Tool-supported
discovery and refactoring of structural weakness,
2002. Masters’ Thesis, TU Berlin.

[6] Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, Reading, MA,
USA, 1999.

[7] Gamma, E. JHotDraw Project.
http://sourceforge.net/projects/jhotdraw.

[8] Han, J. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[9] Jain, A. K. and Dubes, R. C.Algorithms for clus-
tering data. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988.

[10] Jain, A. K., Murty, M. N., and Flynn, P. J. Data
clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[11] Lung, C.-H. Software architecture recovery and
restructuring through clustering techniques. In
ISAW ’98: Proceedings of the third international
workshop on Software architecture, pages 101–
104, New York, NY, USA, 1998. ACM Press.

[12] Manning, C. D. and Schutze, H.Foundations
of Statistical Natural Language Processing. The
MIT Press, 1999.

[13] Seng, O., Stammel, J., and Burkhart, D. Search-
based determination of refactorings for improving
the class structure of object-oriented systems. In
GECCO ’06: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation,
pages 1909–1916, New York, NY, USA, 2006.
ACM Press.

[14] Simon, F., Loffler, S., and Lewerentz, C. Distance
based cohesion measuring. InProceedings of the
2nd European Software Measurement Conference
(FESMA), pages 69–83, Technologisch Instituut
Amsterdam, 1999.

[15] Simon, F., Steinbrückner, F., and Lewerentz, C.
Metrics based refactoring. InCSMR ’01: Pro-
ceedings of the Fifth European Conference on
Software Maintenance and Reengineering, pages
30–38, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[16] Tahvildari, L. and Kontogiannis, K. A metric-
based approach to enhance design quality through
meta-pattern transformations. InCSMR ’03: Pro-
ceedings of the Seventh European Conference on
Software Maintenance and Reengineering, pages
183–192, Washington, DC, USA, 2003. IEEE
Computer Society.

[17] Xu, X., Lung, C.-H., Zaman, M., and Srinivasan,
A. Program restructuring through clustering tech-
niques. InSCAM ’04: Proceedings of the Source
Code Analysis and Manipulation, Fourth IEEE In-
ternational Workshop on (SCAM’04), pages 75–
84, Washington, DC, USA, 2004. IEEE Computer
Society.

	Introduction
	Hierarchical Clustering
	Refactorings Determination using a Clustering Approach
	Theoretical model

	A Hierarchical Agglomerative Clustering Algorithm for Restructuring Software Systems (HARS)
	HARS algorithm
	Refactorings identified by HARS algorithm

	Experimental validation
	Code Refactoring Example
	JHotDraw Case Study

	Advantages of our approach in comparison with previous approaches
	Conclusions and Future Work

