Hierarchical Clustering for Software Systems Restructuring

ISTVAN GERGELY CZIBULA
GABRIELA SERBAN!

Babeg-Bolyai University
Department of Computer Science
1, M. Kogalniceanu Street, Cluj - Napoca
RO-400085, Romania

lliatnne anhicY@eac tihhali v
USLVarniv, yawis) {iw Lo uvusiuja v

Abstract. Improving the quality of software systems design is the most important issue during the evo-
lution of object oriented software systems. In this paper we are focusing on the problem of determining
refactorings that can be used in order to improve the design of object oriented software sirséans.

toring ([6]) is a major issue to improve internal software quality. This paper aims at presenting a new
hierarchical agglomerative clustering algorititARS(Hierarchical agglomerative clustering algorithm

for restructuring software systems), that identifies the refactorings needed in order to restructure a soft-
ware system.Clustering([10]) is used in order to recondition the class structure of the system. The
proposed approach can be useful for assisting software engineers in their daily works of refactoring soft-
ware systems. We evaluate our approach using the open source case study JHotDraw ([7]), emphasizing
its advantages in comparison with existing approaches.

Keywords: Software engineering, system design, refactoring, hierarchical clustering.

(Received May 05, 2007 / Accepted July 13, 2007)

1 Introduction cle: developers alternate between adding new tests and

- . functionalities and refactoring the code to improve its
Non-trivial software systems usually evolve over tlmqPternal consistency and clarity.
ve '

and have many releases. These new releases reso
new requirements or are due to technological improve- In [6], Fowler defines refactoring as “the process of
ments. Improving the quality of software systems dechanging a software system in such a way that it does
sign is the most important issue during the evolution ofot alter the external behavior of the code yet improves
object-oriented software systems. its internal structure. It is a disciplined way to clean up
The software maintenance cost increases with tHePde that minimizes the chances of introducing bugs”.
complexity of the software systems. Without continuRefactoring is viewed as away to improve the design of
ous restructurings of the code, the structure of the sy¥1€ code after it has been written. Software developers
tem becomes deteriorated. Thpsygram restructuring Nave to identify parts of code having a negative impact
is an important process in software evolution. on the system’s maintainability, and to apply appropri-
Refactoringis one major issue to increase internar'jlte refactorings in order to remove the so called “bad-

software quality. It is used by most modern develop-sme"S ([3]). All existing Integrated Development En

ment methodologies (extreme programming and Othé/lironments offer support for automatic application of

agile methodologies), as a solution to keep the softwaré@Mous refactorings.
structure clean and easy to maintain. Refactoring be- Our approach takes an existing software system and
comes an integral part of the software development cyeassembles it using a hierarchical agglomerative clus-

(istvanc, gabis)@cs.ubbcluj.ro

tering algorithm, in order to obtain a better design. The The rest of the paper is structured as follows. Sec-
proposed approach would help developers to identifflon 2 presents the main aspects related to the problem
the appropriate refactorings. Applying the proposedf cldsteringand particularly to the problem dfier-
refactorings remains the decision of the software engarchical clustering. The approach (CARD) for deter-
neer. mining refactorings using a clustering technique, previ-
ously introduced inl4], is presented in Section 3. A new
Related Work hiergrchical agglomelativilustering algoritﬁiﬁn for re-
There are various approaches in the literature in thgfructuring software systemsiARS, is introduced in
field of refactoring. In [13], a search based approacfSeCtiorml. Sectiop, 5 provides an experimental evalu-
for refactoring software systems structure is proposedtion of-eur approach using the open source case study
The authors use an evolutionary algorithm for identify-JHotDraw ([7]). Some conclusions and further work are
ing refactorings that improve the system structure. givenin Sectiort]?
An approach for restructuring programs written in
Java starting from a catalog of bad smells is introduceg Hjerarchical Clustering
in [5]. Based on some elementary metrics, the approach) L) L
in [16] aids the user in deciding what kind of refactoringonSuPervised classification, olustering, as it is more

shouid be applied. The papert15] describes a softwafgten referred as, is considered the most important

vizualization tool which offers support to the deVelop_superwsed leraningroblem. Itis a data mining activity

ers in judging which refactoring to apply. that aims to differentiate groups (classes or clusters) in-

)) p .
Clustering techniques have already been applied fgllde a given set of objects{[8]). The resulting subsets

program restructuring. In[17], a clustering based apgrgroups, distinct and non-empty, are to be built so that

proach for program restructuring at the functional Ieveihe objects within each cluster are more closely related

is presented. This approach focuses on automated SlgE_one another than objects assigned to different clus-
port for identifying ill-structured or low cohesive func- rs. Central to the clustering process is the notion of

tions. The paper [11] presents a quantitative approa&egree of similarity (or dissimilarity) between the ob-

] . . cts.
based on clustering techniques for software architectul® .
restructuring and reengineering as well for software ar- Let O = {01,0,...,0n} be the set of objects

chitecture recovery. It focuses on system decompostlg be clustered. The measure used for discriminating

tion into subsystems. objects can be angnetric or semi-metricfunctiond :

.0 x O — R. The distance between two objects ex-
A clustering approach for identifying refactorings in S
; : resses the dissimilarity between them.
order to improve the structure of software systems is de-
A large collection of clustering algorithms is avail-

o .
yelopeq n ‘_4]' To our knowledgg, thgre IS no a_pproacgble in the literature. 8],-19] and-[10] contain com-
in the literature that uses clustering in order to improve . : - :
. rehensive overviews of the existing techniques. Most
the class structure of a software system, excepting t : .
. : - . clustering algorithms are based on two popular tech-
approach introduced in[4]. The existing clustering ap- . o ; : :
nigues known apartitional andhierarchicalclustering.

proaches handle methods decompositien, ([17]) or sys- In this paper we are focusing only dierarchical
tem decomposition into subsystems-{[11]). . .) . .
clustering, that is why, in the following, an overview of
The main contributions of this paper are: the hierarchical clustering methods is presented.
Hierarchical clustering methods represent a major
¢ To propose, based on the approach developed @#ass of clustering techniques—([10]). There are two
[4], a novelagglomerative hierarchicatlustering types of hierarchical clustering aigorithmeggglomera-
aigorithm for identifying refactorings in order to tiveanddivisive. Given a set of objects, the agglomer-
improve the structure of software systems. Thative (bottom-up) methods begin withsingletons (sets
proposed approach can be useful for assisting softvith one element), merging them until a single cluster
ware engineers in their daily work of restructur-is obtained. At each step, the most similar two clusters
ing software systems and it improves the approachre chosen for merging. The divisive (top-down) meth-
from [4]. ods start from one cluster containing allobjects and
split it until n clusters are obtained.

e To evaluate the obtained results on an open source The agglomerative clustering algorithms that were
case study ([7]) illustrating the advantages of th@roposed in the literature differ in the way the two most
proposed approach in comparison with existing apsimilar clusters are calculated and the linkage-metric
proaches. used (single, complete or average).

Single link algorithms merge the clusters whose dis- e Class(S) = {C1,Cs,...,Ci}, Class(S) C S, is
tance between their closest objects is the smallest. Com- the set of applications classes in the initial struc-
plete link algorithms, on the other hand, merge the clus- ture of the software systefsi
ters whose distance between their most distant objects
is the smallest ([10]). In general, complete link algo-
rithms generate compact clusters while single link al-
gorithms generate elongated clusters. Thus, complete
link algorithms are generally more useful than single
link algorithms.

Average link algorithms merge the clusters whose Lo pi
average distance (the average of distances between the Meth(S) = | J |) mij, Meth(S) C S, is the
objects from the clusters) is the smallest. So, average i=1j=1 o
link clustering is a compromise between the sensitivity ~ S€t Of methods from all the application classes of
of complete-link clustering to outliers and the tendency ~ the software systerfi.

e Each application clas§; (1 < i < 1) is a set of
methods and attributes, i.€; = {m;1, m;2,. ..
s Mipy s Gl G2y - - Gip }, 1 <pp <y 1< <
n, wherem,; (Vj, 1 < j < p;) are methods and
a;r (Vk, 1 < k <r;) are attributes frond;.

of single-link clustering to form long chains that do not o
correspond to the intuitive notion of clusters as com- e Attr(S) = U U a;j, Attr(S) C S, is the set of
pact, spherical objects-([12]). i=1j=1

attributes from the application classes of the soft-

3 Refactorings Determination using a Cluster- ware systens.

ing Approach Based on the above notations, the software system

In this section we briefly describe the clustering ap-S is defined as in EquatioE](l):

proach (CARD) that was previously introduced-in [4] in
order to find adequate refactorings that would improve S = Class(S) U Meth(S) U Attr(S). (1)
the structure of software systems.

CARDapproach consists of three steps: As described above, at ti@&ouping step ofCARD,

the software systeny has to be re-grouped. This re-
e Data collection- The existing software system is 9rouping is represented in [4] apartition of 5.

analyzed in order to extract from it the relevant enpafinition 1 ([4]) Partition of a software systens.
tities: classes, methods, attributes and the existingq geic — (K1, Ko, ..., K,} is called apartition of
relationships between them. the software systeti = {s;,sa,... ,s,} iff

e Grouping - The set of entities extracted atthe pre- o 1 <v <n;
vious step are re-grouped in clusters using aclus- ¢ K; C S, K; # 0,Vi, 1 <1i < v;
tering algorithm (HAR® our approach). The goal v o o
of this step is to obtain an improved structure ofthe ® © = U KiandK; N K; =0, Vi, j,1 < i,j <
existing software system. ny 7;';1

 Refactorings extraction- The newly obtained soft- |n the following, we will referk; as thei-th cluster
ware structure is compared with the original softof K, I as aset of clusterand an element; from S as
ware structure in order to provide a list of refactor-anentity. A clusterk’; from the partitionk represents
ings which transform the original structure into anan application class in the new structure of the software
improved one. system.

3.1 Theoretical model 4 A Hierarchical Agglomerative Clustering Al-

A theoretical model on whicEARDapproach is based ~ 90rithm for Restructuring Software Systems

on is introduced inJ4]. Because we base our approach (HARS)

on this model, in the following we will briefly describe In this section we propose a hierarchical agglomera-

it. tive clustering algorithmHARS. It aims at identifying
LetS = {s1, s2, ..., sn | be a software system, wherea partition of a software systen§ that corresponds to

si;, 1 < ¢ < m can be an application class, a methodan improved structure of itHARScan be used in the

from a class or an attribute from a class. Grouping step of CARD in order to re-group entities
We will consider that: from the software system.

4.1 HARS algorithm Based on the definition of distandgEquation (2))

it can be easily proved thatis a semi-metric function,
introduced in f4], as it can be seen in Sectin 5 so a hierarchical clustering approach can be applied.

HARSs ah adaptation of the traditiona lomera- In the following we will introduce the heuristic for
.) P 99 choosing the number of clusters. The determined num-
tive clustering algorithm ([10]) that stops whertlus-

] o ber of clusters represents the number of application clas-
ters are reached. The numbeof clusters (application es in the restructured software system. This heuristic

classgs) to be determined is obtained using a heunsﬁbg particular to our problem and it will provide a good
that will be presented below.

| | . h. the obi be ¢l enough choice for the number of application classes in
g our chusterl_n_g afpproacr:] 5 ? objects to eSc YSthe restructured software system. In order to determine
tered are the entities from the software system S, 1.6 o appropriate numberof clusters, we are focusing on

o - {51, 52, .. > sn}. Our fOCl.JS IS to group similar determiningp representative entities, i.e., a representa-
entities from S in order to obtain high cohesive groups e entity for each cluster

(clusters)_.) . . The main idea oHARSs heuristic for choosing the
We will adapt the generic cohesion measure intro

. : X " “fepresentative entities and the numpeof clusters is
duced in [14] that is connected with the theory of SiMipe following:

larity and dissimilarity. In our view, this cohesion mea-
sure is the most appropriate to our goal. We will con- (i) The initial numberp of clusters isn (the number
sider the dissimilarity degree between any two entities of entities from the software system).

from the software systen§. Consequently, we will
consider the distancé(s;, s;) between two entities;
ands; from S as expressed in Equatictﬂ (2).

HARSalgorithm is an improvement &REDalgorithm

(i) The first representative entity chosen is the most
“distant” entity from the set of all entities (the en-
tity that maximizes the sum of distances from all
other entities).

(iii) Inorder to choose the next representative entity we
reason as follows. For each remaining entity (that
)) i @) was not already chosen), we compute the mini-
where, for a given entity € 5, p(e) defines a set of mum distance (dmin) from the entity and the al-
relevant properties af, expressed as: ready chosen representative entities. The next rep-
resentative entity is chosen as the entitijat max-
imizes dmin and this distance is greater than a
positive given threshold (distMin). If such an en-

00 otherwise

_ Ip(s)np(si)l _ _
d<si,sj>:{1 Coaen T p(si) Np(sy) #0

o If e € Attr(S) (eis an attribute) thep(e) consists
of: the attribute itself, the application class where

the attribute is defined, and all the methods from
Meth(S) that access the attribute.

o If e € Meth(S) (e is a method) thep(e) consists
of: the method itself, the application class where
the method is defined, and all the attributes from

tity does not exist, it means thatis very close to

all the already chosen representatives and should
not be chosen as a new representative (from the
software system structure point of view this means
thate should belong to the same application class

with an already chosen representative). In this case,

Attr(5) accessed by the method. the numbep of clusters will be decreased.

e If ¢ € Class(S) (e is an application class) then (iv)
p(e) consists of: the application class itself, and all
the attributes and the methods defined in the class.

The step (iii) will be repeatedly performed, unil
representatives will be chosen.

We have to notice that step (iii) described above as-

We have chosen the distance between two entitiesires, from the software system design point of view,
as expressed in Equation (2) because it emphasizes that near entities (with respect to the given threshold
idea of cohesion. As illustrated in, [2], “Cohesion refersdistMin) will be merged into a single application class
to the degree to which module components belong tdeluster), instead of being distributed in different appli-
gethef. Our distance, as defined in Equatign (2), high<ation classes (clusters).
lights the concept of cohesion, i.e., entities with low We mention that at steps (ii) and (iii) the choice
distances are cohesive, whereas entities with higher dissuld be a non-deterministic one. In the current version
tances are less cohesive. We are currently working af HARSalgorithm, if such a non-deterministic case ex-
giving a theoretical validation of this statement. ists, the first selection is chosen. Heuristics can be used

in non-deterministic selection cases. Improvements of

HARSalgorithm will deal with these kind of situations.
After determining the number of clusters, HARS

algorithm behaves like the classita¢rarchical agglom-

erative clusteringalgorithm that stops whep clusters

are reached.

We will considercomplete linkas linkage metric in

our hierarchical agglomerative clustering approach, be-
cause we have obtained the best results with this metric.

Consequently, the distance between two clustérand

D—{jl1<j<n, j¢{ir,.inr},
d = minj=1 nr {d(Sj, sil)} , d > distMin}
If D=0 then
/lthe number of clusters is decreased
p—p—1
else
/lanother representative is chosen
nr«—mnr+1
inr <= GTrgMaTjcp {minl:Lm_l{d(Sj, Sil)}}
endif

K is considered to be the largest distance between the endwhile

objects from the clusters, i.e,

For i

«— 1 tondo

Output: - the partition
the new structure of S.
Begin

/leach entity is put in its own cluster
K; — {si}
endfor
K — {Ki,...,Kn} /lithe initial partition
noClus < n [//the initial number of clusters
While noClus > p do
/lthe most similar clusters are chosen
(K, Kj) «— argmin(Ki*ij*)dist(K;,K;)
Knew — K; UK;
K — (K\{Ki, K;}) U{Knew}
noClus < noClus — 1
endwhile
/I is the output partition
End.

dist(K;, K;) = mazy e, e d(s,s)}. (3)

The main steps dflARSalgorithm are:

e Determine the numberof clusters using the heuris-
tic presented above.

e Each entity from the software systefhis put in
its own cluster (singleton).

e The following steps are repeated ungilclusters
are reached:

— Select the two most similar clustefs; and

K; from the current partition, i.e, the pair | the current implementation diARS, we have

of clusters that minimize the distance fromchosen the valué for the thresholdlistMin, because

Equation (3). distances greater thdnare obtained only for unrelated
— Merge the clusterss; and K into a single entities (Equation(2)).

new cluster. The number of clusters in the ~We mention thatHARSalgorithm provides a parti-
partition is decreased. tion of a software systerfy, partition that represents a

new structure of the software system.
We give nextHARSalgorithm.

Algorithm HARS s 4.2 Refactorings identified by HARS algorithm
Input: - the software system S ={s1,...,sn}, In this section we briefly discuss about the refactorings
- the threshold distMin,

thatHARSalgorithm is able to identify. Let us assume
the theoretical model from Subsectjon,3.1.

Let us consider that is the anal software sys-
tem and thatC = {K;, Ks,...,K,} is the partition
provided byHARS, i.e., the new structure §f

The main refactorings identified BYARSalgorithm
are:

d between the entities.
K= {Kl,Kg,...,Kp}, ie.,

- the semi-metric

IIheuristically determine the number of
/lclusters
p < n llthe initial number of clusters

1. Move Method([6]) refactoring.

/Ithe index 11 of the first representative .

llis chosen It moves a metfiod:;; from a clasg’; into another

‘ n classC,, that uses the method most; the method

t1 < argmati=1,n jzﬁ.#d(si’sﬂ‘) m;; should be turned into a simple delegation, or

Ilnris the number of the already chosen it should be removed completely. The bad smell

Iclusters motivating this refactoring is that a method uses or

nro—1 is used by more features of another class than the

While nr <p do

class in which it is defined ([15]).

This refactoring is identified byHARSalgorithm an . Inthe following, thBata Collectionstep from
by moving the methodh;; into the clusters, cor- our roach will be briefly described.

responding to the application claSs, i.e., 3¢, 1 < Each of the systems evaluated in Subsectj 51
t <p, st.Cy, € Ky, my; € Ky andm,; & K, andgﬁ are written in Java. In order to extract f the
whereC; € K. systems the data needed in tBmupingstep of CARD

approach (Subsectim 3) we use ASM 3,0 ([1]). ASM

It tribute.. f las< int is a Java bytecode 'manipulation framework. We use
t;nc;vels asrgja tL'Df[J @i r?hm a t(t:rizs ¢ Zr:qn Otan‘l_'h this framework in order to extract the structure of the

other class., that uses e atriotite most. esystems (attributes, methods, classes and relationships

bad smell motivating this refactoring is that an at- s
. . between all these entities).

tribute is used by another class more than the class

in which it is defined (I15]).

2. Move Attribute([8]) refactoring.

5.1 Code Refactoring Example

This refactoring is identified bydARSalgorithm |, he following we aim at illustrating how thblove
by moving the attribute; into the clusters; cor- \ethodrefactoring is obtained after applyittARSal-
responding to the application claSs, i.e.,3t, 1 < gorithm. We have chosen this example in order to com-
t<p, st. O, € Ky, aj € Ky andag; ¢ Ko, pare our approach with the one in{15], as this example
whereC; € K. is the only result provided by the authors.

3. Inline Class([8]) refactoring. Let us consider the Java code example shown below.

It moves all members of a clags; into another _
classC,, and deletes the old class. The bad smefublic class Class A {
motivating this refactoring is that a class is not do- ~ Public static int attributeAl;

ing very much ([1_5]) public static int attributeA2;
public static void methodA1(){

This refactoring is identified byH{ARSalgorithm attributeALl = 0;

by decreasing the number of application classes in methodA2();

S. Consequently, classé€g andC,, with their cor- }

responding entities (methods and attributes) will public static void methodA2(){

be merged into the same clust&y, i.e.,3t, 1 < attributeA2 = 0;

t<p, st.Ci,e Ky, C; C Ky, Cp € Ky, Cp C attributeA1l = 0;

Kt- }

public static void methodA3(){
attributeA2 = 0;

classC and moves some cohesive attributes and attributeAl = 0;

methods into the new class. The bad smell moti- methodA1();

vating this refactoring is that one class offers too methodA2();

much functionality that should be provided by at }

least two classes-(I15]). This refactoring is identi-+}

fied byHARSalgorithm by increasing the number public class Class_B {

of application classes if. Consequently, a new private static int attributeB1;

cluster appears, corresponding to a new applica- private static int attributeB2;

tion class in the new structure 6t public static void methodB1(){

Class_A.attributeA1=0;

Class_A.attributeA2=0;

Class_A.methodAl();

4. Extract Class([8]) refactoring. It creates a new

We have currently implemented the above enumer-
ated refactorings, biARSalgorithm can also identify
other refactorings, likePull Up Attribute, Pull Down
Attribute, Pull Up Method, Pull Down Method,Col-
lapse Class Hierarchy. Future improvements will deal
with these situations, also.

public static void methodB2(){
attributeB1=0;
attributeB2=0;
}
public static void methodB3(){
In order to validateHARSalgorithm, we will consider attributeB1=0;
two evaluations, which are described in Subsecﬁs 5.1 methodB1();

5 Experimental validation

methodB2(); will denote byl the number of application classes from
} the software syster§.

Definition 2 ([4]) Accuracy of classes recovery - ACC.
Analyzing the code presented above, it is obvious The accuracy of partitioiC with respect to the soft-
that the methodnethodB1() has to belong talass_A, Ware systent, denoted byACC/(S, K), is defined as:
because it uses featuresctifss_Aonly. Thus, the refac- o
toring Move Methodshould be applied to this method. _ 4
We have applietHARSalgorithm, introduced in Sec- ACC(S, k) = + ; ace(Ci, K).
tior;ljj, and thevlove Methodefactoring formethodB1()

was-tletermined. |Cs N K|
The two obtained clusters are: . Z |C; UK
ace(Cy,K) = "0 (where M, = (K|

e Cluster 1:
{Class_A, methodA1(), methodA2(), methodA3(),
methodB1(), attributeAl, attributeA2}.

1<j<p, |CiNK,| # 6} is the set of clusters froid
that contain elements from the application cl&s3, is
the accuracy ofC with respect to application clags;.

e Cluster 2: . . o
{Class_B, methodB2(), methodB3(), attributeB1, at- . CC defines the degree to which the partitisin
tributeB2} is similar to S. For a given application class; €

Class(S), ace(C;, K) defines the degree to which ap-
The first cluster corresponds to application class plication classC;, all its methods and all its attributes

Class_Aand the second cluster corresponds to applicé(‘-’ere discovered ina smgl_e cluster.

tion classClass_Bin the new structure of the system. _based on Definitiop,2, it can be proved that

ConsequentlyHARSalgorithm proposes the refactor- ACC(S,K) € [0,1]. ABC(S, K) = 1iff acc(C;, K) =

ing Move MethodnethodB1()from Class_Bto Class A. 1>V Ci € Class(S), i.e., each application class was
We mention that the refactoring proposed by Ourap(jlscovered in a single cluster. In all other situations,

proach coincides with the one given in[15]. ACC(S,K) < 1. o N .
Larger values foACC indicate better partitions with

respect taS, meaning thadC'C has to be maximized.
After applyingHARSalgorithm for JHotDraw case
Our second evaluation is the open source software JHaitudy, we have obtained the following results:
Draw, version 5.1 (I7]). It is a Java GUI framework for
technical and structured graphics, developed by Erich(i) ACC = 0.974.
Gamma and Thomas Eggenschwiler, as a design ex
cise for using design patterns. It consistd @8classes,
1375methods and 75attributes. The reason for choos-
ing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a
good design.
Our focus is to test the accuracyldARSalgorithm
on JHotDraw, i.e., how accurate are the results obtaine(ﬁi)
after applyingHARS algorithm in comparison to the
current design of JHotDraw. As JHotDraw has a good
class structure, theroupingstep of CARDshould gen-
erate a nearly identical class structure. In order to cagiv) There were four misplaced method#groupCom-
ture the similarity of the two class structures (the one mand.executeFigureTransferCommand.

5.2 JHotDraw Case Study

e(ii) The algorithm obtained a new class after the re-
group-ing step, meaning that Bntract Clasgefac-
toring was suggested. The methods placed in the
new class werePertFigure.handles,GroupFig-
ure.handles,TextFigure.handles,StandardDraw-
ing.handles.

The algorithm suggested twdove Attributerefac-
torings: attribute€olorEntry.fColor andColorEn-
try.fName were placed irColorMap class.

obtained byHARSalgorithm and the original one) we insertFigures, SendToBackCommand.execute,
use a measure}C'C, that was previously introduced in andBringToFrontCommand.executewhich were
[4]. placed inStandardDrawing class.

Let us consider the theoretical model from Subsec-
tiontﬁjland let us consider thitt= {K;,... K, } isa In our view, the refactorings identified at (ii) and (iii)
par reported after applying ARSalgorithm. We can be justified.

o All the methods enumerated at (ii) provide similar In [4], a clustering approach for identifying refac-
functionalities ([7]), so, in our view, these methodstorings in order to improve the structure of software
can be extracted into a new class in order to avoidystems was developed. For this purpose, a clustering
duplicated code, applyingxtract Classrefactor- algorithm, name#RED, was introduced.
ing. The advantages dflARSalgorithm introduced in

this paper in comparison witkRED algorithm are il-
e ColorMap andColorEntry ([7]) are two classes |strated below.

defined in the same source fil€olorMap is an
utility class which manages the default colors used e The number of misplaced methods from both ap-
in the application.ColorEntry is a simple class proaches igl.

used only byColorMap, that is why, in our view,
ColorEntry.fColor andColorEntry.fName attributes
can be placed in either of the two classes.

e The overall running time for the technique from
[4] is about5 minutes , whileHARSalgorithm in
our approach provide the results in ab8L@8min-
utes. We mention that the execution was made on

6 Advantages of our approach in comparison similar computers.

with previous approaches
e Unlike kRED algorithm, HARSalgorithm identi-

A search-based approach for refactoring software sys- =~ _ .
bp 9 y fies theExtract Clasgefactoring, also.

tems structure wass proposed in [13]. The authors use
an evolutionary algorithm in order to obtain a list of |, [15], the authors describe a software vizualization
refactorings using JHotDraw case study. tool which offers support to the developers in judging
The advantages @ARDapproach usinglARSal- \yhich refactoring to apply and provide a short example.
gorithm, in comparison with the approach presented i comparison betweehlARSand the approach from
[13] are illustrated bellow: [15] was illustrated in Subsection-5.1.
. . . We cannot make a complet mparison with other
e The accuracy obtained by the refactoring teChn'qur%factoring approaches, because, for most of them, the

from [13] gannot be dgtermmed, because the % htained results for relevant case studies are not avail-
thors provide only the list of methods proposed tQ, o \ost approaches (like [11], |

. 1-117]) give only short
be refactored, and in order to computé’c’ mea- examples indicating the obtained refactorings. Other

sure we need the cqmpletg resultmg. structure cHachniques address patrticular refactorings: the one in
the software system (including the attributes, also)[,l?] focuses on automated support only for identifying

e In the approach from[13] there ai® misplaced ii-structured or low cohesive functions and the tech-
11

methods, while in our-approach there are odly nique in [11] focuses on system decomposition into sub-
misplaced methods. systems.

e Ourtechnique is deterministic, in comparison withy Conclusions and Euture Work
the approach from-[13]. The evolutionary algo-
rithm from [13] is executed O times, in order to
judge how stable are the results, whHil&RSalgo-
rithm from our approach is executed justce.

Based on the approach from [4], we have presented in
this paper a new hierarchical agglomerative clustering
algorithm (HAR$that can be used for restructuring ob-
ject oriented software systemdARSalgorithm is used
e The overall running time for the technique fromin order to obtain an improved structure of a software
[13] is about300minutes (30 minutes for one run), System, by identifying the needed refactorings. For this
while HARSalgorithm in our approach provides purpose, a heuristic that determines the number of ap-
the results in abol®.68minutes. We mention that plication classes is proposed.
the execution was made on similar computers. We have demonstrated the potential of our algorithm
by applying it to the open source case study JHotDraw
e Because the results are provided in a reasonabighd we have also presented the advantages of our ap-
time, our approach can be used for assisting devghroach in comparison with existing approaches.

opers in their daily work for improving software Further work can be done in the following direc-
systems. tions:

Based on the above consideratiodg\RSalgorithm e To use heuristics for the stopping criteriontARS
providesbetter results than the approach from-[13]. algorithm.

To determine other distance metrics (or semi-met-10]
rics) between the entities from the software sysem.

To use other search-based approaches in order to
determine refactorings that would improve the def11]
sign of a software system.

To develop a tool (as a plugin for Eclipse) that is
based on determining refactorings ustgRSal-
gorithm.

To apply our approach in order to transform norllz]
object-oriented software into object-oriented sys-
tems.

To perform a case study on a large software sy4-13]
tem for which the needed refactorings are already
known.

References
[1] ObjectWeb: Open Source Middleware.
http://asm.objectweb.org/. [14]

(2]

3]

[4]

(5]

[6]

[7]

(8]

9]

Bieman, J. M. and Kang, B.-K. Measuring design-
level cohesionSoftware Engineering, 24(2):111-
124, 1998.

Brown, W. J., Malveau, R. C., Hays W. Mc-
Cormick, 1., and Mowbray, T. J.AntiPatterns:
refactoring software, architectures, and projects
in crisis. John Wiley & Sons, Inc., New York,
NY, USA, 1998.

[15]

Czibula, I. G. and Serban, G. Improving Systems
Design Using a Clustering Approachinterna-

tional Journal of Computer Science and Network16]
Security (IJCSNS), 6(12):40-49, 2006.

Dudzikan, T. and Wlodka, J. Tool-supported
discovery and refactoring of structural weakness,
2002. Masters’ Thesis, TU Berlin.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. Refactoring: Improving the Design

of Existing Code. Addison-Wesley, Reading, MA,[1]
USA, 1999.

Gamma, E. JHotDraw
http://sourceforge.net/projects/jhotdraw.

Project.

Han, J. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

Jain, A. K. and Dubes, R. CAlgorithms for clus-
tering data. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1988.

Jain, A. K., Murty, M. N., and Flynn, P. J. Data
clustering: a review. ACM Computing Surveys,
31(3):264-323, 1999.

Lung, C.-H. Software architecture recovery and
restructuring through clustering techniques. In
ISAW '98: Proceedings of the third international
workshop on Software architecture, pages 101—
104, New York, NY, USA, 1998. ACM Press.

Manning, C. D. and Schutze, H.Foundations
of Statistical Natural Language Processing. The
MIT Press, 1999.

Seng, O., Stammel, J., and Burkhart, D. Search-
based determination of refactorings for improving
the class structure of object-oriented systems. In
GECCO '06: Proceedings of the 8th annual con-
ference on Genetic and evolutionary computation,
pages 1909-1916, New York, NY, USA, 2006.
ACM Press.

Simon, F., Loffler, S., and Lewerentz, C. Distance
based cohesion measuring. Rroceedings of the
2nd European Software Measurement Conference
(FESMA), pages 69-83, Technologisch Instituut
Amsterdam, 1999.

Simon, F., Steinbrickner, F., and Lewerentz, C.
Metrics based refactoring. 18SMR '01: Pro-
ceedings of the Fifth European Conference on
Software Maintenance and Reengineering, pages
30-38, Washington, DC, USA, 2001. IEEE Com-
puter Society.

Tahvildari, L. and Kontogiannis, K. A metric-
based approach to enhance design quality through
meta-pattern transformations. GEMR '03: Pro-
ceedings of the Seventh European Conference on
Software Maintenance and Reengineering, pages
183-192, Washington, DC, USA, 2003. IEEE
Computer Society.

7] Xu, X., Lung, C.-H., Zaman, M., and Srinivasan,

A. Program restructuring through clustering tech-
nigues. INSCAM '04: Proceedings of the Source

Code Analysis and Manipulation, Fourth IEEE In-

ternational Workshop on (SCAM’'04), pages 75—
84, Washington, DC, USA, 2004. IEEE Computer
Society.

	Introduction
	Hierarchical Clustering
	Refactorings Determination using a Clustering Approach
	Theoretical model

	A Hierarchical Agglomerative Clustering Algorithm for Restructuring Software Systems (HARS)
	HARS algorithm
	Refactorings identified by HARS algorithm

	Experimental validation
	Code Refactoring Example
	JHotDraw Case Study

	Advantages of our approach in comparison with previous approaches
	Conclusions and Future Work

