

Analysis of Software Design Artifacts for Socio-Technical Aspects

Robertas Damaševičius

Software Engineering Department,

Kaunas University of Technology

Studentų 50-415, 51368 Kaunas, Lithuania

robertas.damasevicius@ktu.lt

Abstract. Software systems are not purely technical objects. They are designed, constructed and used

by people. Therefore, software design process is not purely a technical task, but a socio-technical

process embedded within organizational and social structures. These social structures influence and

govern their work behavior and final work products such as program source code and documentation.

This paper discusses the organizational, social and psychological aspects of software design; and

formulates the context, aims, principles, and techniques of socio-technical software analysis. An

illustrative case study demonstrates the application of the socio-technical software analysis method for

estimating the extent of code sharing within programmer groups using the proposed Social information

sharing metric.

Keywords: socio-technical software analysis, program comprehension, sociology of programs, code

sharing.

(Received December 08, 2006 / Accepted February 28, 2007)

1 Introduction

1.1 Factors influencing software development

Software engineering is primarily concerned with

developing software systems that satisfy functional and

non-functional requirements, internal and external

constraints as well as other requirements for modularity,

comprehensibility, reusability, maintenance,

documentation, etc. Such requirements and the

developed software systems reflect organizational and

social expectations of how, where, when, and why the

software system may be used.

Software developers are not influenced just by the

presented requirements and constrains. The quality,

structure and other characteristics of the developed

software systems also depend upon education of

software designers and programmers, their work

experience, problem-solving strategies, organizational

structure, social relations, shared mental models [15],

and even such minor aspects whether a coffee machine

is installed in their workplace [22].

Therefore, software design process is not purely a

technical task, but also a social process embedded within

organizational and cultural structures [22]. Software

programmers collaborate in teams and groups embedded

within larger organizations. These social structures

influence and govern their work behavior and final work

products such as program source code and

documentation.

1.2 Socio-technical view on software design

Software systems are not purely technical objects. They

are designed, constructed and used by people. Therefore,

they are components in larger socio-technical systems

which include technological as well as social structures.

Therefore, social and cognitive issues should be

addressed in designing and analyzing software.

These socio-technical relationships are very

complex to register and study, and they cannot be

replicated experimentally or using formal models. The

actions and environment of software designers is rarely

directly available for study. Often the only available

material for analysis is the results of the programmers’

work such as program source code. It can tell us about

software design processes, its development history, and

provide us with some information about its author.

Comprehension of source code may allow us to

comprehend what the original programmer had

comprehended [13].

From the socio-technical perspective, the structure

of software systems can be described in terms of

technical relationships between software elements

(components, classes, units etc.) and social relationships

between software developers and their environment. By

analyzing such relationships and dependencies, we can

uncover and comprehend not just the links between

programmers and their code, but also the relations

between programmers through their code.

1.3 Scope and aims of the paper

Socio-technical software analysis [11, 12, 23], tries to

uncover these socio-technical dependencies by

analyzing artifacts of software design processes. Socio-

technical software analysis is a process of studying

complex socio-technical relationships between software

designers, software systems and their environment.

The aims of the paper is to consider the socio-

technical aspects of software design reflected in program

source code and to discuss the socio-technical software

analysis methods for discovering social, organizational

and psychological aspects embedded within it.

2 Social, organizational and psychological

aspects of software design

2.1 Social aspects

System development is a socio-technological process

[40]. It has long been recognized that personal [8], and

group [46] factors affect systems development process.

Sawyer and Guinan [41] even claim that social

processes had more influence on software quality than

design methodologies or automation. Unless human

factors are taken into account, in particular,

interpersonal relationships that affect the operation of

the process, a vital component is being overlooked.

There are numerous evidences that software design

processes are influenced by social and psychological

factors [2, 4, 6, 14, 22, 24, 35, 40, 44]. Software

engineers often express dependencies between code

modules as social dependencies between people and

groups, and that dealing with code integration is an

organizational rather than purely technical matter [42].

The social nature of software development and use

suggests the applicability of social psychology to

understanding aspects of software engineering.

Programmers do not exist in isolation. They usually

communicate about technical aspects of their work.

Recent ethnographic studies [21, 11, 43] suggest that

technical dependencies among software components

create “social dependencies” among software developers

implementing these components. For example, when

developers are working to implement software system

within the same team, the developers responsible for

developing each part of the system need to interact and

coordinate in order to guarantee the smooth flow of

work [43]. Another example is when the developer

implements the same or similar task and uses the results

(with or without modifications) of other developer’s

work, who may be aware or unaware of this fact.

Inevitably, during such coordination and

communication, the designers are influenced by each

others domain knowledge, programming techniques and

styles. Such influence can be uncovered in software

repositories and found in the structure of the software

artifact itself [12].

Therefore, software development (certainly at a

large-scale) can be considered as a fundamentally social

process embedded within organizational and cultural

structures. These social structures enable, constrain and

shape the behavior, knowledge and general

programming techniques and styles of software

developers [22].

2.2 Organizational aspects

Another kind of socio-technical aspects that influence

the work of software designer are organizational aspects,

which comprise the structure of organization,

management strategy and business model. Such

dependence is often formulated as Conway's Law. It was

formulated by M. Conway: “organizations which design

systems are constrained to produce designs which are

copies of the communication structures of these

organizations” [7].

There are numerous interpretations of Conway’s

Law [1, 25]. However, in general, Conway’s Law states

any piece of software reflects the organizational

structure that produced it. For example, two software

components A and B cannot interface correctly with

each other unless the designer of component A

communicates with the designer of component B. Thus

the interface structure of a software system will match

the structure of the organization that has developed it

(see Figure 1).

Figure 1: Relationship between design groups and designed

components of a system

D.L. Parnas further clarified how the relationship

between organization and its product occurs during

software development process. He defined a software

module as “a responsibility assignment” [38], which

mean that the divisions of a software system correspond

to a division of labor. This division of labor among

different software developers creates the need to discuss

and coordinate their design efforts [25].

The analysis of software architectures allows us to

make conclusions about the organizational structure and

social climate of the designer team. Therefore, socio-

technical software analysis can be used to uncover

information about organization from the software

artifacts and documentation produced by it.

2.3 Psychological aspects

Software design decisions are often based on

psychological rationale, rather than purely

computational or physical factors. Software developers

frequently think about the behavior of a program in

mental or anthropomorphic terms, e.g., what a

component “knows” or is “trying to do”, rather than

formal, logical, mathematical, or physical ones [44].

About 70% of software representations are

metaphorical, representing system behavior as physical

movement of objects, as perceptual processes, or

anthropomorphically by ascribing beliefs and desires to

the system [24].

Software architecture is commonly considered to be

the structure of a software system. However, software

architecture also can be analyzed as a mental model

shared among software developers [5, 27, 37]. Mental

models are high-level knowledge concepts of a designer

that reflect both domain system structure and functions,

software goals, design tasks, implementation strategies

together with social, organization and psychological

aspects that influenced the development of this system

[26]. Mental models enable designers to acquire

conceptual and causal networks and their associated

processes, and facilitate their ability to generalize,

conceptualize and interpret the outcomes of design [36].

Understanding mental models involved in

programming provide the basis for improving software

design, evolution and maintenance processes and

designing higher-quality tools. Uncovering and

analyzing a mental model of a program is as important

as analyzing formal or abstract models, and contributes

towards a more comprehensive understanding of the

software and systems development processes.

Figure 2: Software architecture meta-model (according to [3])

Social aspects

Organizational aspects

Psychological aspects

Technical aspects

2.4 Socio-technical aspects and software

architecture meta-model

The organizational, sociological and psychological

aspects of software design can be directly extracted from

software architecture meta-model [3] (see Figure 2).

Here, the sociological components of the meta-

model are Forces of Environment, History and Related

Environment. The organizational component of the

meta-model is Development, which includes Team,

available design Tools and applied development

Processes. The psychological components of the meta-

model are Rationale and Assessment of the Architecture.

Style is also influenced by designer psychology. The

remaining parts of the software architecture model relate

to the technical and application-oriented aspects of

software design.

3 Socio-technical software analysis

3.1 Concept of socio-technical analysis

Analysis of a domain is the essential activity in software

engineering, or more generally, in domain engineering

[19]. The aim of domain analysis is to recognize a

domain by identifying its scope and boundaries,

common and variable parts, which are then used to

produce domain models. Domain models at different

level of abstraction (such as feature tables, generic

architectures, requirement models, UML models, source

code) are the output of domain analysis.

However, the domain models themselves can be the

object of higher-level analysis, or socio-technical

software analysis. Whereas the aim of analysis is the

creation of domain models, the aim of socio-technical

software analysis is the creation of domain meta-models

(such as statistical models, mental models, sociograms

[43], etc.) that reflect the relationship between software,

its designer and their environment.

Though the objects of socio-technical analysis are

artifacts of software engineering process in general, the

aims of socio-technical analysis focus on real world

rather than on a particular domain problem. That is, the

objects of study are the influence of used design

methods, techniques, styles, programming practices, tool

usage patterns, and the designer himself, his behavior,

mental models, rationale and relationship with other

designers, the organizational structure of a design team

and business models on developed software systems,

their quality and impact on other software systems.

Thus, socio-technical analysis is strongly related with

such fields as sociology, cognitive psychology [31] and

human-computer interaction.

While traditional domain analysis methods are

concerned with “domain archeology”, i.e. extraction,

classification of knowledge from the domain of study,

socio-technical software analysis can be called a

“software archeology” discipline. Software archeology

is the recovery of essential details about an existing

software system sufficient to reason about it [3, 39].

Archeology is a useful metaphor, because programmers

try to understand what was in the minds of other

software developers using only the artifacts they have

left behind with the goal of not just understanding the

artifact, but through the artifact we come to understand

human life and culture [30].

3.2 Context of socio-technical software analysis

The new emerging discipline of socio-technical software

analysis should be viewed within the context of meta-

engineering (meta-system engineering) and meta-design.

Meta-system engineering covers such new systemic

research and engineering fields such as meta-

complexity, meta-knowledge, meta-ontology, meta-

modeling as well as classical system theory and socio-

cognitive engineering [20].

Meta-design [17, 18] is an emerging meta-system

engineering methodology that extends the traditional

system design beyond the development of a specific

system to include the end-user oriented design for

change, modification and reuse. A particular emphasis is

given to (1) increasing participation of users in system

design process, and (2) evolutionary development of

systems during their use time when dealing with future

uses and problems unanticipated at domain analysis and

system design stages. A fundamental objective of meta-

design is to create the socio-technical environments that

empower users to engage actively in the continuous

development of systems rather than being restricted to

the use of existing systems. Rather than presenting users

with closed systems, meta-design provides them with

opportunities, tools, and social structures to extend the

system to fit their needs.

Socio-technical software analysis is a part of meta-

engineering methodology that focuses on the extraction

of meta-knowledge and is a step preceding meta-design

[9]. Meta-knowledge refers to knowledge that has been

acquired and stored in prior system development

activities and that is being applied to the current

software design project to improve the quality of the end

product and to reduce its cost [29].

3.3 Aims of socio-technical software analysis

Socio-technical software analysis includes the

application of other empirical methods for studying

complex socio-technical relationships between

designers, software systems and their environment,

including the social, organizational, psychological and

technological aspects. The ultimate aims of socio-

technical analysis is the evaluation of design

methodologies, the discovery of design principles, the

formalization of mental models of designers, which

precede design meta-models, comparison of design

metrics, comparison of design subjects (actors,

designers) rather than design objects (programs),

discovery and analysis of design strategies, patterns and

meta-patterns, analysis of external factors that affect

software design.

The external factors (acc. to [28]) may include: (1)

Financial factors, e.g. cost saving company may hire

only recent graduates to develop software, consequently

many mature programming practices are absent in

developed source code. (2) Policy factors, e.g., large

organizations often require that a particular OS or

language be used on all projects. (3) Communication

factors, e.g., the reduced cost of communication enables

more extensive sharing of ideas between a large number

of people involved on many levels and in numerous

roles within a project. (4) Cultural factors, e.g.

relationship between the younger engineers and the

management impacts decision making and architectural

freedom of the development team.

3.4 Comparison of socio-technical software

analysis with traditional domain analysis

In general, analysis is the procedure by which we break

down an intellectual or substantial system into parts or

components. Domain analysis is a part of software

engineering deals with analysis of complex, large scale

software systems and the interactions within those

systems, and results in the development of domain

models (such as feature models or UML models). The

results of domain analysis are used for developing

required software system(s).

The socio-technical software analysis methods

attempt to uncover information about software engineers

by looking at their produced output (source code,

comments, documentation, reports) and by-products

(tool usage logs, program traces, events). It deals with

the analysis of models and meta-models behind these

systems and their application domain rooted in the

mental models of the system designers and social

(organizational) structure of the environment. Socio-

technical analysis aims to understand complexity,

interconnectedness and wholeness of components of

systems in specific relationship to each other. In this

aspect, it is similar to Systems Thinking [45].

Traditional analysis focuses on the separation and

isolation of smaller constituent parts of the system

(components) and analysis their interaction and

relationship. In contract, socio-technical software

analysis aims at expanding its view and including other

related systems and domains in order to take into

account larger number of interactions involved with the

object of study. It adopts a holistic approach and focuses

on the interaction of the study object with other objects

and its environment, including other systems, domains

and the designer himself.

Traditional domain analysis tends to involve linear

cause and effect relationships. Socio-technical software

analysis aims to include the whole complex of

bidirectional interrelationships. Instead of analyzing a

problem in terms of an input and an output, e.g., we look

at the whole system of inputs, processes, outputs,

feedback controls, and interaction with its environment.

This larger picture can typically provide more useful

results than traditional domain analysis methods.

Domain analysis methods often focus on revealing

the quantitative characteristics of domain, such as

metrics. Socio-technical software analysis focuses on

revealing the qualitative characteristics of analyzed

software systems, such as similarity, that are very much

heuristic in nature and can be estimated only

approximately. Thus, the outcome of the socio-technical

software analysis is not unambiguous. It requires

domain understanding and human decision.

Traditional analysis focuses on the behavior and

functionality of designed domain systems (components,

entities). The result is the data that characterizes domain

systems (e.g., its features, aspects, characteristics, and

metrics). Socio-technical software analysis continues the

analysis further by analyzing data and content yielded

during previous analysis stages using mathematical,

statistical and/or socio-technical methods. The aim is to

obtain data about data (or meta-data) that helps to reveal

deeper properties of software systems that are usually

buried in its source code or documentation.

Table 1: Comparison of views on a system of traditional and

socio-technical software analysis

Aspect Traditional

analysis

Socio-technical

software analysis

Type of

system

Black-box

(closed)

White-box (open,

holistic)

View Narrowing Widening

Multiplicity Stand-alone Multiple

Boundaries Clearly defined Difficult to determine

Change Static Dynamic

Development Use and dispose Evolve and migrate

Object Domain artifacts Software

Target Design

guidelines

Socio-technical

aspects

Characteristics Quantitative Qualitative

Focus Behavior,

functionality

Content

Socio-technical software analysis does not replace

traditional domain analysis methods, but rather extends

them for deeper analysis and domain knowledge. The

comparison of traditional analysis and socio-technical

software analysis is summarized in Table 1.

3.5 Socio-technical software analysis process

During his domain analysis and software development

activities, the designer is influenced by the external

factors such as its education, organization requirements

and structure, technological environment, customer

requirements and design constraints. Therefore such

factors are reflected in the design artifacts. Design

artifacts are products produced by software designers,

such as domain models, source code, or documents, and

analyzed during socio-technical analysis. During socio-

technical software analysis, meta-knowledge is extracted

from design artifacts. Meta-knowledge may have many

forms such as meta-model, mental model, mind map,

etc. It reflects social, organizational, psychological and

technological structure and relationships of software

design actors and processes.

The results of socio-technical software analysis

(meta-knowledge) can be used for increasing quality of

software products, improving software design processes,

providing recommendations for better management of

design organizations (team), raising the level of

education, spreading good design practices and

programming styles, improving workplace conditions,

etc. The process of socio-technical software analysis is

summarized in Figure 3.

Domain

Designers

Design
artefacts

M
et
a

A
n
a
l
y
s
is

Meta-
knowledge

D
es
ig
n

p
ro
ce
ss
es

R
eu
s
e

Education
Organization
Environment

Constraints,
Requirements

D
o
m
a
in

A
n
a
l
y
s
is

I
m
p
ro
vem

en
t

Figure 3: Socio-technical software analysis process

4 Case study

In this case study, we apply a typical socio-technical

analysis method to estimate the level of code share

(either by duplication or (re-)use) in programs created

by a group of programmers, and to demonstrate how

much social interaction and communication within a

group contributed towards sharing source code in

programmer programs.

4.1 Formulation of the problem

Our problem is to empirically establish, whether social

relations have some influence on the program source

code. When programmers work in groups, they

inevitably communicate with each other, and share their

ideas, programming practices and source code

fragments. As a result their developed programs will be

somewhat similar. If we take all programs developed by

the group members as a single unit, there will be

duplicated (redundant) code. Some of this redundancy is

introduced by a programmer himself either by bad

programming practices, code cloning using ‘copy-and-

paste’ technique, or unintentionally using programming

idioms related to the language or libraries; whereas,

other similar code fragments can be attributed to code

reuse or plagiarism. i.e. sharing of information. Our aim

is to estimate code duplication in programs and establish

what part of it can be attributed to social information

sharing within a group.

4.2 Description of case study

For our case study, we have selected computer science

students attending “Introduction into information

technologies and programming” course lectured at

Kaunas University of Technology (KTU), Kaunas,

Lithuania. The students were distributed into 4 groups,

each having 8, 9, 9 and 5 members, respectively. The

students were given the programming homework

assignments in C++ language, which they had 4 weeks

to complete. After completion of the assignment the

program source code was collected and analyzed using a

compression-based program redundancy metric based on

the concept of Kolmogorov Complexity [33].

4.3 Description of used analysis method

Estimation of information redundancy in program

source code is closely related to the concept of

information content. There are several methods to

evaluate information content such as computational

complexity or Shannon entropy. Here we use the

algorithmic metric of information content also known as

Kolmogorov Complexity [33].

The main idea of Kolmogorov complexity is to

measure the ‘complexity’ (aka information content) of an

object by the length of the smallest program that

generates it. In general case, we have a domain object x

and a description system (e.g., programming language)

φ that maps from a description w (i.e., a program) to this

object. Kolmogorov complexity Kφ(x) of an object x in

the description system φ, is the length of the shortest

program in the description system φ capable of

producing x on a universal computer such as a Turing

machine:

() }:{min xwxK w
w

== ϕϕ (1)

Kolmogorov complexity Kφ(x) is the minimal

quantity of information required to generate x by an

algorithm, and is the ultimate lower bound of

information content. Unfortunately, it cannot be

computed in the general case [33]. Consequently, one

must approximate it. Usually, compression algorithms

are used to give an upper bound to Kolmogorov

complexity. Suppose that we have a compression

algorithm Ci. Then, a shortest compression of w in the

description system φ will give the upper bound to

information content in x:

())}({min wi
i

CxK ϕϕ ≤ (2)

Now, as we have defined information content of the

program, we must estimate the information redundancy

of the program. For this, we can use the Information

Redundancy metric Rφ [10] defined as follows:

w

wi
i

w C
xR

ϕ

ϕϕ

ϕ

)}({min
)(

−
≤ (3)

Information redundancy Rφ represents the

redundancy of information content (self-duplication)

created by a separate member of the programmer’s

group.

Let Φw(G) be the concatenation of all programs φ
j
w

developed by the members of group G. Let RΦ be the

information redundancy of Φw calculated acc. to Eq. 3.

Group information redundancy RΦ represents the

redundancy of shared information content created by all

programmers within the group. It includes self-

duplication as well as content shared with other

members of a group.

We define the redundancy of shared information

content created by two or more programmers within the

group as: ∑−Φ

j

j
wRGR)()(ϕϕ , where φ

j
w is a program

created by programmer j in a group G using a

description system φ.

We define the Social information sharing metric SΦ

(G) within the group G as follows:

)(

)(

1)(
GR

R

GS
j

j
w

Φ
Φ

∑
−=

ϕϕ

 (4)

After applying Eq. 3 to Eq. 4, we obtain:

)}({min

)}({min)}({min

)(
G
wi

i

G
w

G
wi

i
j

j
wi

i

C

CC

GS
Φ−Φ

Φ−

=

∑
Φ

ϕ

(5)

SΦ (G) is an estimation of source code related

information sharing and exchange level in a social group

as opposed to creativity and duplication of information

by a stand-alone programmer. The larger is the value of

SΦ (G), the larger is the social cohesion of a group (i.e.

the number of social connections within the group that

result into the programming-related information

exchange channels).

4.4 Results

For compression-based estimation of information

content, here we use BWT (Burrows-Wheeler

Transform) compression algorithm, because currently it

allows achieving best compression results for text-based

information [34] and thus allows to approximate

information content and redundancy better. The results

of the experiment with the Social information sharing

metric (see Eq. 5) are summarized in Table 2.

The level of shared code was the smallest one in

Group 4, because it had the least number of members,

which means that there were fewer social interaction and

communications, which had a direct impact on code

sharing.

Table 2: Summary of experimental results

Group No. of

members

Avg.

program

size, B

Avg. compr.

program

size, B

Avg. information

redundancy in

programs

Information

redundancy

in group

Social

information

sharing

1 8 59.570 15.814 0.73 0.86 0.14

2 9 80.259 19.052 0.74 0.86 0.11

3 9 59.998 16.037 0.73 0.85 0.14

4 5 92.028 19.324 0.79 0.84 0.06

The total amount of original, shared and redundant

(duplicated) information content in source code

developed by the programmer groups is presented in

Figure 4. It shows the amount of original information

content created by the programmers, the amount of

information content shared by the group members and

the amount of redundant (duplicated) information.

Original source code made about 17% of total code,

while shared code made about 11%, and duplicated code

made about 71% of total code.

0

200

400

600

800

1 2 3 4

Groups

C
o
d
e
,
k
B

Redundant

(duplicated) content

Inf. content shared

by group

Original created inf.

content

Figure 4: Duplicated, shared and original information content

in developed programs

5 Discussion and conclusions

Software design processes and their artifacts have many

perspectives: technological, social, psychological, etc.

The socio-technical perspectives of software

development provide deeper insight into the relationship

among methods, techniques, tools and their usage habits,

software development environment and organizational

structures, and allow to highlight the analytic distinction

between how people work and the technologies they use.

These perspectives can be traced to program source code

and uncovered using the socio-technical software

analysis methods.

The socio-technical software analysis methods

attempt to uncover socio-technical information about

software developers by looking at their produced output

(source code, comments, documentation, reports) and

by-products (tool logs, program traces, events, etc.).

This paper has formulated four main steps of socio-

technical software analysis (comparison for similarity,

pattern discovery and extraction, generalization,

interpretation) for extraction of valid and useful meta-

knowledge from software design artifacts.

Socio-technical software analysis can be used for a

number of problems, including program comprehension,

plagiarism detection, design space exploration, and

pattern mining. However, in practice it is very difficult

to disentangle the social aspects (how software was

produced) from the purely technological aspects of

software design, because they are mutually

interdependent. The empirical methods used during

socio-technical software analysis generate the results

that are not always unambiguous and are open for

further interpretations.

The application of the socio-technical software

analysis methods provides valuable insights into

software development processes, the structure of the

development team, the relationship of the software

developers with their environments, understanding of

programmer communication and knowledge sharing, the

cognitive and mental processes of the developers and

what influence it has on the quality and other

characteristics of the produced software product.

The results of the socio-technical software analysis

can be used for improving programmer education,

spreading good programming practices and styles,

improving the management structure of the development

team and the quality of its environment, improving the

performance of software design processes and quality of

design artifacts (source code, documentation, etc.).

References

[1] Amrit, C., Hillegersberg, J., and Kumar, K. A Social

Network perspective of Conway's Law, CSCW'04

Workshop on Social Networks, Chicago, IL, 2004.

[2] Bannon, L. Developing Software as a Human,

Social & Organizational Activity, Invited Talk, 13th

Annual Workshop on Psychology of Programming

(PPIG'2001), Bournemouth University, UK, 2001.

[3] Booch, G. Software Archeology, a presentation

given at the Rational Users Conference, 2004.

[4] Bryant, S. XP: Taking the psychology of

programming to the eXtreme, 16th Annual

Workshop on Psychology of Programming

(PPIG’2004), Carlow, Ireland, 2004.

[5] Cannon-Bowers, J.E., Salas, E., and Converse, S.

Shared Mental Models in Expert Team Decision-

Making, in Castellan J. (ed.), Individual and Group

Decision-Making: Current Issues. Lawrence

Earlbaum and Associates, Inc., p. 221, 1993.

[6] Chong, J., Plummer, R., Leifer, L., Klemmer, S.R.,

Eris, O., and Toye, G. Pair Programming: When

and Why it Works, Proc. of PPIG 2005, University

of Sussex, Brighton, UK, 2005.

[7] Conway M.E. How Do Committees Invent,

Datamation 14(4): 28-31, 1968.

[8] Curtis, B. The Impact of Individual Differences in

Programmers, in Working With Computers: Theory

Versus Outcome, Academic Press, 279-294, 1988.

[9] Damaševičius, R. On the Application of Meta-

Design Techniques in Hardware Design Domain.

International Journal of Computer Science (IJCS),

1(1): 67-77, 2006.

[10] Damaševičius, R. Application of Meta-Analysis

Techniques for Analyzing Socio-Technical Aspects

of Program Source Code. To be published.

[11] de Souza, C., Dourish, P., Redmiles, D., Quirk, S.,

and Trainer, E. From Technical Dependencies to

Social Dependencies, Social Networks Workshop at

the CSCW Conference, Chicago, IL, 2004.

[12] de Souza, C., Froehlich, J., and Dourish, P. Seeking

the source: software source code as a social and

technical artifact, Proc. of Int. ACM SIGGROUP

Conf. on Supporting Group Work, GROUP 2005,

Sanibel Island, FL, pp. 197-206, 2005.

[13] Douce, C. Long Term Comprehension of Software

Systems: A Methodology for Study, 13th Workshop

of the Psychology of Programming Interest Group

(PPIG’2001), Bournemouth UK, 2001.

[14] Douce, C. Metaphors we program by, 16th Annual

Workshop on Psychology of Programming

(PPIG’2004), Carlow, Ireland, 2004.

[15] Espinosa, J., Slaughter, S., and Herbsleb, J. Shared

Mental Models, Familiarity and Coordination: A

Multi-Method Study of Distributed Software Teams,

Proc. of 23rd Int. Conf. on Information Systems,

Barcelona, Spain, pp. 425–433, 2002.

[16] Finholt, T. Toward a social psychology of software

engineering, Perspectives Workshop: Empirical

Theory and the Science of Software Engineering,

Dagstuhl Seminar 04051, 2004.

[17] Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G.,

and Mehandjiev, N. Meta-design: a manifesto for

end-user development, Communications of ACM

47(9): 33-37, 2004.

[18] Fischer, G., and Scharff, E. Meta-Design—Design

for Designers, In D. Boyarski, W.A. Kellogg (Eds.):

Proc. of the Conference on Designing Interactive

Systems: Processes, Practices, Methods,

Techniques, New York City, pp. 396-405, 2000.

[19] Foreman, J. Product Line Based Software

Development – Significant Results, Future

Challenges, Software Technology Conference, Salt

Lake City, UT, 1996.

[20] Gadomski, A.M. Toward the Identification of the

Real-World Meta-Complexity, Seminar

"Interdisciplinarity in Research", Warsaw, 2004.

[21] Grinter, R.E. Recomposition: Coordinating a Web

of Software Dependencies, Computer Supported

Cooperative Work, 12(3): 297-327. Springer, 2003.

[22] Hales, D., and Douce, C. Modelling Software

Organisations, In J. Kuljis, L. Baldwin & R. Scoble

(Eds). Proc. of PPIG 2002, Brunel University, pp.

140-149, 2002.

[23] Hall, J.G., and Silva, A. A requirements-based

framework for the analysis of socio-technical

system behaviour. Proc. of 9th Int. Workshop on

Requirements Engineering: Foundations of

Software Quality (REFSQ03), pp. 117-120, 2003.

[24] Herbsleb, J.D. Metaphorical Representation in

Collaborative Software Engineering, Proc. of Joint

Conf. on Work Activities, Coordination, and Colla-

boration, San Francisco, CA, pp. 117-125, 1999.

[25] Herbsleb, J.D., and Grinter, R.E. Splitting the

Organization and Integrating the Code: Conway’s

Law Revisited, Proc. of Int. Conf. on Software

Engineering. Los Angeles, CA, pp. 85-95, 1999.

[26] Hoc, J.M., and Nguyen-Xuan, A. Language

Semantics, Mental Models and Analogy. In Hoc,

J.M., Green, T.R.G., Samuray, R., Gilmore D.J.

(Eds.), Psychology of Programming, pp. 139-156.

London: Academic Press, 1990.

[27] Holt, R.C. Software Architecture as a Shared

Mental Model, Proc. of the ASERC Workshop on

Software Architecture, Paris, 2002.

[28] Hvatum, L., and Kelly, A. What do I think about

Conway's Law now?, Conclusions of a EuroPLoP

2005 Focus Group, 2005.

[29] Kalfoglou, Y., Menzies, T., Althoff, K.D., and

Motta, E. Meta-Knowledge in Systems Design:

Panacea... or Undelivered Promise. Knowledge

Engineering Review, 15(4), 381-404, 2000.

[30] Kerth, N.L. On Creating a Disciplined and Ethical

Practice of Software Archeology, in OOPSLA 2001

Workshop Software Archeology: Understanding

Large Systems, Tampa Bay, FL, 2001.

[31] Letovsky, S. Cognitive Processes in Program

Comprehension, in Soloway, E., Iyengar, S. (ed.),

Empirical Studies of Programmers, 58–79. Ablex

Publishing Company, Norwood, New Jersey, 1986.

[32] Li, M., Chen, X., Li, X., Ma, B., and Vitány, P. The

Similarity Metric, IEEE Transactions on

Information Theory, 50(12), 3250-3564, 2004.

[33] Li, M., and Vitanyi, P. An Introduction to

Kolmogorov Complexity and Its Applications.

Springer Verlag, 1997.

[34] Manzini, G. The Burrows-Wheeler Transform:

Theory and Practice. Lecture Notes in Computer

Science 1672, pp. 34-47. Springer Verlag, 1997.

[35] Marshall, L., and Webber, J. The Misplaced

Comma: Programmers’ Tales and Traditions. In J.

Kuljis, L. Baldwin, R. Scoble (Eds.). Proc. of PPIG

2002, Brunel Univ., pp. 150-155, 2002.

[36] Merrill, M.D. Knowledge objects and mental

models, Proc. of Int. Workshop on Advanced

Learning Technologies (IWALT 2000), Palmerston

North, New Zealand, pp. 244-246, 2000.

[37] Norman, D.A. Cognitive Engineering. In Norman,

D.A., Draper, S.W., User Centred System Design.

LEA Associates, New Jersey, 1986.

[38] Parnas D.L. On the Criteria to be Used in

Decomposing Systems into Modules. Commun. of

the ACM 15(12): 1053-1058, 1972.

[39] Robles, G., Gonzalez-Barahona, J.M., and Herraiz,

I. An Empirical Approach to Software Archaeology.

Proc. of 21st Int. Conf. on Software Maintenance

(ICSM 2005), Budapest, Hungary, pp. 47-50, 2005.

[40] Rosen C.C.H. The Influence of Intra-Team

Relationships on the Systems Development Process:

A Theoretical Framework of Intra-Group

Dynamics. In Romero, P., Good, J., Acosta

Chaparro, E., Bryant, S. (Eds.), Proc. of 17th

Annual Workshop on Psychology of Programming

(PPIG 17), Brighton, UK, pp. 30 – 42, 2005.

[41] Sawyer, S., and Guinan, P.J. Software

Development: Processes and Performance. IBM

Systems Journal, 37(4): 553 – 569, 1998.

[42] Sillito, J., and Wynn, E. Social Dependencies and

Contrasts in Software Engineering Practice. CSCW

Workshop on the Social Side of Large-Scale

Software Development, 2006.

[43] Trainer, E., Quirk, S., de Souza, C., and Redmiles,

D.F. Bridging the Gap between Technical and

Social Dependencies with Ariadne. Proc. of the

2005 OOPSLA Workshop on Eclipse Technology

eXchange (eTX), San Diego, CA, pp. 26-30, 2005.

[44] Watt, S.N.K. Syntonicity and the psychology of

programming, Proc. of 10th Annual Workshop for

the Psychology of Programming Interest Group

(PPIG 10), Open University, UK, pp. 75-86, 1998.

[45] Weinberg, G.M. Quality Software Management:

Systems Thinking. Dorset House Publishing, 1991.

[46] Weinberg, M.W. The Psychology of Computer

Programming. Van Nostrand Reinhold, 1971.

