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Abstract -  Proof-Carrying Code (PCC) is a technique  that can be used for safe execution  of
untrusted code. In a typical instance of PCC, a code receiver establishes a set of safety rules that
guarantee safe behavior  of programs, and the code  producer creates a  formal safety proof that
proves, for the untrusted code, adherence to the safety rules. Then, the receiver is able to use a
simple and fast proof  validator to check, with certainty that the proof is valid and hence the
untrusted code is safe to execute.
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1. Introduction
High    level    programming    languages    usually
assume   a   closed   environment   where   the   entire
program or project will be constructed using the same
language, thereby ensuring that the safety precautions
laid down by the language like the type safety rules are
followed  by  all  the  program  components.  But what
practically happens is entirely different, with a project
using modules written in different languages like C,
ALP etc. thus we lose the guarantee provided by the
programming language unless  we  use costly measures
like sockets and processes. The problem is increased
manifold when we consider distributed and web
computing  particularly  when  mobile  code  is
allowed.[2]
The problem is  not  limited  to  the  realms  of
programming languages. If we delve deeper at the
operating system level we again encounter a similar
paradigm.  While executing  application programs in an
operating system, we may need to run the code in the
same  address  space  as  the  operating  system kernel.
This may cause serious  problems unless the kernel  can
be  sure  that  the  application  (which  is usually  from
an  untrusted  source)  will  respect  the kernels internal
constraints.[12]
A  code  consumer  must  be  convinced  that  the code
provided by the (often untrusted) code producer has
some (previously agreed upon) set of properties that
makes  it  safe  to  be   executed  at  the  code consumer.
This is called “establishing trust” between code
consumer and code  producer.[1] This can also be

achieved  by using cryptography to ensure that a trusted
person  has  developed  the  code.  But  this system has
the weakness that it depends on personal authorization.
Even trusted persons or compilers can make  errors
either  accidentally  or  with  malicious intent.[7]
Proof-Carrying  Code (PCC) is a technique  by which  a
code  consumer  (e.g.,  host)  can  verify statically that
code  provided by an untrusted code producer adheres
to a predefined set of safety rules. This is done  by
certifying the compilation process. The  code  consumer
in  such  a  way  chooses  these rules, also  referred to as
the  safety policy, that they are   sufficient   guarantees
for   safe   behavior   of programs. Using this safety
policy the code producer can provide binaries in a
predefined format called the “Proof Carrying Code” or
the PCC that contains, in addition to the native code,  a
formal proof that this binary satisfies the safety policy.
The code consumer can  easily  verify  the  proof  and
be  sure  that  this application,  although  from  an
untrusted  source,  is safe to use. [1,7]
  PCC has many uses in systems whose trusted
computing base is dynamic, either because of mobile
code  or  because  or  regular  bug  fixes  or  updates.
Examples include, but are  not limited, to extensible
operating   systems,   Internet   browsers   capable   of
downloading code, active network nodes and safety-
critical embedded controllers. For mobile code the code
consumer would be an Internet host (e.g., a web
browser) and the code producer a server that sends
applets. In operating systems, one can have the kernel
act as the host, with untrusted applications acting as
code  producers that download and execute code in the
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kernel's address space.[11]
The  rest  of the paper is  organized as  follows :  In
section  2  I have listed the various features of PCC.
Section 3 discusses the architecture of  PCC. The five
steps in the  process of creation and application  of PCC
are    described    in 4. The performance considerations
are discussed in 5 and 6 provides the concluding
remarks.

2. Features of PCC
•  PCC  does  not  rely  on  the  usual  methods  of

authentication  using cryptography and does not
need trusted third parties.[3]

• It requires the application  or source to generate
the binaries in a predefined format- PCC

• No  need  for  program  analysis,  code  editing,
compilation or interpretation.

• PCC is quiet  Fast as the  safety check is done
only once and there is no need for any further
run time checking.

• The  proof is linked to the  native code so  it is
difficult  to  tamper  the  code  or  proof
without rendering the resulting binary non
verifiable.[1]

• In the few cases where the code or the proof is
modified in such a manner that validation still
succeeds, the  new code is still safe, it  may not
give the expected results but it is safe to
execute. So  PCC  is  intrinsically  safe  without
requiring external authentication.[3]

•  The proof-checking algorithm is fast and
simple.

•  The code consumer can easily validate the
proof without using    cryptography    and
without consulting any external trusted entity.

•  The  main  practical  difficulty   in  PCC  is  in
generating    the    proofs    and    this    is    the
one roadblock to its widespread use.[3]

3. PCC Architecture
Any implementation of PCC must contain at least four
elements:  (1)  a  formal  specification  language used  to
express  the  safety  policy,   (2)  a  formal semantics of
the language used by the untrusted code, usually in the
form of a logic relating programs to specifications,  (3)
a  language  used  to  express  the proofs, and (4) an
algorithm for validating proofs. A typical architecture is
shown in figure 1. The central component of any PCC
implementation is the safety policy which  represents the

set of rules that define unambiguously  whether  a  given
agent  program  is safe to execute. Before a code
consumer can accept PCC binaries, it must establish a
safety policy, which defines  the  actions  that  the
binary  is  allowed  to perform  and  also  the
circumstances  when  these actions are allowed. [3] The
safety policy is defined in advance  by the code
consumer and is  a trusted component  of  the
infrastructure.  The  safety  policy defines what is meant
by safety and the interface that may exist between the
code consumer and any binary from  the  code  producer.
The   policy  lays  down explicit conditions under which
the code consumer considers the execution of an
external program safe.[10]
The safety policy comprises of two components –
Safety Rules – all  the authorized operations and the
various preconditions associated with them.
Interface  – the calling convention between the code
consumer and the foreign program ,i.e., the signature
against   which   the   external   program   has   been
compiled.[4]

Figure 1. The basic PCC architecture

The PCC  binary, in its life  cycle, undergoes three
phases :
In the first phase, called  the certification  phase, the
code  producer  generates  the  source  code  and ensures
that it adheres to the safety policy laid down  by the code
consumer. The  source  program is then compiled and  a
proof that this program confirms to
 the  safety   policy  is  generated.  This   verifies  the
program with  respect to the  safety policy generated by
the  code  consumer.  A  proof  of  the  successful
verification  is  generated  and  is  encoded  to  avoid
tampering thereby producing the safety proof.  This



safety proof, along  with the  native code,  forms the
PCC binary that is eventually delivered to the code
consumer for use or is stored at the code producer for
further use.
In    the    second    phase    – validation,  the  code
consumer, upon receiving the PCC binary from an (often
un-trusted ) source,  validates the proof part of the
binary. If the validation succeeds, the native code is
loaded for  execution. A  fast and straightforward
algorithm does the validation making the process fast
and inexpensive.
As the proof is in-built with the native code in the PCC
binary, it is possible to carry out the validation off-line.
Moreover  we  need  to  validate  the  binary only  once
irrespective  of  how  many  times  it  is intended to be
used. This becomes very significant in cases where the
validation of programs are complex, time  consuming
and  involves  users  as  repeated verifications may
introduce a lot of overhead. [5]
In the last phase, the code consumer eventually loads the
validated and verified native code from the PCC binary
to be executed as many times as needed. No  additional
run-time  checks  are  needed  as  the validation stage
ensures that the program confirms to the safety policy.
The basic PCC Protocol is shown in figure 2.

4. The Process
4.1 Step One –  Defining the Safety Policy
  PCC  places  no  restrictions  on  the  languages  in
which  the  binaries  can  be  generated.  PCC  can  be
adapted  to  both  high  and  low  level  languages  to
maximize  the  performance  of  the  binary.  A  given
code consumer  may also receive binaries written in
multiple  programming  languages,  thus  the  safety
policy must be adapted to  each language.  [4] The safety
policy has three components:

• A    mathematical    logic that    defines    the
preconditions     under     which     the specific
operations are allowed. The logic also  defines
the Verification Conditions (VC). This logic is
made available to the proof producers. This
logic is the language used  by the PCC to define
and verify the preconditions.

• Safety policy also includes the specifications of
all the functions that the agent is supposed to
provide to the code consumer and also for the
functions of the code consumer that the agent is
allowed to invoke. The specifications are
defined as a pair of pre and post conditions,

which define the state of variables, the  values
of invariables, relationship between    variables
and    actual arguments and return values.[3]

• Finally the safety policy contains a  method for
inspecting the agent code and for discovering
the actions that an agent  might perform and
under which circumstances. This is
accomplished by the VC generator which scans
the agent code and collects the set of all the
actions that  might be performed during
execution, along with a partial description   of
the  program  state  when  such actions would
be attempted. This information is expressed   as
a   predicate   in   the   logic   (the verification
condition).

An Example Safety Policy [8]
• All memory locations after a designated

location are readable.
• All memory locations after a designated

location are writable.
• Exiting  by jumping to a designated address is

safe.
• The  program  counter is initially set to the first

instruction of the code.

4.2  Step Two – Generating the Annotated Agent
Code
The   first   stage   of   interaction   between   code
consumer and code producer through the PCC is the
preparation  of binary as per the specifications laid down
by the safety policy or more specifically, by the VCGen
component of the safety policy. [2]
VCGen requires that the agent code is syntactically well
formed in the selected language,  all  functions defined
and  used internally by the agent code are annotated
with a precondition and a  post-condition, and  also  that
each  loop  have  an  associated  loop invariant. The loop
invariants and the specifications for   the   internal
functions   are   referred   to   as annotations. If  the
annotations  are  well  formed  predicates in  the
selected  logic,  this  will  make  the  VCGen accept the
code, but just that.



Figure  2: The basic proof-carrying code  protocol. The
wavy  boxes  represent  data  and  code  and  the
rectangular boxes represent system components. The
white elements are trusted, while the grey elements are
not trusted. [2]

But it is not sufficient to guarantee that the code will
ultimately  make it through all of the steps of the PCC
protocol. For this to happen, the annotations  must also
be correct and sufficiently strong. [4]

• A loop invariant is a correct annotation if it is
indeed a valid predicate every time the
execution reaches the beginning of the loop.

• A   function    specification    is   correct   if
the precondition  holds  every  time  the
function  is invoked, and if the post-condition
holds  every time the function returns.

• The  weaker  the  annotation  the  easier  it  is
to ensure its correctness. For example, the
weakest loop  invariant  “true”  is  evidently  a
correct invariant.

• A function precondition is sufficiently strong if,
by assuming that it holds at the beginning of
the function,  one  can  prove  that  the  body  of
the function is safe to execute.

• The stronger the annotation the easier it is to
satisfy the sufficiently requirement.

• We see, thus, that annotations must be not too
strong and not too weak. This is what makes
the task of annotating the code a delicate one.

4.3  Step  Three  –   Generating  the  Verification
Condition
The code consumer carries out a fast, detailed and
automatic inspection of the code it receives by using a
program, called the verification condition generator
(VCGen),  which  is  one  of  the  components  of  the
safety policy.[5]
  The  verification  condition  generator  (VCGen)  is
implemented as a symbolic evaluator for the program
being  checked.  It  scans  the  program  in  a  forward
direction and at each program point it  maintains a
symbolic  value  for  each  register  in  the  program.
These   symbolic  values  are  then  used  at  certain
program  points  (e.g.  memory  operations,  function
calls and returns) to formulate checking goals for the
Checker module.  VCGen checks the syntax of the
received  code  and  emits   a  verification-condition
predicate for all agent instructions that might violate the
safety policy.[6]
  The   syntactic   checks   that   VCGen   performs
depend on the particular safety policy. In addition,
VCGen   can   enforce   restrictions   on   the   set   of
instructions  or  operations  that  might  occur  in  the
agent code. The safety policy may choose to restrict the
syntax  of  the language so as to implement the desired
safety  properties syntactically. For  example, VCGen
could enforce termination if the safety policy disallows
function calls and backward branches. But this method
has the shortcoming that it can not  be extended without
crippling the expressiveness of the language.   Thus
most   safety   policies   do   allow potentially dangerous
actions but impose restrictions on their use. [5, 6]
The  specific  conditions  under  which  an  action  is
considered  safe is called  the action  precondition. In
practice, most action preconditions denote properties
that are difficult or even impossible to verify directly.
]These  preconditions are expressed as a  predicate in the
selected   logic.   The  VCGen  collects  all  the
preconditions  and combines  them with control flow
information  and  with  the  specification  part  of  the
safety policy to create the  verification condition  for the
entire agent code.
  The VCGen must also have an good understanding of
the semantics of the language and the code in order to
detect the potentially hazardous instructions and  to
construct meaningful verification conditions   for   them.



Figure 3: The relationship between the safety policy, the
verification-condition generator,   validity   of
verification conditions and provability of verification
conditions. [3

In   order   to   achieve   this efficiently,  we  adopt  the
general  design  rule  that whenever some information
about the behavior of the agent is difficult to discover,
the code producer must provide it in the form of code
annotations. However, in  order  to   prevent  mistakes
in  the  verification process due to erroneous
annotations, VCGen must take special care when using
them.

4.4 Step four – Proving the Verification Condition
Once the verification conditions are received, the proof
producer attempts to prove them according to the logic
specified in the  safety policy. Because the code
receiver  does   not  have  to  trust  the   proof producer,
any system (even the code producer) can be the proof
producer. Generally the proof generator is a general-
purpose theorem prover  for predicate logic.
[11] A typical proof producer in  a PCC system has three
requirements

• It must be able to  prove verification conditions
efficiently.

• It should be able to generate detailed  proofs of
the verification conditions.

• It must specify these proofs using the axioms
and inference  rules  specified  as  part  of  the
safety policy.

4.5 Step Five – Verifying the Proof
The last step in a PCC session is the  validation and
verification by the code consumer of the proof generated
by the proof producer and contained in the PCC binary.

This is done using a proof checker that verifies that the
various inferences in the proof are in fact valid instances
of one of the axioms or inference rules  specified  as
part  of  the  logic  in  the  safety policy. Also, the proof
checker verifies that the proof
proves  the  same  verification  condition  that  was
generated in Step 3 and not some other predicate.[3]
A good technique for representing and validating proofs
must have the following desirable attributes:

• The  representation  of  proofs  and  the   proof
checking algorithm should be logic
independent so  that  the  implementation  can
be  reused  for multiple applications of proof
carrying code. The proof checking algorithm
must be simple so that it can be trusted easily.

• Proof  checking  must  be   relatively  fast  and
inexpensive.

• Proofs and predicates must be represented in a
compact form in order to minimize the cost of
communication  between the code  receiver and
the proof producer.

5. Performance Considerations
The   complete   process   of   generating   the   proof,
attaching it to the binary and subsequent verification by
the code consumer has a significant impact on the
performance of the binary.

• The  development  life  cycle  of  the  binary  is
bound  to   be  elongated  due  to  the  complex
process  of  generating the proof and attaching
it to the binary. This overhead can be reduced
to some  extent  by  using  a   generic  method
to describe   the   verification   conditions   and
to separate  the   process  of  proof  generation
by making it a generalized one.

• The effort   of   generating the   binary and
subsequently the cost will be more, though with
appropriate measures this cost increase can  be
reduced.

• There   is   added   responsibility   on   the
code consumer  as  he  has  to  explicitly
specify  the safety policy and publish it
beforehand.

• The speed of execution of the binary at the
code consumer  end   may  suffer   due  to  the
added overhead of verification of the proof.
Using fast and efficient proof checkers, this
delay can be greatly minimized. This is also
offset by the fact that the validation and



verification needs to be carried out only once
by the receiver.

• Maintainability  could  also  become  a  serious
issue  if  not  given  proper  consideration  at
the beginning. As the safety proof is tightly
linked to the  native  code,  any  modification
to  the  later may have serious implications for
the former and may render the binary non-
verifiable.

• Reliability  of  a  PCC  binary  is  significantly
higher as not  only is the binary fully tested for
bugs,   but  it  is  also  ensured  to  follow  the
restraints laid down by the code consumer.

• The size of binary will be increased due to the
inclusion of the safety proof. This is one of the
major areas where further work needs to be
done to reduce the size of the proof and
consequently that of the binary.

6. Conclusion
  This  paper  discusses  a  methodology  of  ensuring the
code consumer that the binary received from the code
producer  is  safe  to  work  with.  Although  the PCC
methodology  has,  at  this  time,  a  number  of
limitations but it promises to provide a better solution to
the  “safe  un-trusted  code”  issue.  The  method
provides significant benefits over the contemporary
techniques  being  used for the purpose and provides
marked benefits in establishing trust.
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