

1. Introduction

The demand of high performance computers is always a
hunt for scientist and researcher in bio-technology and
in allied areas. Parallel computing is the area, which is
becoming prominent to achieve the supercomputing for
complex problems. A number of research groups in
universities and industry are building efficient
communication hardware and software for parallel
computing on the network of PCs. The reason for such
an interest is because of the price /performance
advantage of the network of PCs in comparison to
super-computers. The other reason, which pushed this
technology, is that switched based LANs improved a lot
in late nineties. It is worth while to harness the idle
cycles of computers available on the network. In LAN,
latency involved in sending the data from one node to
other node depends on the software overhead of the
message passing library, called startup cost. By reducing
the latency, the parallel computation time can be
reduced drastically. The tuning of TCP/IP [1] for

sending and receiving the message for local and non-
local nodes is kept under BDP (Bandwidth –Delay
Product) so that there should be no congestion in the
network. Ping-pong benchmark is used for standardizing
the message size to be used for communication over the
network and clubbed with BDP measurement for
effective communication for fine grain to coarse grain
applications.

2. Design and Communication of GPCC

The environment is implemented using DeskGrid API
and DLL files [2]. DeskGrid is a full implementation of
communication over TCP sockets Microsoft Win32
Platforms. This feature opens up the possibility of
utilizing resources commonly excluded from network
parallel computing systems such as Macintosh and
Windows based PCs. For the experiment, DeskGrid
communication library is loaded on the server and the
contributor is loaded on the each local and non-local
PCs in the local area network (LAN) in the background
with high priority. It forms a grid of computers. The
submitters are located any where in the LAN and submit

Performance Evaluation of Network based Distributed Supercomputing
Environment

OP Gupta1, Karanjeet Singh Kahlon2
opgupta@gmail.com karankahlon@yahoo.com

1Faculty of Computer Science, Punjab Agricultural University,Ludhiana, 141004 India
2Department of Computer Science, Guru Nanak Dev University, Amritsar, India

 Abstract: - In the past decade, supercomputing has witnessed a paradigm shift from massively parallel
supercomputers to network computers. Though dedicated high end supercomputers still have their
place in the market yet combined unused CPU cycles of desktop PCs available in the campus network
can form comparable virtual supercomputers. Consequently, Parallel Processing in a network of PCs
are attracted a boost of attention and becoming one of the most promising areas of large scale scientific
computing. In this paper, we are presenting Grid-enabled PC Cluster (GPCC), exhibiting low latency
and bandwidth scalable sub-communication system. The design of the GPCC is such that it keeps in
view the socket buffer size of local and non-local nodes in the network environment. The design is
relatively easy to use, inexpensive to apply and extremely accurate. The highly accurate results
provided by TCP/IP ping-pong were coupled with parallel matrix multiplication benchmark. Parallel
Matrix Multiplication (PMM) performance benchmark is used to test the GPCC for node-to-node
network performance and parallel floating point performance of all involved processor in a local and
non-local cluster environment. PMM benchmark is developed on the basis of master-slave model using
dynamic distribution scheme.

 Key words: Distributed Computing, Parallel Computing, Grid Computing, Local Area Network

(Received September 23, 2006 / Accepted January 03, 2007)

the jobs to server. Tasks are managed by background
daemon which is resident on each node of the grid
enabled cluster. The daemon communicates with
each other using TCP protocol. The message is kept
to the packet size [4] of 4k keeping in view the BDP
(Bandwidth Delay Product) value calculated based on
the Windows TCP Buffer size of 48K. The buffer
size is set dynamically in the benchmarking software
so that the congestion in the network is avoided for
coarse grain applications.
For implementing the parallel applications in LAN, a
set of four best suitable computers , whose
performance are identical, from the grid is taken as a
PC cluster for executing the sub-tasks (jobs) as
shown in the figure 1.

Moreover, we assume that at any given instant only one
parallel program is in execution on the cluster, and that
the main memory of each desktop system is large
enough to accommodate the working set of the parallel
process it executes. Finally, we assume that the
communication network carries only traffic generated by
the desktop PC in the cluster (both by the parallel
program and from jobs executed by other desktop PC).
The communication protocol is shown in the figure 2.

2.1 Communication Performance

The communication performance [3] of GPCC is tested
with Ping-pong benchmark and message size to the tune
of 4k is standardize for the calculation of optimum size
of TCP window socket so that network congestion can
be avoided for the local and local nodes in the grid
enabled PC cluster.

From the table 1, It can be concluded that we can make
use non local nodes of network of PCs up to 3rd level
for parallel computing without having any hindrance of
the bandwidth choking. This can set statically by the
network administrator or can be set dynamically in the
parallel application as we did in the benchmarking
software. The design of GPCC communication
subsystem is low-latency and scalable in nature. Our
performance evaluation shows that it effectively delivers
low latency for small messages and high bandwidth for
large messages.

TCP Window Size

16kB
(Default) 32kB 48kB

Congestion if
BDP
>=TCPWinSiz
e

No.
of
Hops

BDP (kB) BDP
(kB)

BDP
(kB)

*means
Congestion

0 8.4 8.2 7.8 No
1 16.3* 15.28 16.30 No – Size to

be =32kB
2 20.8* 24.0 22.34 No –Size to be

=32kB
3 24.7* 32.2* 38.8 No – Size to

be = 48kB

Table 1. BDP Measurement

Figure 1. Grid enabled PC Cluster

Process
Flow

Logical Components Functions Invoked

Master PC

Xeon Server

Slave 1 Slave 2 Slave n

Xeon Server

Master PC

Size

Partitioning

Calculate
each task

Merge

Display

Figure 2. Communication Protocol

3. Benchmarking the GPCC

The developed network design is tested with Parallel
Matrix Multiplication algorithm for node to node
communication when the cluster is formed from local
nodes and non local nodes in the LAN. The statiscal
analysis is done to study the effect keeping the buffer
size comparable to BDP measurement.
The important aspect of using MM as performance
evaluation tool is

 The workload of the MM can easily be changed
from fine grain to coarse grain granularity

 It is not only simple to understand but also
based on Linear Algebra Kernel.

 A no. of MM algorithms is available for
network of workstations.

 It is scalable in nature.
The parallel algorithm for installed network of PCs has
two main characteristics.

 It is based on Master-Slave paradigm
 Equal workload distribution

Algorithm

Step 1.Master (Head Node) reads data from user
Step 2.Master decompose the matrix A into multiple
rows
Step 3.Master broadcasts dynamic allocation of matrix B
columns to slaves
Step 4.Master sends respective parts of first matrix to all
other processes.
Step 5.Every process performs its local multiplication.
Step6. All slave processes send back their result.
Step 7.Master (process 0) reads data and merges them.

4. Easy Deployment and Observations

Parallel Matrix Multiplication (PMM) is developed
using visual C++ and batch of jobs (ASCII file) is
created and submitted via calls to DeskGrid dynamic
link library for communication over the network. The
dynamic link library (.DLL) provides the following API
that PMM used in the networked of PCs.
extern "C"
{extern DESKGRIDDLL_API int
DeskGrid_submitJob(char * sessionID, char *fileName,
char *response);

 extern DESKGRIDDLL_API int
DeskGrid_submitJobFromTo(char * sessionID, char
*fileName, int from, int to, int maxSeg, char *response);
 extern DESKGRIDDLL_API int
DeskGrid_getJobStatus(char * sessionID, char
*response, int *suggestedWaitMilliSecs);
extern DESKGRIDDLL_API int
DeskGrid_cancelJob(char * sessionID);
extern DESKGRIDDLL_API int
DeskGrid_fetchFile(char *fileName, int jobNum);
}

Any application can be distributed using the job
template file by defining the input and output files,
without doing the programming.
DG scope as shown in figure 1 is used to observe the
activities of the GET and PUT operations of the master
PC with the contributors of the cluster. It provides the
replay action of submitter/job/contributor so that
improvement in the GET and PUT operations is made. It
maintains a server log and data can filtered based on the
job ids before display. The state of the contributor is
color coded: yellow (downloading files), green
(executing), and cyan (uploading results). The executing
contributors display the job segment they are working
on.

5. Computational Performance

The network latency needs to be measured when
multiple local and non local machines are used in the
experiment. We run the PMM on four number of
networked PCs and the size of the problem was kept
fixed i.e. 3000 x 3000. The performance of GPCC is
checked while local and non-local nodes are added to
the cluster from the grid of computers. The local
computers constitute from the level I network and non-
local computers constitute a set of computers from level
II or Level III network. The data collected for these
types of cluster from the networked PC is shown in the
table1, table2 and table 3.

No of
Nodes

Computation
time (sec.)

Speedup

1 6.78 1
2 4.59 1.477124
3 3.45 1.965217
4 3.2 2.11875

 Table 1. Speedup with Buffer 16KB

No of
Nodes

Computation
time (sec.)

Speedup

1 6.98 1
2 5.9 1.183051
3 5.78 1.207612
4 4.8 1.454167

 Table 2. Speedup with Buffer 16KB
 & Non-local nodes

No of
Nodes

Computation
time (sec.)

Speedup

1 7.1 1
2 5.84 1.215753
3 3.9 1.820513
4 3.4 2.088235

 Table 3. Speedup with buffer 48KB
 & Non-local nodes

Figure 3. Comparison of Local and Non-Local
Nodes

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5
No of Nodes

Sp
ee

du
p

Local nodes w ith 16KB

Non-Local Nodes w ith 16KB

Non-Local Nodes w ith 48KB

6. Conclusion

It is concluded from the graphical presentation that
parallel computing in a grid of PC cluster is greatly
influenced by the communication parameters of TCP/IP.
To achieve the performance of non-local nodes as that of
local nodes in a cluster as shown in the figure 3, it is
necessary to keep the socket buffer size under BDP
measurement so that network congestion has no impact
on the transfer of data. From the analysis, we can
conclude that the performances of the two clusters are
almost identical with the present setup of network
design.

Further research and study is open for characterizing
granularity (no. of sub-tasks) of the parallel application
and modeling for these types of clusters can be studied.

References

[1]Dave MacDonald and Warren Barkley,(2000)
"Microsoft Windows 2000 TCP/IP Implementation
Details", White Paper, Microsoft Corp., 2000.
Retrieve June 27, 2006, from
http://www.microsoft.com/technet/itsolutions/network/d
eploy/depovg/tcpip2k.mspx
[2] John F. Doyle (2005) “DeskGrid – A framework for
distributed processing computing”, 2005. Retrieve April,
2005, from http://www.deskgrid.com
[3] R. Zamani and A. Afsahi (2005), “Communication
Characteristics of Message-Passing Scientific and
Engineering Applications”, Proceeding Parallel and
Distributed Computing and Systems (PP 466), 2005.
[4] Z. Nedev, T. Gong, and B. Hill, (2004),
“Optimization Problems in the Implementation of
Distributed MergeSort on Networked Computers”,
Proceeding Parallel and Distributed Computing and
Networks (pp-420), 2004.

