
Applying Software Wrapping on Performance Monitoring of Web Services

Liguo Yu

Computer Science and Informatics

Indiana University South Bend

South Bend, IN 46634, USA

ligyu@iusb.edu

ABSTRACT. Commercial, scientific, and social activities are increasingly becoming dependent on service-based

web applications. Web-services are influenced by many uncontrollable factors. It is difficult to predict their

performance only based on the pre-deployment testing. The performance characteristics, such as response time and

failure rate, are volatile and therefore crucial in web service-based application. This paper states that it is important

to continually monitor the performance of web-services during the process of their invocation on the client site. In

this study, a wrapping-based approach to monitor the performance of web-services is presented and the results of a

preliminary experiment that utilizes this approach are reported.

Keywords: Web service, performance monitoring, software wrapping.

(Received November 13, 2006 / Accepted January 3, 2007)

1. Introduction

Service-oriented applications refer to the software programs

that use network services provided by third parties. They are

emerging technologies useful for integrating enterprise

applications and providing business solutions, such as

electronic B2B and B2C. The most commonly used network

service is web service that interacts with the clients over an

interface described in WSDL and follows the SOAP standard

[1]. The messages passed between the clients and the web

services are in XML format and are transmitted using HTTP

protocol.

Web service belongs to the component-based software

development technology, in which, software products are no

longer built from scratch; instead, they are built by

integrating the existing pre-built components, commercial

off-the-shelf (COTS) software, and legacy components [2].

The idea of web service-based application is to build an

application by using web services provided by third-parties

[3]. Figure 1 illustrates an example of web service-based

application. A travel agent web application is built by

integrating three third-party web services: air ticket booking

service, car rental booking service, and hotel booking

service. The travel agent application developers do not need

to implement these complicated services themselves. Instead,

they can focus on the user interaction and the internal logic

of the application.

As with general COTS software, the web service must be

tested before it can be integrated into the target application.

This includes testing of both the functional requirement and

the nonfunctional requirement. Usually, COTS software

bought from a third party and integrated into a client

application is managed by the client on the application site.

Because the operation environment of COTS software is

known to and controllable by the client, after it is tested

before the deployment, its future behavior is largely

predicable and manageable.

Figure 1: A service-based travel agent web application

However, web services are different from general COTS

software. They are highly dynamic and interactive and

accordingly pose new challenges to software quality

assurance. Web services are managed by the third parties;

the client can only buy the license to use it. Although the

service could be tested by both the developer on the service

site and by the buyer on the client site, its behavior is not

guaranteed as it is tested. First, the web service is influenced

by many factors that are not controllable or even aware of by

the client. The examples of these factors are network traffics,

host workloads, host running environment changes, and so

on. Second, the clients are not guaranteed to know when the

service is going to be updated, removed, or unavailable.

Third, the errors detected for the services are reported to the

service provider, the clients have no ideas about the reported

errors and accordingly can not adjust their own request

strategies.

The web service quality, especially nonfunctional

requirement, such as performance, is an important issue in

web service-based application. Web applications are easily

to fail than conventional applications. A study showed that

out of 41 sites managed by the U.S. Government, 28 sites

contained web application failures [4].

Therefore, to predict and control the behavior of web

service-based application, it is crucial for the client to

continually observe and monitor the performance of

imported web services. The monitoring results should be

analyzed and provided to the client application administrator

promptly to help the client decide whether the service has

changed its behavior and whether these changes have effects

on the client application. The clients can accordingly adjust

their request strategies based on the monitoring results.

In this paper, a wrapping-based approach to monitoring the

performance of web service is presented and the preliminary

results of monitoring Google web service using this approach

is analyzed and reported. The remainder of the paper is

organized as follows. Section 2 reviews related work.

Section 3 describes software wrapping. Section 4 describes

the wrapping-based performance monitoring approach.

Section 5 presents the experiment on Google web service.

The conclusions and future research are presented and

outlined in Section 6.

2. Related work

Performance is one of the most important nonfunctional

requirements of software products. However, because

service-based software development is an emerging new

technology, there have been few reported performance

assurance studies on web service-based applications. In this

section, the work that is related to web service and

performance assurance is briefly reviewed.

Fu et al. [5] used compile-time analysis techniques to

perform the white-box coverage testing of exception

handlers in Java web services. Their techniques applied the

compiler-directed fault injection method. Offutt and Xu [6]

presented an approach to testing web services based on data

perturbation: data value perturbation, which modifies

parameter values according to the data type, and interaction

perturbation, which uses two types of communication

mechanism, RPC communication and data communication.

Huang et al. [7] implemented Waves, a software tool for

assessing web application security. The tool was based on a

number of software-testing techniques including dynamic

analysis, black-box testing, fault injection, and behavior

monitoring. Liu et al. [8] proposed a web test model, which

considers each web application component as an object and

generates test cases based on data flow between those

objects. Ricca and Tonella [9] presented a model based on

the Unified Modeling Language (UML) to generate test

cases and analyze web application evolution.

Weyuker and Vokolos [10] reported an industrial experience

of testing the performance of a distributed

telecommunication application at AT&T. They concluded

that, given the lack of historical data on the usage of the

target system, the architecture is the key to identify software

processes and input parameters that influence the

performance of distributed applications. Cai et al. [11]

proposed a quality assurance model for Component-Based

Software Development (CBSD). Using different quality

prediction techniques, the model were applied to a number of

programs to predict their quality.

Gorton and Liu [12] used a benchmark that includes the

middleware infrastructure, the transaction and directory

services, and the load balancing, to compare the performance

of six different J2EE-based distributed applications. Avritzer

et al. [13] compared the performance of different Object

Request Broker (ORB) implementations that adhere to the

CORBA Component Model. Liu et al. [14] investigated the

suitability of light-weight test cases on distributed

applications.

It worth noting here that the performance assurance testing

described above are all performed before the deployment of

the services. To our knowledge, there is no reported research

on performance monitoring of web services after it is

deployed.

3. Software wrapping

Software wrapping refers to a reengineering technique that

surrounds a software component or system with a new

software layer to hide the internal code and the logic of the

component or system and to supply modern interfaces. One

example of software wrapping is to reuse a legacy system in

modern applications, where the unwanted complexity of the

old system is hidden to the applications. Software wrapping

removes the mismatch between the interfaces exported by a

software artifact and the interfaces required by the current

software program [15].

Software wrapping has been widely used to ensure the

quality of third party software [16]. For example, Ghosh and

Schmid [17] presented an approach and tool for assessing the

robustness of COTS applications to failures from operating

system functions or other third-party COTS software. Their

approach consists of wrapping executable application

software with an instrumentation layer that can captures,

records, and perturbs the interactions between the target

software and the third-party COTS software.

Guerra et al. [18] proposed an architectural solution to

turning COTS components into idealized fault-tolerant

COTS components by adding protective wrappers to them.

Dean and Li [19] described a security wrapper technology

that was implemented for COTS software products. The

technology focuses on interchangeability for COTS software

components, portability for the wrapper, and security for

communications between applications via the wrapper.

In this research, software wrapping is applied on the

performance monitoring of web services.

4. Wrapping-based web service performance

monitoring

Figure 2 illustrates the proposed approach to monitoring the

performance of web services. The software wrapping

technique is utilized at the client site. The client interacts

with the service through the wrapper. In this approach,

basically, the wrapper provides two functions: (1) to

customize the message exchanged between the client and the

service, and (2) to monitor the performance of the service.

Other functions could be added to the wrapper if needed,

such as security checking, logging, and so on.

Figure 2: The wrapping of web service at client site

Figure 3 shows an example of a wrapper program that

monitors the response time of the service. Besides the

normal functionality, the specified performance parameter—

response time—is recoded in the performance report.

Because different clients are interested in different

performance characteristics, in practice, the wrapper can be

tailored according to the client’s needs.

We remark here that the service wrapping is implemented at

the client site, because in this paper, we are interested in the

performance of web services from the client point of view. If

the web service performance is considered by the service

provider at the service site, different approaches should be

used.

Figure 3: An example of wrapping a service

5. Experiment on Good web service

5.1. Experiment setting

Google is a tool for finding resources on the World Wide

Web. It not only can enable the user to directly use the

search engine via its web site, Google SOAP Search API

service also allows software developers to query web pages

directly from their own programs. In other words, Google

search API is a web service that uses the SOAP and WSDL

standards to allow other developers to import the service to

their own applications under various environments, such as

Java, Perl, or Visual Studio .NET.

As described before, to use a third party service, such as

Google search API, it is important to observe and monitor its

performance. In this experiment, we use C# under Visual

studio .NET environment to implement an application that

uses the Google search API. The application provides

additional flexible search options, such as specifying the

document type, the document language, and the last updated

date. Moreover, the application is used as a benchmark to

monitor the performance of Google search API from the

client site.

Similar to other client site invocation, a software wrapper is

implemented to parameterize the message that is sent

between Google search API and the client application. More

specifically, the wrapper is added with performance

monitoring capabilities using the method shown in Figure 3.

Software performance can be characterized in several

different ways. For instance, response time describes the

delay between a request and the completion of an operation.

Throughput denotes the number of operations that can be

completed in a given period of time. Failure rate identifies

the dependability of the service. The major factors that can

affect the performance of a web service and the client can

not control are network traffic conditions and server

workloads. Therefore, in this experiment, we study response

time and failure rate, which are direct representations of

network traffic conditions and server workloads from the

client point of view.

The experiment contains three steps. First, a list of 20 similar

requests is defined. Next, the application is started and for

every two seconds, it randomly selects one request from the

request list and submits it to Google search API. If the client

application successfully receives a response from the Google

search API service, the response time is calculated

otherwise, this is considered as a failure. Both the response

time and the failure request are recorded in the performance

report. Finally, the results are analyzed.

5.2. Experiment result

Figure 4 shows the response time of Google search API in a

typical day. It does not represent its behavior in other days.

However, it shows that the response time differs from

request to request. The shortest response time is 0.02

seconds while the longest response time is 1.27 seconds,

which differs about 60 times.

Figure 4: The response time of Google search API web

service in a day

Figure 5 shows the failure rate of Google search API in a

typical day. It is measured as the ratio of the number of

failure requests over the total number of requests in one hour

period. It shows that the failure rate in the morning (North

American Eastern Time) is higher than that in the afternoon.

It further suggests that it is better to run the application in the

afternoon to avoid high failure rate. For example, at 6:00, the

failure rate is about 60%; while at 18:00, the failure rate is

about 0%.

Figure 5: The failure rate of Google search API web service

in a day

Figures 6 and Figure 7 show the boxplot of the average

response time and failure rate of Google search API in

different days of a week respectively. Both the response time

and the failure rate are calculated in the unit of a day. The

data is gathered in a four-week study period.

Figure 6: The average response time of Google search API

web service in different days of a week

Figure 7: The average failure rate of Google search API web

service in different days of a week

In a boxplot, the bold line within the box indicates the

median. The box spans the central 50 percent of the data.

The lines attached to the box denote the standard range.

Figure 6 and Figure 7 show that on average, Monday and

Tuesday have the two largest average response times and

Monday and Friday have the two highest failure rates.

To study whether the response time and the failure rate are

different in different days of a week statistically, we tested

the following two null hypotheses:

• H01: There is no significant difference between the

means of the response time of Google search API in

different days of a week.

• H02: There is no significant difference between the

means of the failure rate of Google search API in

different days of a week.

To test these hypotheses, we performed two one-way

ANOVA tests. The results are shown in Table 1. In both of

the two tests, the p-values are less than 0.01. Therefore, we

reject these null hypotheses and accept the corresponding

alternative hypotheses. We conclude that there is significant

difference between the means of the response time of Google

search API in different days of a week; there is significant

difference between the means of the failure rate of Google

search API in different days of a week.

The experiment on Good search API web service indicates

that its performance (response time and failure rate) differs

hour to hour in a day and day to day in a week. Therefore,

the performance of the client application is dependent on and

sensitive to its subscribed web services. It is crucial for the

client to monitor, analyze, and predict the performance of

web services.

Table 1: The ANOVA test results

Hypothesis DF F value P-value

H01 6 4.710 0.003

H02 6 4.444 0.005

6. Conclusions

Web service-based computing allows clients to dynamically

bind services, and providers to modify the service

implementation independently. It is becoming the solution

for rapid and seamless integration of enterprise applications

both and outside the enterprise boundaries. However,

currently, one of the major concerns in web based

application is the performance assurance.

Software performance assurance of web service has not been

thoroughly investigated so far. However, with the widely use

of web services in research and industry, this issue will

become more and more critical. Our research tackles this

problem and states that the performance of web service must

be continually monitored after it is deployed; the pre-

deployment testing is not enough and can not guarantee the

future behavior of the web service.

In this paper, a software wrapping-based approach to

monitoring the web service performance is presented. This

approach can be easily implemented on the client site. The

results of a preliminary experiment on Google search API

web service using this approach indicated that the response

time and the failure rate of web services differ from hour to

hour in a day and day to day in a week. This findings support

our statement of the importance of motoring the web service

on the client site.

The long-term goal of this research project is to provide an

automated software environment that can predict the future

performance of web services based on the historical

performance data gathered from the wrapper. More

specifically, data mining techniques will be used to generate

prediction rules and apply them on real time data.

Another future research is to combine the statistical approach

with the modeling techniques to study web service

performance. In this research, both the empirical study and

the theoretical model analysis will be used to predict the

performance of web services.

References
[1] Takahashi, K., Emmerich, W., Finkelstein, A., and Guerra, S.

System development using application services over the Net,

Proceedings of the 22nd International Conference on Software

Engineering, Limerick, Ireland, p. 830, 2000.

[2] Emmerich, W. Distributed component technologies and their

software engineering implications, Proceedings of the 24th

International Conference on Software Engineering, Orlando,

Florida, p. 537–546, 2002.

[3] Naik, V.K., Sivasubramanian, S., and Krishnan, S. Adaptive

resource sharing in a web services environment, Proceedings of the

5th ACM/IFIP/USENIX international Conference on Middleware,

Toronto, Canada, p 311–330, 2004.

[4] BIGSF. Government Web Application Integrity. The Business

Internet Group of San Francisco, 2003.

[5] Fu, C., Ryder, B.G., Milanova, A., and Wonnacott, D.,

Testing of java web services for robustness, Proceedings of the

2004 ACM SIGSOFT international symposium on Software testing,

p.23–34, 2004.

[6] Offutt, J. and Xu, W, Generating test cases for web services

using data perturbation, ACM SIGSOFT Software Engineering

Notes, 29(5), p. 1–10, 2004.

[7] Huang, Y., Huang, S., Lin, T., and Tsai, C. Web application

security assessment by fault injection and behavior monitoring,

Proceedings of 12th International World Wide Web Conference,

Budapest, Hungary, p. 148–159, 2003.

[8] Liu, C., Kung, D., Hsia, P., and Hsu, C., Structural testing of

web applications, Proceedings of 11th International Symposium on

Software Reliability Engineering, p.84, 2000.

[9] Ricca, F., and Tonella, P. Analysis and testing of web

applications, Proceedings of the 23rd International Conference on

Software Engineering, Toronto, Canada, p. 25–34, 2001.

[10] Weyuker, E. and Vokolos, F. Experience with performance

testing of software systems: issues, an approach, and case study,

IEEE Transactions on Software Engineering 26(12), p.1147–1156,

2000.

[11] Cai, X., Lyu, M.R., and Wong, K, A generic environment for

COTS testing and quality prediction, Testing Commercial-off-the-

shelf Components and Systems, Sami Beydeda and Volker Gruhn

(eds.), Springer-Verlag, Berlin, p.315–347, 2005.

[12] Gorton, I. and Liu, A. Software component quality assessment

in practice: successes and practical impediments, Proceedings of

the 24th International Conference on Software Engineering,

Orlando, Florida, p.555–558, 2002.

[13] Lin, C., Avritzer, A., Weyuker, E., and Sai-Lai, L. Issues in

interoperability and performance verification in a multi-ORB

telecommunications environment, Proceedings of the International

Conference on Dependable Systems and Networks, New York, NY,

p. 567–575, 2000.

[14] Liu, Y., Gorton, I., Liu, A., Jiang, N., and Chen, S. Designing

a test suite for empirically-based middleware performance

prediction, Proceedings of the 14th International Conference on

Tools Pacific: Objects for internet, mobile and embedded

applications, Sydney, Australia, p.123–130, 2002.

[15] Vigder, M.R. and Dean, J. An architectural approach to

building systems from COTS software components, Proceedings of

1997 Center for Advanced Studies Conference, Toronto, Ontario,

Canada, p. 131–143, 1997.

[16] Mingins, C. and Chan, C. Building trust in third-party

components using component wrappers in the .net frameworks,

Proceedings of the 14th International Conference on Tools Pacific:

Objects for internet, mobile and embedded applications, Sydney,

Australia, p.153–157, 2002.

[17] Ghosh, A.K. and Schmid, M. An approach to testing COTS

software for robustness to operating system exceptions and errors,

Proceedings 10th International Symposium on Software Reliability

Engineering, Boca Raton, Florida, p. 166, 1999.

[18] Asterio de C, P., Romanovsky, A., and de Lemos, R.

Integrating COTS software components into dependable software

architectures, Proceedings of the 6th IEEE International

Symposium on Object-Oriented Real-Time Distributed Computing,

Hokaido, Japan, p. 139, 2003.

[19] Dean, J. and Li, L. Issues in developing security wrapper

technology for COTS software products, Proceedings of the 1st

International Conference on COTS-Based Software Systems,

Orlando, Florida, p. 76–85, 2002.

