
Associations in Conflict

SANDRA I. CASAS1

J. BALTASAR GARCÍA PEREZ-SCHOFIELD2

CLAUDIA A. MARCOS3

1Unidad Académica Río Gallegos, Universidad Nacional de la Patagonia Austral,

Río Gallegos, Argentina, 9400

lis@uarg.unpa.edu.ar
2Departamento de Informática, Universidad deVigo,

Orense, España, 32004

jbgarcia@uvigo.es
3Instituto de Sistemas de Tandil, Universidad Nacional del Centro

Tandil, Argentina, 7000

cmarcos@exa.unicen.edu.ar

Abstract. Aspect-Oriented Programming (AOP) is an emergent technology for the modularization of
crosscutting concern. The most used approach to support the AOP paradigm is based on the aspect
notion, as the basic unit that contains the crosscutting concern logic and a method that relates it to the
functional components (pointcuts, advices, join-points). This mechanism, popularized by tools like
AspectJ, restricts and limits the handling of conflicts among aspects. In this work a flexible, wider and
powerful approach is presented. This strategy is based on two main mechanisms: definition of
associations and explicit rules. The approach presented is implemented in a prototype denominated
MEDIATOR.

Keywords: AOP, Conflicts, Associations, Rules, AspectJ.

(Received September 30, 2006 / Accepted January 03, 2007)

1 Introduction

The term concern generally refers to concepts within an
application that are relevant to that Application. This
basically means that, in every applications, there is a
core part (the business logic), and many accessory parts
(concerns) which deal with the user interface, security,
and other concerns. However, the code related to the
latter is mixed with the bussiness logic of the
application. The Separation of Concern (SoC) [9]
principle states that a given problem involves different
kinds of concerns, which should be identified and
separated to successfully cope with complexity, and to
achieve the required engineering quality factors such as
robustness, adaptability, maintainability and reusability
[20].

Therefore, two concern types are identified: the core
concerns and the crosscutting concerns. Generally, the

core concerns represent the basic or primary
functionality of a system. The crosscutting concerns
represent the secondary or peripheral functionality. For
example Logging, Persistence, Security, Authentication,
Synchronization, Error Handling, are crosscutting
concerns.

The conventional programming techniques give
appropriate support for the implementation of the core
concern. However, the implementation of the
crosscutting concern using these techniques generates
the code for these concerns mixed and scatted through
the core concerns code.

An Aspect-Oriented Programming (AOP) [23] tool
provides mechanisms to encapsulate the crosscutting
concern and to integrate the aspects without modifying
the components of basic functionality. Most of the AOP
tools are extensions of conventional languages. These
extensions incorporate mechanisms to implement the

cuts and add constructs that describe the semantics and
the aspects behavior. After aspects codification, a
weaving process integrates the aspects with the
components of basic functionality, generating the final
application [28]. An Aspect is a unit of code and it is
composed of different constructions like methods,
attributes, introductions, declarations, cuts, etc. The cuts
give sense to the aspects, since they are the elements that
link the aspects with components of basic functionality.
The fundamental devices of a cut are: join-point,
primitive cuts and advices. Although the device
characteristic varies among these tools, their purpose is
essentially the same one. This model has been imposed
by AspectJ [22], the most diffused, popular and used
AOP tool. The AspectJ model has also been replicated
by many other AOP tools [13][14][15][19][27].

It is possible that two or more aspects can cause a

conflict, during the weaving process. Conflicts may
occur if two or more aspects compete for activation [29].
The activation of certain conflicts can cause undesired,
unpredictable and inconsistence behavior. Handling of
conflicts requires solutions for two problems: conflict
detection and resolution. However, in most of the AOP
tools the conflicts detection is a manual task and the
resolution possibilities are very poor and restricted [4].

In this work an approach to conflict solving among
aspects is presented. The solution provided involves
detection and resolutions of these conflicts, while based
on two mechanisms: the definition of associations and
explicit rules. These strategies make the approach very
flexible, effective and powerful. Other objectives, such
as aspect reuse, are also achieved. These strategies have
been implemented in a prototype denominated
MEDIATOR.

This work is structured as follows: section 2 is
dedicated to the analysis of the causes and consequences
of the aspect conflicts, while in sections 3, 4 and 5 the
proposed solutions is deeply discussed. Section 6
exposes the related works, while section 7 presents the
final conclusions and future work.

2 Conflicts: Causes and Consequences.

Conflicts may occur if two or more aspects compete for
activation [29], this phenomenon is also known as
interaction [10] or interference [31]. There may be
different types of hidden dependencies or conflicts
between aspects, and each one will require a different
solution in order to avoid undesired or unpredictable
behaviour.

In aspect-oriented applications, the same component
may be associated to more than one aspect. This would
be the case, for example, if an object is associated to an
aspect that updates a system log and also to an aspect
that defines an specific function for the data-base

administrator. When a message is sent to this object and
a method that stores data in the data-base is invoked, the
two associated aspects will be activated. These
situations arise questions: such as the possibility of
being able to predict the resulting behavior when both
aspects are invoked without any control. For example, a
given order in which aspects are invoked could result in
undefined behavior, while another order could result in
correct behavior without further need of control. It may
even be the case that the aspect related to the data-base
administrator should be specialized according to the
actual data-base being updated at that particular
moment; that is, the behavior is dependent on the
context.

In these and other cases, it would be desirable for the
developer to specify the type of conflict between
competing aspects, and to describe the actions to be
carried out, determining the priorities and activation
policy of the conflicting aspects.

However, the handling of aspect conflicts are hard
and complex with the current aspects tools, because of
two reasons: first of all, the identification process of
conflicts is a manual task, and secondly the possibilities
of resolution of conflicts are very restricted.

AspectJ [22][16] is a good candidate to be analyze as
for the support for handling conflicts. In this tool,
aspects are programming constructs that crosscut the
modularity of the basic functional classes of the
application in predetermined ways.

As for the devices that AspectJ provides for the
handling conflicts it is observed that, in particular
AspectJ lacks mechanisms to detect possible conflicts
among aspects. The weaver-compiler “ajc” does not
inform the possible conflicting situations automatically
and it always proceeds in the same way, no matter
whether conflicts exist or not.

The responsibility of this task is for developer,
needing to take control of code weaving and track
generated conflicts. The detection of conflicts can be a
simple task if the application manages a reduced
quantity of units (classes and aspects), but the
complexity of the task grows squarely, while the
components of the application increase. Also, there are
other factors that even make the detection more difficult:
(a) the extension of aspects can introduce potential
conflicting situations that can be unobserved and which
identification can be difficult to be carried out; (b) the
tasks of applications maintenance requires the addition,
removal and modification of components introducing
new conflicts, as requiring certain policies to be disabled
before the elimination of nonexistent conflicts; (c) the
conflicts identification is less readable due to the usage
of certain constructions (for example the wildcard); (d)
when the system is developed by a group of
programmers, the detection of the conflicts should be
made at the end.

As well as for detection of conflicts, the mechanism
for resolution, provided by AspectJ consists of a very
restricted precedence-based scheme (also known as
order or priority). In order to execute aspects code in a
certain order, it is necessary to specify it with declare

precedence statement. The semantics is that if an aspect
A precedes aspect B, then the advices of aspect A have
priority and they are executed before the advices of
aspect B.

declare precedence: A, B;

The declare precedence statement presents limitations in
the following scenarios:

a) The aspects outline more than a conflict (Figure 2).
Each conflict requires different order policies.
In this case, it is necessary that the advice associated to
the pointcut A1 of aspect A be executed before that the
advice associated to the pointcut B1 of aspect B. Once
the declaration “declare precedence: A, B" is added to
the source code, it is impossible for the advice
associated to pointcut B2 of aspect B to be executed
before the advice associated to pointcut A2 of aspect A.
This situation is not possible to solve through a
mechanism of precedence declarations, because it is
related to the aspects and not to the advices or pointcuts.

aspect A
 {
 pointcut A1(): call(void CX.met());
 pointcut A2(): execution(void CY.met());
 before(): A1()
 { }
 after(): A2()
 { }
 }

aspect B
 {
 pointcut B1(): call(void CX.met());
 pointcut B2(): execution(void CY.met());
 before(): B1()
 { }
 after(): B2()
 { }
 }

Figure 1: Two different conflicts among
aspects A and B.

b) The order in that aspects should be executed depends
on a condition of the system or of the context. In Figure
2 is indicated that the advice of aspect A will be
executed before than the advice of aspect B if cond is
true. Otherwise it is executed after the advice of the
aspect B.

aspect A
 {
 declare precedence: A, B if (cond)
 pointcut A1(): call(void CX.met());
 before(): A1()
 { }

 }
aspect B
 {
 declare precedence: B,A if (!cond)
 pointcut B1(): call(void CX.met());
 before(): B1()
 { }
 }

Figure 2: Two different declare precedence
statements for aspects A and B.

This situation is impossible to implement in AspectJ. Its
precedence declarations cannot be bound to conditions.
Different declarations of precedence involving the same
aspects also cause a compilation error.

c) Two or more aspects outline a conflict that are solved
in a certain order in a certain application. If these same
aspects are used in another application in which should
be executed in a different order, the previous declare
precedence statement is not valid. In this situation the
aspect that contains the declare precedence should be
modified.

In spite of these restrictions, the precedence scheme
is the only possibility of conflicts resolution that AOP
tools offer to the programmer. Even many other AOP
tools with limited conflict detection and solving are
available. For example AspectR [17] and phpAspect
[18] just do not have a similar mechanism to the one of
precedence discussed above for AspectJ. The dynamic
weavers µDyner [5] and microDyner [32] do not admit
that a join-point is associated to more than an advice,
pointcut or aspect.

3 Crosscutting Concern: Between Associations
and Aspects

To solve the inconveniences discussed in the previous
section, a different approach is adopted for crosscutting
concerns implementation. The aspect is an independent
unit composed by a group of methods and attributes and
encapsulates specific crosscutting concerning logic.
Associations are entities defined in a separated way,
instead of being tied to aspects, linking aspects with
classes. That is to say, an association describes a
relationship between an aspect and a class.

For example, in Figure 3 the association LogAcc is
defined, relating the Logging aspect with the Account
class. It establishes that every time that the

setBalance(float amount) method of Account class is
invoked, the loogedOperations() method of Logging
aspect is executed immediately afterwards.

association LogAcc
{
 call void Logging.loogedOperations();
 after void Account.setBalance(float amount);
}

Figure 3: Association among aspect Logging
and class Account

Looging.loogedOpearations() can be related to other
functional components and Account.setBalance() can be
related to other aspects, other associations will be
defined when needed. An association is always a one-to-
one relationship.

This approach allows the aspects to be independent
of the systems in which they are used and they can be
more reusable. But more importantly, the approach will
facilitate the handling of associations in an isolated
particular way. From within this mechanism, a conflict
does only happen when two or more associations define
the same relationship type for the same functional
component. Conflicts handling should be applied over
associations.

4 Explicit Rules to Rescue Conflicts

The conflicts identification process analyzes the
application associations evaluating the functional
component that they affect and the type of relationship.
When two or more associations coincide in these
elements a conflict is created. The detection process
generates a group of conflicts and it is automatic. A
conflict (K) is a group of n associations (A):

K = (A1, A2, …An) n > 1

An association can participate of a unique conflict.

The definition rule allows to specify a particular
resolution for a conflict. In this way a rule is another
mechanism of the whole approach for develop the AOP
applications, as it involves classes, aspects and
associations.

A rule establishes a condition and an action. Each
conflict is presented as condition of the rule and a
resolution category is indicated as action. The rule
format is indicated in figure 4.

Rule: Id_rule
Condition: (A1, A2, ..., An)
Action: R(A1, A2, ..., An)

Figure 4: Rule Format.

4.1 Wider Resolution of Conflicts

A wide strategy of resolution of conflicts means that
multiple and varied methods are available in order to

solve a conflict. The resolution categories that can be
applied are classified in basic and combined. In Table 1,
the basic categories are described and exampled (In the
example column, A and B represent associations).

Table 1: Basic Resolution Categories.

Basic

Categories
Action Example

Order
Defining an execution
order for associations in
conflict.

order (A, B);

Inverse
Order

Defining an execution
reverse order for
associations in conflict.

inverseOrder
(A, B);

Optional

Defining a optional
condition execution
over associations in
conflict. This condition
can be a system or
context policie.

if (cond)
 A;
else
 B;

Exclusion

Defining execution
exclusion (removing)
over some associations
in conflicts.

excluded (A);

Nullity

Defining nullity
execution (removing)
over all associations in
conflicts.

 anulled (A,
B);

These categories of resolution of conflicts are

inspired by a taxonomy proposed in Alpheus [30] and
used in Astor [3]. New categories are defined starting
from the combination of basic categories. In this way
more resolution possibilities are available. In Table 2,
the combined resolution categories are indicated and
exampled (In the example column, A1, A2 and A3
represent associations).

Table 2: Combined Resolution Categories

Combination Example

Order-Nullity
order (A1, A2),
anulled (A3),

Optional-Order

if (cond)
 order (A1, A2);
else
 order (A2, A1);

Optional-Order-
Exclusion

if (cond)
 order (A1, A2);
else
 excluded (A2, A1);

Optional – Order -
Nullity

if (cond)
 order (A1, A2, A3);
else

 order (A2, A1);
 anulled (A3);

Optional - Order -
Nullity - Exclusion

 if (cond)
 excluded (A1, A2, A3);
 else
 order (A2, A1);
 anulled (A3);

The capacity to combine resolution categories

overcomes the conventional based-precedence schemes.
These new procedures to solve conflicts represent a very
powerful and flexible mechanism. The definition of
rules impacts in the weaving process in a decisive way.
This process will be explained here below.

5 The Weaving Process.

The weaving process integrates the aspects with the
classes to build the final application [28]. The objective
is to maintain the associations and the logic of resolution
of conflicts (rules) as separated and isolated as possible
from classes and aspects. This is the objective to which
the design of the weaving strategy was aimed.

The proposed strategy requires classes, associations
and rules to participate in the weaving process, apart
from aspects, which are explicitly not involved in this
process. The weaving process proceeds in two stages.
First, a linking class is generated automatically in the
compilation phase. The methods of this class are
denominated in turn, linking methods. These methods
relate functional components to aspects, obtaining the
information from their corresponding associations. In
Figure 5 the link_Met1() linking method is shown,
generated from the LoggAcc association (relates
Account class to Logging aspect).

association LoggAcc
{
 call void Logging.loogedOperations();
 after void Account.debit(float amount);
}
class Link_Class1
{

 void static link_Met1()
 {
 Logging.loogedOperations();
 }

} // end linking class

Figure 5: Linking method generated
from association LoggAcc

The link_Met1() method invokes the execution of the
aspect method, defined in the LoggAcc association.

The second phase proceeds during the execution of
the application. In load-time those classes affected by
the associations are linked to the linking methods,
according to the relationship type. This process has been
implemented by means of the Javassist API [6][7][8].
Figure 6 (according to LoggAcc association) illustrates
how debit() method would be linked to the
Link_Class1.link_Met1() linking method, when the
Account class is loaded by the JVM (Java Virtual
Machine). Thus, the weaving process does not modify
the source code or the bytecode of classes.

class Account {

 void debit()
 {

 Link_Class1.link_Met1();
 }

}

Figure 6: Modification of bytecode on-the-fly

The previous example is validated for associations
free of conflicts. When the associations to weave results
in a conflicts, it is basically proceeded in the same way.
In the first phase the rules are required besides the
associations. The linking method concentrates the logic
of resolution of conflict. For example, in Figure 7 the
LoogAcc and StatisAcc associations have been defined
(Logging and Statistic are aspects, Account is a class),
along with the rule R, which will be used to try to solve
any possible conflict. The LoogAcc and StatisAcc
associations are in conflict. The Rule R has been defined
to solve this conflict applying a category combined
optional-order.

association LoggAcc
{
 call void Logging.loogedOperations();
 after void Account.debit();
 }
association StatisAcc
{
 call void Statistc.register();
 after void Account.debit();
}
Rule R
Condition: LoggAcc, StatisAcc;
Action:
 if (n)
 order (LoggAcc, StatisAcc);
 else
 order (StatisAcc, LoggAcc);

Figure 7: Conflict between LoggAcc and
StatisAcc associations and Explicit Rule R.

In the compilation phase, both associations are
merged in a unique linking method. The method
encapsulates the logic of resolution of the conflict. This
logic comes from the category resolution of conflict in
the defined rule R. In Figure 8, the link_Met2() linking
method has been automatically generated starting from
the rule R.

class Link_Class1 {

 void static link_Met2(boolean n) {
 if (n()) {
 Logging.loogedOperations();
 Statistic.register();
 }
 else {
 Statistic.register();
 Logging.loogedOperations();
 }
 }

Figure 8: Linking method of associations in conflicts.

In summary, the functional components affected by
some association are inserted a call to a linked method,
according to the type of relationship of the association.
The linking method, consists of the invoking of the
aspect method directly, or it can include a group of
sentences that apply a category of conflict resolution.
Therefore, the following advantages are obtained: (i)
classes do not have any knowledge about what aspect
cuts them; (ii) aspects preserve their original state and
they can be associated to any other functional
component (iii) conflict resolution is hidden in the
linking class, being specific for a certain application,
and finally, (iv) if a new association or rule is defined it
is only necessary to generate the linking class, it is not
necessary to compilate the other units (classes and
aspects).

The first phase, the creation of the linking class,

could be carried out in load-time. However, for
efficiency reasons it is more convenient to be carried out
as part of the compilation process.

5.1 Performance
Performance is a decisive factor in certain applications.
For that reason, it is considered important to know and
to evaluate the impact of the weaving strategy. An
experiment allowed to measure and to compare the
times of execution of an application developed under
our approach was therefore very important.

The basic application of the experiment is composed
of two classes: AccountManager and Account.
AccountManager manages a collection of Account

object, to update the balance of the same ones. Figure 9
represents the application of the experiment.

Figure 9: Experiment Basic Application.

Two non-functional requirements are now added:
Logging and Statistic. Both crosscutting concerns
register different information after debiting and
extracting operations are executed.

The application was implemented in 3 different
versions: (1) implementation in Java; (2)
implementation in AspectJ; (3) implementation in
MEDIATOR. The execution of each version was carried
out in 3 tests: (A) 10,000 instances of Account, 100,000
aleatory calls to the debit() method and 100,000 aleatory
calls to the extract() method; (B) 50,000 instances of
Account, 500,000 aleatory calls to the debit() method
and 500,000 aleatory calls to the extract() method; (C)
100,000 instances of Account, 1,000,000 aleatory calls
to the debit() method and 1,000,000 aleatory calls to the
extract() method.

Timing was taken using the standard
System.currentTimeMillis() method, which has a
resolution of 10ms or less, depending on the operating
system. The environment of the experiment was the
following:
- Machine: Intel Celeron CPU 1.80 GHz. 248 MB RAM
- Operating System: Windows XP
- JVM: Java 1.5.0 (J2SE 5.0)
- AspectJ 1.5
- Javassist 3.2

The experiments results are showed in Figure 10.

0

200

400

600

800

A B C

M
il

lio
ns

Test

T
im

e
 i
n

 m
s
.

Java AspectJ Mediator

Figure 10: Chart of Test A, B and C over 3 different
implementations.

The best performance in test A was obtained by Java
version. However, the difference with other versions

was less than 13,5%. Tests B and C present a few
surprises because it shows that the Java version spends
more time than AspectJ and MEDIATOR versions. Also
in these tests AspectJ version is faster than MEDIATOR
version. In test B AspectJ spent 6% less and in test C 2%
less. The cause of this minimun advantage in favor of
AspectJ, it can be that the AspectJ weaver inserts hook
in the classes to the aspects. The cuts are explicit and
direct. In MEDIATOR, the used method is less direct
and obvious, since the classes are linked to the methods
of the linking class, and these are linked to the aspects.
Another factor to keep in mind is the association aspect-
object coded in AspectJ. In the AspectJ version of Test
A, B and C, the aspects use the default association. By
default, only one instance of an aspect exists in a virtual
machine (VM)-much like a singleton class. If another
association type is applied, such as perthis, pertarget or
perflow, which consume more resources, the AspectJ
performance can be less.

We can not compare the execution when a resolution

combined category has been applied, because AspectJ
do not support it. For these reason we consider that this
study is not complete. Even so, it guides us about
MEDIATOR performance. The preliminary observation
is that MEDIATOR is competitive, but consistently
slower than AspectJ.

6 Related Works

Several works have been developed in order to detect
and solve conflicts situations among aspects. Each of
them presents their own classification and the strategies
to solve the conflicts. The resolution of the conflicts in
most of the cases is the developer’s responsibility, which
means that, the developer has to analyze the situation
and decide the best resolution strategy.

The first directly related work with the detection and
resolution of conflicts has seemingly been [10] [11]. The
authors hold that the treatment of the conflicts among
aspects should be carried out in a separated form from
the aspects definition. A model of three-phases intends
for the programming of multiple aspects: (i)
Programming: The aspects that are part of an application
are written independently and possibly for different
programmers; (ii) Analysis of conflicts: An automatic
tool detects the interactions among aspects and it returns
the results to the programmer; (iii) Resolution of
conflicts: The programmer solves the interactions using
a dedicated composition language. The result of this
phase can be again checked in phase (ii). The solution is
based on a generic framework for AOP that is
characterized by a very expressive language of
crosscutting cuts, static conflicts analysis and a
linguistic support for the resolution of conflicts.

An approach to detect and to analyze the
interferences (conflicts) caused by the capacities that
AspectJ is presented in [33]. This approach provides
mechanisms to modify the hierarchical structure of the
classes (declaration declares parents) and to introduce
new members to the classes (methods and attributes).
This work is based on traditional techniques of programs
analysis and it is only led to the detection of a class of
conflicts.

An analysis model to detect conflicts among
crosscutting concern is presented in [35]. The purpose of
the authors is to identify the interactions among aspects
in the modelling, and to provide a formal method that
allows developers to detect the conflicts by means of
successive refinements. The main objective is to achieve
the detection of conflicts as soon as possible (early
detection of conflicts) and to offer certain level of
prediction of the impact generated by the insert of new
aspects. This work is limited to the detection of the
conflict, although in early stages of the development.

A precedence model of AspectJ (sequential), used to
establish the execution order of advices, when they are
associated to the same join-point is improved and
optimized in [36]. The representation of the model in a
precedence graph, leads to a model of concurrent
precedence. This work tries to improvement the
resolution of conflicts mechanism especially for
AspectJ.

LogicAJ [31] provides interferences aspect-aspect
analysis for AspectJ that includes capacities for: (a)
identifying a well defined interferences class, (b)
determining the execution order free of interference (c)
determining the weave algorithm more convenient for a
group of given aspects. The analysis of interferences is
independent from the base programs to those that the
aspects are referred to (only the aspects are necessary for
the analysis) and independent from the aspect analyzer’s
additional annotations.

Programme Slicing is a technique that aims to the
extraction of program elements related to a computation
in particular. This approach is proposed to analyze the
interactions among aspects, since it can reduce the code
parts that are needed to analyze in order to understand
the effects of each aspect [24]

A very interesting work is Reflex [34], a tool that
facilitates the implementation and composition of
different aspects oriented languages. This work proposes
a model which provides a high level of abstraction to
implement the new languages of aspects and to support
the detection and resolution of conflicts. Reflex consists
basically on a kernel which a 3 layers architecture: (1) a
layer of transformation in charge of the basic weave
with support for the structural modification and of
behaviour of base programs; (2) a composition layer for
the detection and resolution of interactions and (3) a
language layer, for the definition of the language aspects

modulation. The detection of interactions follows the
outline proposed for [10] and it is limited to a static
approach of the interaction of aspects. The interactions
are not detected at execution time. There are two ways
of solving an interaction: (1) to choose of the
interactions the aspect that will be applied in the
execution (2) to order and to nest the aspects for the
execution. This work advances that a AOP tool should
manage conflicts and consequently it provides a specific
layer of the kernel for this purpose, but it imposes very
restricted resolution methods.

A way to formally validate precedence orderings
between aspects that share join-points is presented in
[26]. This work introduces a small language, CompAr,
in which the user expresses the effect of the advice that
is important for aspect interaction, and properties that
should be true after the execution of the advice. The
CompAr compiler can then check that a given advice
ordering does not invalidate a property of an advice.

An interaction analysis for Composition Filters is
proposed in [12]. In this work is detected when one
aspect prevents the execution of another, and can check
that a specified trace property is ensured by an aspect.

The use of rules as strategy or mechanism for
handling conflicts has been proposed in several recent
works. [21] presents a logic-based initial exploration
where facts and rules are defined for the detection of
interactions in Reflex [34]. In [25], it is proposed a
constraint-based, declarative approach to specify the
composition of aspects at shared join-points. The
ordering constrains and control constrains are similar to
the basic categories of resolution of our approach. The
ordering and control constraint can not be combined.
The implementation of this model requires the extension
of AOP Language in several aspects: join-point
constructs, advices constructs, declarations statements,
etc. The restrictions of AOP Languages, like the
limitations of precedence statement (section 2) are not
overcome, because the resolutions are applied in the
aspects body.

7. Conclusions and Future Work

In this article a complete approach to detect and to solve
conflicts among aspects has been presented. The main
strategies applied are: (i) Implementation separated from
the crosscutting concern in aspects and associations.
These mechanisms allow us to isolate and to
individualize the resolution of conflicts; (ii) the
precedence scheme is overcome by the explicit rules
definition. The possibility to apply several categories
resolution (basic and combined), are a unique solution in
AOP context; (iii) the weaving strategy makes the
aspects remain intact. They are not contaminated of the
associations, by no one of the conflict resolution
methods applied.

These characteristics make this approach very
flexible, effective and powerful in order to handle
conflicts. The SoC principle also stays. Additional
benefits are achieved as the reusability because the
aspects do not contain any information about the
functional components that they cuts.

The strategies describe in sections 3, 4 and 5 have
been implemented in a research prototype denominated
MEDIATOR. MEDIATOR allows implementation of
AOP application in Java. MEDIATOR is simple and
easy. It extends Java with two new units: associations
and explicit rules. The MEDIATOR relationships are
still a reduced group (call-after, call-before, set-after and
get-after). We are working in the extension of this group
and also allowing the use of some wildcards.

The disadvantage of our approach arises in very
complex scenarios in which dozens of conflicts can be
activated and they require similar solutions. The explicit
rules definition can be a tedious, repetitive and a task
prone to errors. In these cases, the best strategy will be
to use symbolic and general rule definition. In this way,
each symbolic rule can solve subsets of conflicts. We
are working on the implementation of rule expert system
embedded in MEDIATOR. The rule expert system
allows us to detect and to solve conflicts by means of the
definition of symbolic rules [1][2].

Acknowledgements

This work was partially supported by the Universidad
Nacional de la Patagonia Austral, Santa Cruz,
Argentina.

References

[1] Casas S., García Perez-Schofield B., Marcos C.
Detección y Resolución de Conflictos entre
Aspectos basado en un Sistema Experto de Reglas.
IX Workshop Iberoamericano de Ingeniería de
Requerimientos y Ambientes de Software, Pp 509-
512. ISBN 978-950-34-0360-0, Argentina, 2.006.

[2] Casas S., García Perez-Schofield B., Marcos C.
Gestión de Conflictos entre Aspectos mediante un

Sistema Experto de Reglas. XXXII Conferencia
Latinoamericana de Informática, Chile, 2.006.

[3] Casas S., Marcos C., Vanoli V., Reinaga H.,
Saldivia C., Pryor J., Sierpe L. ASTOR: Un
Prototipo para la Administración de Conflictos en

AspectJ. XIII Encuentro Chileno de Computación,
Jornadas Chilenas de Computación, Chile, 2.005.

[4] Casas S., Reinaga H., Sierpe L., Vanoli V., Saldivia
C., Pryor J. Clasificación y Resolución de

Conflictos entre Aspectos. VII Workshop de
Investigadores en Ciencias de la Computación,
Argentina, 2.005.

[5] Chen Y. Aspect – Oriented Programming (AOP):

Dinamic Weaving for C++. Master thesis, Vrije

Universiteit Brussel and Ecole des Mines de Nantes,
France, 2.003.

[6] Chiva S. Javassist – A Reflection – based

Programming Wizard for Java. In Proceeding of the
ACM OOSPLA´98 Workshop on Reflective
Programming in C++ and Java.1998.

[7] Chiva S. Load-time Structural Reflection in Java.
ECOOP 2.000 – Object-Oriented Programming,
LNCS 1850 - Springer Verlag - pp 313-336, 2.000.

[8] Chiva S., Nishizawa M. An Easy-to-Use Toolkit for

Efficient Java Bytecode Translation. Proceeding
2nd International Conference of Generative
Programming and Components Engineering, LNCS
2830 pp 364-376 – Springer Verlag, 2.003.

[9] Dijkstra E.W. A Discipline of Programming.
Prentice Hall, 1976.

[10] Duoence R., Fradet P., Südholt M. Detection and

Resolution of Aspect Interactions. TR Nº4435,
INRIA, ISSN 0249-6399, France, 2.002.

[11] Duoence R., Fradet P., Südholt M. A Framework
for the Detection and Resolution of Aspect
Interaction. In Proceeding of GPCE 2.002, vol.
2487 of LNCS, Springer Verlag, pp 173-188, USA,
2.002

[12] Durr P., Staijen T., Bergmans L., Aksit M.
Reasoning about semantic conflicts between

aspects. In K. Gybels, M. D’Hondt, I. Nagy, and R.
Douence, editors, 2nd European Interactive
Workshop on Aspects in Software, 2005.

[13] Gal A., Scroder-Preikschat W., Spinczyk O.
AspectC++: Language Proposal and Prototype

Implementation. ACM International Conference
Proceeding Series Proceedings of the Fortieth
International Conference on Tools Pacific. Vol.10.
Australia, 2.002.

[14] Homepage of AspectC:
http://www.cs.ubc.ca/labs/spl/projects/aspectc.html

[15] Hirschfeld R.: AspectS - AOP with Squeak. In
Proceedings of OOPSLA. Workshop on Advanced
Separation of Concerns in Object-Oriented System.
USA, 2.001.

[16] Homepage of AspectJTM, Xerox Palo Alto Research
Center (Xerox Parc), Palo Alto, California.
http://aspectj.org.

[17] Homepage of AspectR:
http://aspectr.sourceforge.net/

[18] Homepage of phpAspect:
http://phpaspect.org/wiki/doku.php

[19] Homepage of Pythius:
http://sourceforge.net/projects/pythius/

[20] Hursch W., Lopes C., “Separation of Concern”. TR.
NU-CCS-95-03, Northeastern University, 1.995.

[21] Kessler B, Tanter E. Analyzing Interactions of

Structural Aspects. Workshop AID in 20th.ECOOP.
France, 2.006.

[22] Kiczales G., Hilsdale E., Hugunin J., Kersten M.,
Palm J., Griswold W. An Overview of AspectJ. In J.
L. Knudsen, editor, Proceedings of the 15th
European Conference on Object-Oriented
Programming (ECOOP 2001), number 2072 in
Lecture Notes in Computer Science, pp 327–353,
Budapest, Hungary, 2001. Springer-Verlag.

[23] Kiczales G., Lamping J., Mendhekar A., Maeda C.,
Lopes C., Loingtier J. and Irwin J. Aspect-Oriented

Programming. In Proceedings of ECOOP’97
Finland, 1.997.

[24] Monga M., Beltagui F., Blair L. Investigating
Feature Interactions by Exploiting Aspect Oriented
Programming. TR N comp-002-2.003, Lancaster
University, England, 2.003.
http://www.com.lancs.ac.uk/computing/aop/Publica
tions.php

[25] Nagy I., Bergmans L., Aksit M. Composing Aspects

at Shared Join Point. Workshop AID in 20th.
ECOOP. France, 2.006.

[26] Pawlak R., Duchien L., and Seinturier L. CompAr:

Ensuring safe around advice composition. In
FMOODS 2005, vol. 3535 of LNCS, pages 163–
178, 2005.

[27] Piveta E., Zancanela L. Aurelia: Aspect oriented

programming using reflective approach. Workshop
on Advanced Separation of Concers ECOOP 2.001.

[28] Piveta E., Zancanella L. Aspect Weaving Strategies.
Journal of Universal Computer Science, vol.9, num.
8, 2003.

[29] Pryor J., Diaz Pace A., Campo M. Reflection on

Separation of Concerns. RITA. Vol.9. Num.1
2.002.

[30] Pryor J., Marcos C. Solving Conflicts in Aspect-

Oriented Applications. Proceedings of the Fourth
ASSE. 32 JAIIO. Argentina. 2.003.

[31] ROOTS: LogicAJ – A Uniformly Generic and

Interference-Aware Aspect Language.
http://roots.iai.uni-bonn.de/researh/logicaj/ (2.005).

[32] Segura-Devillechaise M., Meneaud J. microDyner:
efficient dynamic weaving of aspects in native

running processs. Languages et Modeles a Objets,
pp. 119-133, France, 2.003.

[33] Storzer M., Krinkle J. Interference Analisys for

AspectJ. FOAL: Foundations of Aspect-Oriented
Languages, USA, 2.003.

[34] Tanter E., Noye J. A versatile kernel for multi-

language AOP. In Proceedings of the 4th ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering , vol.

3676 of LNCS, pages 173–188, Tallinn, Estonia,
2005. Springer-Verlag.

[35] Tessier F., Badri M., Badri L. A Model-Based
Detection of Conflicts Between Crosscutting
Concern: Towards a Formal Approach.
International Workshop on Aspect – Oriented
Software Development, China, 2.004.

[36] Yu Y., Kienzle J. Towards an Efficient Aspect

Precedence Model. Proceeding of the 2.004
Dynamic Aspects Workshop, pp 156-167, England,
2.004.

